Alexander D'Amico, Heejong Sung, Alejandro Arbona-Lampaya, Ally Freifeld, Katie Hosey, Joshua Garcia, Ley Lacbawan, Emily Besançon, Layla Kassem, Nirmala Akula, Emma E. M. Knowles, Dwight Dickinson, Francis J. McMahon
Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder (“narrow” BD, n = 69), related mood disorders (“broad” BD, n = 135), and their clinically unaffected relatives (n = 227) completed five cognitive tests. General cognitive function (g) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with “narrow” or “broad” diagnoses showed deficits in g, although affect recognition was unimpaired. Cognitive performance was significantly heritable (h2 = 0.322 for g, p < 0.005). Coheritability between psychopathology and g was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.
{"title":"Independent inheritance of cognition and bipolar disorder in a family sample","authors":"Alexander D'Amico, Heejong Sung, Alejandro Arbona-Lampaya, Ally Freifeld, Katie Hosey, Joshua Garcia, Ley Lacbawan, Emily Besançon, Layla Kassem, Nirmala Akula, Emma E. M. Knowles, Dwight Dickinson, Francis J. McMahon","doi":"10.1002/ajmg.b.33001","DOIUrl":"10.1002/ajmg.b.33001","url":null,"abstract":"<p>Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder (“narrow” BD, <i>n</i> = 69), related mood disorders (“broad” BD, <i>n</i> = 135), and their clinically unaffected relatives (<i>n</i> = 227) completed five cognitive tests. General cognitive function (<i>g</i>) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with “narrow” or “broad” diagnoses showed deficits in <i>g</i>, although affect recognition was unimpaired. Cognitive performance was significantly heritable (<i>h</i><sup>2</sup> = 0.322 for g, <i>p</i> < 0.005). Coheritability between psychopathology and <i>g</i> was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"198 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.33001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Depression is a major public health problem with a continued need to uncover its etiology. Current models of depression contend that gene-by-environment (G × E) interactions influence depression risk, and further, that depression is polygenic. Thus, recent models have emphasized two polygenic approaches: a hypothesis-driven multilocus genetic profile score (MGPS; “MGPS × E”) and a polygenic risk score (PRS; “PRS × E”) derived from genome-wide association studies (GWAS). This review for the first time synthesizes current knowledge on polygene by environment “P × E” interaction research predicting primarily depression-related outcomes, and in brief, neurobiological outcomes. The “environment” of focus in this project is stressful life events. It further discusses findings in the context of differential susceptibility and diathesis-stress theories—two major theories guiding G × E work. This synthesis indicates that, within the MGPS literature, polygenic scores based on the serotonin system, the HPA axis, or across multiple systems, interact with environmental stress exposure to predict outcomes at multiple levels of analyses and most consistently align with differential susceptibility theory. Depressive outcomes are the most studied, but neuroendocrine, and neuroimaging findings are observed as well. By contrast, vast methodological differences between GWAS-based PRS studies contribute to mixed findings that yield inconclusive results.
抑郁症是一个重大的公共健康问题,需要不断揭示其病因。目前的抑郁症模型认为,基因与环境(G × E)之间的相互作用会影响抑郁症风险,而且抑郁症是多基因遗传的。因此,最近的模型强调了两种多基因方法:一种是由假设驱动的多焦点遗传特征评分(MGPS;"MGPS × E"),另一种是由全基因组关联研究(GWAS)得出的多基因风险评分(PRS;"PRS × E")。本综述首次综述了目前关于多基因与环境 "P × E "相互作用研究的知识,该研究主要预测与抑郁症相关的结果,简而言之,预测神经生物学结果。本项目关注的 "环境 "是生活压力事件。它进一步讨论了在差异易感性和病因-压力理论(指导 G × E 工作的两个主要理论)背景下的研究结果。本综述表明,在 MGPS 文献中,基于血清素系统、HPA 轴或跨多个系统的多基因评分与环境压力暴露相互作用,在多个分析层次上预测结果,并且与差异易感性理论最为一致。对抑郁结果的研究最多,但也观察到神经内分泌和神经影像学的研究结果。相比之下,基于 GWAS 的 PRS 研究在方法上存在巨大差异,导致研究结果参差不齐,无法得出结论。
{"title":"Polygene by environment interactions predicting depressive outcomes","authors":"Alessandra R. Grillo","doi":"10.1002/ajmg.b.33000","DOIUrl":"10.1002/ajmg.b.33000","url":null,"abstract":"<p>Depression is a major public health problem with a continued need to uncover its etiology. Current models of depression contend that gene-by-environment (G × E) interactions influence depression risk, and further, that depression is polygenic. Thus, recent models have emphasized two polygenic approaches: a hypothesis-driven multilocus genetic profile score (MGPS; “MGPS × E”) and a polygenic risk score (PRS; “PRS × E”) derived from genome-wide association studies (GWAS). This review for the first time synthesizes current knowledge on polygene by environment “P × E” interaction research predicting primarily depression-related outcomes, and in brief, neurobiological outcomes. The “environment” of focus in this project is stressful life events. It further discusses findings in the context of differential susceptibility and diathesis-stress theories—two major theories guiding G × E work. This synthesis indicates that, within the MGPS literature, polygenic scores based on the serotonin system, the HPA axis, or across multiple systems, interact with environmental stress exposure to predict outcomes at multiple levels of analyses and most consistently align with differential susceptibility theory. Depressive outcomes are the most studied, but neuroendocrine, and neuroimaging findings are observed as well. By contrast, vast methodological differences between GWAS-based PRS studies contribute to mixed findings that yield inconclusive results.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"198 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.33000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Meet the Editors. An interview with Marta Ribasés, Vall d'Hebron Research Institute (VHIR), Barcelona Spain","authors":"Paul Trevorrow, Marta Ribasés","doi":"10.1002/ajmg.b.33002","DOIUrl":"10.1002/ajmg.b.33002","url":null,"abstract":"","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polina Perlman Danieli, Ny Hoang, Thanuja Selvanayagam, Alvin Yang, Elemi Breetvelt, Merit Tabbers, Christine Cohen, Arthur S. Aelvoet, Brett Trost, Thomas Ward, Kara Semotiuk, Carol Durno, Melyssa Aronson, Zane Cohen, Evelien Dekker, Jacob Vorstman
This study investigated the neurodevelopmental impact of pathogenic adenomatous polyposis coli (APC) gene variants in patients with familial adenomatous polyposis (FAP), a cancer predisposition syndrome. We hypothesized that certain pathogenic APC variants result in behavioral–cognitive challenges. We compared 66 FAP patients (cases) and 34 unaffected siblings (controls) to explore associations between APC variants and behavioral and cognitive challenges. Our findings indicate that FAP patients exhibited higher Social Responsiveness Scale (SRS) scores, suggesting a greater prevalence of autistic traits when compared to unaffected siblings (mean 53.8 vs. 47.4, Wilcoxon p = 0.018). The distribution of SRS scores in cases suggested a bimodal pattern, potentially linked to the location of the APC variant, with scores increasing from the 5′ to 3′ end of the gene (Pearson's r = 0.33, p = 0.022). While we observed a trend toward lower educational attainment in cases, this difference was not statistically significant. This study is the first to explore the connection between APC variant location and neurodevelopmental traits in FAP, expanding our understanding of the genotype–phenotype correlation. Our results emphasize the importance of clinical assessment for autistic traits in FAP patients, shedding light on the potential role of APC gene variants in these behavioral and cognitive challenges.
{"title":"Autistic traits in youth with familial adenomatous polyposis: A Dutch–Canadian case–control study","authors":"Polina Perlman Danieli, Ny Hoang, Thanuja Selvanayagam, Alvin Yang, Elemi Breetvelt, Merit Tabbers, Christine Cohen, Arthur S. Aelvoet, Brett Trost, Thomas Ward, Kara Semotiuk, Carol Durno, Melyssa Aronson, Zane Cohen, Evelien Dekker, Jacob Vorstman","doi":"10.1002/ajmg.b.32999","DOIUrl":"10.1002/ajmg.b.32999","url":null,"abstract":"<p>This study investigated the neurodevelopmental impact of pathogenic adenomatous polyposis coli (<i>APC</i>) gene variants in patients with familial adenomatous polyposis (FAP), a cancer predisposition syndrome. We hypothesized that certain pathogenic APC variants result in behavioral–cognitive challenges. We compared 66 FAP patients (cases) and 34 unaffected siblings (controls) to explore associations between APC variants and behavioral and cognitive challenges. Our findings indicate that FAP patients exhibited higher Social Responsiveness Scale (SRS) scores, suggesting a greater prevalence of autistic traits when compared to unaffected siblings (mean 53.8 vs. 47.4, Wilcoxon <i>p</i> = 0.018). The distribution of SRS scores in cases suggested a bimodal pattern, potentially linked to the location of the APC variant, with scores increasing from the 5′ to 3′ end of the gene (Pearson's <i>r</i> = 0.33, <i>p</i> = 0.022). While we observed a trend toward lower educational attainment in cases, this difference was not statistically significant. This study is the first to explore the connection between APC variant location and neurodevelopmental traits in FAP, expanding our understanding of the genotype–phenotype correlation. Our results emphasize the importance of clinical assessment for autistic traits in FAP patients, shedding light on the potential role of <i>APC</i> gene variants in these behavioral and cognitive challenges.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Psychiatric disorders have a complex biological underpinning likely involving an interplay of genetic and environmental risk contributions. Substantial efforts are being made to use artificial intelligence approaches to integrate features within and across data types to increase our etiological understanding and advance personalized psychiatry. Network science offers a conceptual framework for exploring the often complex relationships across different levels of biological organization, from cellular mechanistic to brain-functional and phenotypic networks. Utilizing such network information effectively as part of artificial intelligence approaches is a promising route toward a more in-depth understanding of illness biology, the deciphering of patient heterogeneity, and the identification of signatures that may be sufficiently predictive to be clinically useful. Here, we present examples of how network information has been used as part of artificial intelligence within psychiatry and beyond and outline future perspectives on how personalized psychiatry approaches may profit from a closer integration of psychiatric research, artificial intelligence development, and network science.
{"title":"Network-based artificial intelligence approaches for advancing personalized psychiatry","authors":"Sivanesan Rajan, Emanuel Schwarz","doi":"10.1002/ajmg.b.32997","DOIUrl":"10.1002/ajmg.b.32997","url":null,"abstract":"<p>Psychiatric disorders have a complex biological underpinning likely involving an interplay of genetic and environmental risk contributions. Substantial efforts are being made to use artificial intelligence approaches to integrate features within and across data types to increase our etiological understanding and advance personalized psychiatry. Network science offers a conceptual framework for exploring the often complex relationships across different levels of biological organization, from cellular mechanistic to brain-functional and phenotypic networks. Utilizing such network information effectively as part of artificial intelligence approaches is a promising route toward a more in-depth understanding of illness biology, the deciphering of patient heterogeneity, and the identification of signatures that may be sufficiently predictive to be clinically useful. Here, we present examples of how network information has been used as part of artificial intelligence within psychiatry and beyond and outline future perspectives on how personalized psychiatry approaches may profit from a closer integration of psychiatric research, artificial intelligence development, and network science.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32997","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interview with Stephen Glatt. Editor-in-Chief, American Journal of Medical Genetics: Neuropsychiatric Genetics","authors":"Paul Trevorrow, Stephen J. Glatt","doi":"10.1002/ajmg.b.32998","DOIUrl":"10.1002/ajmg.b.32998","url":null,"abstract":"","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth S. Kendler, Henrik Ohlsson, Jan Sundquist, Kristina Sundquist
To examine whether the level of genetic risk in psychiatric disorders impacts the social functioning of affected individuals, we examine the relationship between genetic risk factors for major depression (MD), anxiety disorders (AD), bipolar disorder (BD), non-affective psychosis (NAP), alcohol use disorder (AUD), and drug use disorder (DUD) in disordered individuals and five adverse social outcomes: unemployment, residence in areas of social deprivation, social welfare, early retirement, and divorce. We examine all cases with registration for these disorders from 1995 to 2015 in individuals born in Sweden. Genetic risk was assessed by the family genetic risk score (FGRS) and statistical estimates by Cox proportional hazard models. High genetic risk was significantly and modestly associated with poorer social outcomes in 23 of 30 analyses. Overall, genetic risk for MD, AD, AUD, and DUD impacted social functioning more strongly in affected individuals than did genetic risk for BD and NAP. Social welfare had the strongest associations with genetic risk, and residence in areas of high deprivation had the weakest. In individuals suffering from psychiatric and substance use disorders, high levels of genetic risk impact not only clinical features but also diverse measures of social functioning.
为了研究精神障碍的遗传风险水平是否会影响患者的社会功能,我们研究了精神障碍患者中重度抑郁症(MD)、焦虑症(AD)、双相情感障碍(BD)、非情感性精神病(NAP)、酒精使用障碍(AUD)和药物使用障碍(DUD)的遗传风险因素与五种不良社会结果(失业、居住在社会贫困地区、社会福利、提前退休和离婚)之间的关系。我们研究了 1995 年至 2015 年期间在瑞典出生、登记患有这些疾病的所有病例。遗传风险通过家族遗传风险评分(FGRS)进行评估,并通过 Cox 比例危险模型进行统计估算。在 30 项分析中,有 23 项分析显示高遗传风险与较差的社会结果有明显或适度的关联。总体而言,与 BD 和 NAP 的遗传风险相比,MD、AD、AUD 和 DUD 的遗传风险对受影响个体社会功能的影响更大。社会福利与遗传风险的关联性最强,而居住在高度贫困地区与遗传风险的关联性最弱。对于患有精神病和药物使用障碍的人来说,高水平的遗传风险不仅会影响临床特征,还会影响社会功能的各种测量指标。
{"title":"The impact of family-genetic risk scores on social functioning in individuals affected with six major psychiatric and substance use disorders in a Swedish National Sample","authors":"Kenneth S. Kendler, Henrik Ohlsson, Jan Sundquist, Kristina Sundquist","doi":"10.1002/ajmg.b.32996","DOIUrl":"10.1002/ajmg.b.32996","url":null,"abstract":"<p>To examine whether the level of genetic risk in psychiatric disorders impacts the social functioning of affected individuals, we examine the relationship between genetic risk factors for major depression (MD), anxiety disorders (AD), bipolar disorder (BD), non-affective psychosis (NAP), alcohol use disorder (AUD), and drug use disorder (DUD) in disordered individuals and five adverse social outcomes: unemployment, residence in areas of social deprivation, social welfare, early retirement, and divorce. We examine all cases with registration for these disorders from 1995 to 2015 in individuals born in Sweden. Genetic risk was assessed by the family genetic risk score (FGRS) and statistical estimates by Cox proportional hazard models. High genetic risk was significantly and modestly associated with poorer social outcomes in 23 of 30 analyses. Overall, genetic risk for MD, AD, AUD, and DUD impacted social functioning more strongly in affected individuals than did genetic risk for BD and NAP. Social welfare had the strongest associations with genetic risk, and residence in areas of high deprivation had the weakest. In individuals suffering from psychiatric and substance use disorders, high levels of genetic risk impact not only clinical features but also diverse measures of social functioning.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
{"title":"Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance","authors":"Yasaman Arman Fard, Elham Najjar Sadeghi, Zohreh Pajoohesh, Zahra Gharehdaghi, Dorsa Mousavi Khatibi, Shaghayegh Khosravifar, Yasamin Pishkari, Shadi Nozari, Ahmed Hijazi, SeyedAbbas Pakmehr, Sepideh Karkon Shayan","doi":"10.1002/ajmg.b.32986","DOIUrl":"10.1002/ajmg.b.32986","url":null,"abstract":"<p>Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Long Chen, Matilda Naesström, Matthew Halvorsen, Anders Fytagoridis, Stephanie B. Crowley, David Mataix-Cols, Christian Rück, James J. Crowley, Diana Pascal
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
{"title":"Genomics of severe and treatment-resistant obsessive–compulsive disorder treated with deep brain stimulation: A preliminary investigation","authors":"Long Long Chen, Matilda Naesström, Matthew Halvorsen, Anders Fytagoridis, Stephanie B. Crowley, David Mataix-Cols, Christian Rück, James J. Crowley, Diana Pascal","doi":"10.1002/ajmg.b.32983","DOIUrl":"10.1002/ajmg.b.32983","url":null,"abstract":"<p>Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of <i>KCNB1</i>, a deletion at 15q11.2, and a duplication at 15q26.1. The <i>KCNB1</i> variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This <i>KCNB1</i> substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 8","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajmg.b.32983","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
{"title":"Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review","authors":"Jan Dahrendorff, Glenn Currier, Monica Uddin","doi":"10.1002/ajmg.b.32985","DOIUrl":"10.1002/ajmg.b.32985","url":null,"abstract":"<p>Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (<i>N</i> = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (<i>N</i> = 22) with a few studies assessing treatment response to electroconvulsive therapy (<i>N</i> = 3). Additionally, there are few genome-scale efforts (<i>N</i> = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.</p>","PeriodicalId":7673,"journal":{"name":"American Journal of Medical Genetics Part B: Neuropsychiatric Genetics","volume":"195 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}