Pub Date : 2024-07-01eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024014
Fiammetta Iannuzzo, Silvia Crudo, Gianpaolo Antonio Basile, Fortunato Battaglia, Carmenrita Infortuna, Maria Rosaria Anna Muscatello, Antonio Bruno
Non-Invasive Brain Stimulation (NIBS) techniques seem to be effective in treating tobacco use disorder. We aimed to analyze what kinds of protocols are used to treat nicotine addiction in term of cessation and/or reduction and to evaluate the long-term effects of NIBS techniques. We searched PubMed, Scopus, and Web of Science for papers published, with combinations of the following search terms: "Non-invasive brain stimulation OR TMS OR transcranial magnetic stimulation OR tDCS OR transcranial direct current stimulation OR transcranial electrical stimulation OR TES AND Nicotine addiction". We conducted a preliminary search, which revealed papers on the topic. Articles were included in the review according to the following inclusion criteria: English language, publication in peer reviewed journals, articles about studies performed on non-invasive brain stimulations techniques, and RCT studies. Studies involving clinical populations with organic or psychiatric diseases were excluded. We found 280 articles. Of these, at the first screening and conducted by title and abstract, 63 studies were excluded after duplicates were removed (118). After the second screening conducted by full-text examination, 45 articles were excluded. Ten studies met the inclusion criteria and were included in the review. The clinical benefits of NIBS, including the fast onset and minor side effects, showed that this kind of treatment could be helpful in patients with a long history of smoking in terms of cessation and abstinence rates.
{"title":"Efficacy and safety of non-invasive brain stimulation techniques for the treatment of nicotine addiction: A systematic review of randomized controlled trials.","authors":"Fiammetta Iannuzzo, Silvia Crudo, Gianpaolo Antonio Basile, Fortunato Battaglia, Carmenrita Infortuna, Maria Rosaria Anna Muscatello, Antonio Bruno","doi":"10.3934/Neuroscience.2024014","DOIUrl":"10.3934/Neuroscience.2024014","url":null,"abstract":"<p><p>Non-Invasive Brain Stimulation (NIBS) techniques seem to be effective in treating tobacco use disorder. We aimed to analyze what kinds of protocols are used to treat nicotine addiction in term of cessation and/or reduction and to evaluate the long-term effects of NIBS techniques. We searched PubMed, Scopus, and Web of Science for papers published, with combinations of the following search terms: \"<i>Non-invasive brain stimulation OR TMS OR transcranial magnetic stimulation OR tDCS OR transcranial direct current stimulation OR transcranial electrical stimulation OR TES AND Nicotine addiction</i>\". We conducted a preliminary search, which revealed papers on the topic. Articles were included in the review according to the following inclusion criteria: English language, publication in peer reviewed journals, articles about studies performed on non-invasive brain stimulations techniques, and RCT studies. Studies involving clinical populations with organic or psychiatric diseases were excluded. We found 280 articles. Of these, at the first screening and conducted by title and abstract, 63 studies were excluded after duplicates were removed (118). After the second screening conducted by full-text examination, 45 articles were excluded. Ten studies met the inclusion criteria and were included in the review. The clinical benefits of NIBS, including the fast onset and minor side effects, showed that this kind of treatment could be helpful in patients with a long history of smoking in terms of cessation and abstinence rates.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 3","pages":"212-225"},"PeriodicalIF":3.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024013
Thomas Papikinos, Marios Krokidis, Aris Vrahatis, Panagiotis Vlamos, Themis P Exarchos
Obsessive-compulsive disorder (OCD) is a chronic psychiatric disease in which patients suffer from obsessions compelling them to engage in specific rituals as a temporary measure to alleviate stress. In this study, deep learning-based methods were used to build three models which predict the likelihood of a molecule interacting with three biological targets relevant to OCD, SERT, D2, and NMDA. Then, an ensemble model based on those models was created which underwent external validation on a large drug database using random sampling. Finally, case studies of molecules exhibiting high scores underwent bibliographic validation showcasing that good performance in the ensemble model can indicate connection with OCD pathophysiology, suggesting that it can be used to screen molecule databases for drug-repurposing purposes.
{"title":"Drug repurposing for obsessive-compulsive disorder using deep learning-based binding affinity prediction models.","authors":"Thomas Papikinos, Marios Krokidis, Aris Vrahatis, Panagiotis Vlamos, Themis P Exarchos","doi":"10.3934/Neuroscience.2024013","DOIUrl":"10.3934/Neuroscience.2024013","url":null,"abstract":"<p><p>Obsessive-compulsive disorder (OCD) is a chronic psychiatric disease in which patients suffer from obsessions compelling them to engage in specific rituals as a temporary measure to alleviate stress. In this study, deep learning-based methods were used to build three models which predict the likelihood of a molecule interacting with three biological targets relevant to OCD, SERT, D2, and NMDA. Then, an ensemble model based on those models was created which underwent external validation on a large drug database using random sampling. Finally, case studies of molecules exhibiting high scores underwent bibliographic validation showcasing that good performance in the ensemble model can indicate connection with OCD pathophysiology, suggesting that it can be used to screen molecule databases for drug-repurposing purposes.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"203-211"},"PeriodicalIF":3.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain-derived neurotrophic factor (BDNF) is a predominant neurotrophic factor in the brain, indispensable for neuronal growth, synaptic development, neuronal repair, and hippocampal neuroplasticity. Among its genetic variants, the BDNF Val66Met polymorphism is widespread in the population and has been associated with the onset and aggravation of diverse pathologies, including metabolic conditions like obesity and diabetes, cardiovascular ailments, cancer, and an array of psychiatric disorders. Psychiatric disorders constitute a broad category of mental health issues that influence mood, cognition, and behavior. Despite advances in research and treatment, challenges persist that hinder our understanding and effective intervention of these multifaceted conditions. Achieving and maintaining stable body weight is pivotal for overall health and well-being, and the relationship between psychiatric conditions and body weight is notably intricate and reciprocal. Both weight gain and loss have been linked to varying mental health challenges, making the disentanglement of this relationship critical for crafting holistic treatment strategies. The BDNF Val66Met polymorphism's connection to weight fluctuation in psychiatric patients has garnered attention. This review investigated the effects and underlying mechanisms by which the BDNF Val66Met polymorphism moderates body weight among individuals with psychiatric disorders. It posits the polymorphism as a potential biomarker, offering prospects for improved monitoring and therapeutic approaches for mental illnesses.
{"title":"The BDNF Val66Met polymorphism serves as a potential marker of body weight in patients with psychiatric disorders.","authors":"Yinghua Zhang, Xinyue Wei, Wenhao Zhang, Feng Jin, Wenbo Cao, Mingjin Yue, Saijun Mo","doi":"10.3934/Neuroscience.2024012","DOIUrl":"10.3934/Neuroscience.2024012","url":null,"abstract":"<p><p>Brain-derived neurotrophic factor (BDNF) is a predominant neurotrophic factor in the brain, indispensable for neuronal growth, synaptic development, neuronal repair, and hippocampal neuroplasticity. Among its genetic variants, the BDNF Val66Met polymorphism is widespread in the population and has been associated with the onset and aggravation of diverse pathologies, including metabolic conditions like obesity and diabetes, cardiovascular ailments, cancer, and an array of psychiatric disorders. Psychiatric disorders constitute a broad category of mental health issues that influence mood, cognition, and behavior. Despite advances in research and treatment, challenges persist that hinder our understanding and effective intervention of these multifaceted conditions. Achieving and maintaining stable body weight is pivotal for overall health and well-being, and the relationship between psychiatric conditions and body weight is notably intricate and reciprocal. Both weight gain and loss have been linked to varying mental health challenges, making the disentanglement of this relationship critical for crafting holistic treatment strategies. The BDNF Val66Met polymorphism's connection to weight fluctuation in psychiatric patients has garnered attention. This review investigated the effects and underlying mechanisms by which the BDNF Val66Met polymorphism moderates body weight among individuals with psychiatric disorders. It posits the polymorphism as a potential biomarker, offering prospects for improved monitoring and therapeutic approaches for mental illnesses.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"188-202"},"PeriodicalIF":3.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute transverse myelitis (ATM) is an inflammatory disorder caused by many etiologies, from postinfectious to autoimmune. Rarely, ATM cases have been reported after both COVID-19 infection and COVID-19 vaccination. We described our experience with ATM after COVID-19 infection and conducted a literature review.
Case finding methods: We reported a case of longitudinally extensive ATM after COVID 19 infection, who also received convalescent plasma therapy, and present a comprehensive literature review of ATM cases reported after COVID-19 infection and COVID-19 vaccination. The literature search was done using PubMed and Google scholar with keywords and selected peer-reviewed articles. The search included all cases from Jan 2020 to Sept 2022.
Results: A total of 60 ATM cases reported association with post COVID 19 infection, and 23 ATM cases reported association with post COVID 19 vaccinations. Among post COVID 19 ATM cases, the mean age was 49 years and the youngest reported was 7-month-old. A total of 55% (33) were longitudinally extensive ATM. The most common symptom was lower extremity weakness. One case was reported as necrotizing myelitis on biopsy, and another case overlapped with syndrome of GBS and longitudinal ATM. No cases reported using convalescent plasma therapy after infection. Almost all the ATM cases were treated with steroids, but some cases needed additional treatment since not all responded adequately. Six cases (10%) responded with steroids plus plasmapheresis, and 5 cases (8%) responded with steroids + IVIG, especially in the pediatric age group. One case reported a positive response after treatment with eculizumab, and another with infliximab. Two cases (3%) remained paraparetic. Among post covid-19 vaccine ATM cases, 4 cases (17%) were reported as longitudinally extensive ATM. Five cases (21%) had symptom onset within a week after vaccination. Almost all reported a response to steroids except for one case which reported fatality after the 58th day after vaccination.
Conclusion: ATM, in the setting of acute COVID-19 infection, has been described in multiple cases and is a rare complication of COVID-19 vaccination.
{"title":"Acute transverse myelitis (ATM) associated with COVID 19 infection and vaccination: A case report and literature review.","authors":"Srinivas Medavarapu, Nitasha Goyal, Yaacov Anziska","doi":"10.3934/Neuroscience.2024011","DOIUrl":"10.3934/Neuroscience.2024011","url":null,"abstract":"<p><p>Acute transverse myelitis (ATM) is an inflammatory disorder caused by many etiologies, from postinfectious to autoimmune. Rarely, ATM cases have been reported after both COVID-19 infection and COVID-19 vaccination. We described our experience with ATM after COVID-19 infection and conducted a literature review.</p><p><strong>Case finding methods: </strong>We reported a case of longitudinally extensive ATM after COVID 19 infection, who also received convalescent plasma therapy, and present a comprehensive literature review of ATM cases reported after COVID-19 infection and COVID-19 vaccination. The literature search was done using PubMed and Google scholar with keywords and selected peer-reviewed articles. The search included all cases from Jan 2020 to Sept 2022.</p><p><strong>Results: </strong>A total of 60 ATM cases reported association with post COVID 19 infection, and 23 ATM cases reported association with post COVID 19 vaccinations. Among post COVID 19 ATM cases, the mean age was 49 years and the youngest reported was 7-month-old. A total of 55% (33) were longitudinally extensive ATM. The most common symptom was lower extremity weakness. One case was reported as necrotizing myelitis on biopsy, and another case overlapped with syndrome of GBS and longitudinal ATM. No cases reported using convalescent plasma therapy after infection. Almost all the ATM cases were treated with steroids, but some cases needed additional treatment since not all responded adequately. Six cases (10%) responded with steroids plus plasmapheresis, and 5 cases (8%) responded with steroids + IVIG, especially in the pediatric age group. One case reported a positive response after treatment with eculizumab, and another with infliximab. Two cases (3%) remained paraparetic. Among post covid-19 vaccine ATM cases, 4 cases (17%) were reported as longitudinally extensive ATM. Five cases (21%) had symptom onset within a week after vaccination. Almost all reported a response to steroids except for one case which reported fatality after the 58<sup>th</sup> day after vaccination.</p><p><strong>Conclusion: </strong>ATM, in the setting of acute COVID-19 infection, has been described in multiple cases and is a rare complication of COVID-19 vaccination.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"178-187"},"PeriodicalIF":3.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024009
Nicholas J D Wright
Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.
数千年来,人类一直将大麻用于医疗和娱乐目的。这包括治疗疼痛、炎症、癫痫发作和恶心。20 世纪 60 年代,人们确定了大麻的主要精神活性成分Δ9-四氢大麻酚的结构,在接下来的几十年里,人们确定了两种大麻素受体的特征,以及人体内源性大麻素系统及其影响。这包括新陈代谢、心血管和生殖系统,还涉及炎症、癌症、青光眼、肝脏和肌肉骨骼疾病等。在中枢神经系统中,内大麻素系统与食欲、学习、记忆以及抑郁症、焦虑症、精神分裂症、中风、多发性硬化症、神经变性、成瘾和癫痫等疾病有关。大麻中的一种非精神活性成分大麻二酚对缓解严重的儿童癫痫--德雷维综合征的症状有显著效果,这也促进了大麻研究的发展。这大大有助于改变社会对这一潜在有用药物来源的态度。然而,研究还发现,内源性大麻素(如安乃近和 2-丙烯酰甘油)和植物大麻素(如四氢大麻酚和大麻二酚)的作用不仅仅是与两种大麻素受体相互作用,而是直接作用于许多其他靶点,包括各种 G 蛋白受体和阳离子通道,例如瞬时受体电位通道。这篇微型综述试图探讨这 4 种重要大麻素对这些目前已确定靶点的影响。
{"title":"A review of the direct targets of the cannabinoids cannabidiol, Δ9-tetrahydrocannabinol, N-arachidonoylethanolamine and 2-arachidonoylglycerol.","authors":"Nicholas J D Wright","doi":"10.3934/Neuroscience.2024009","DOIUrl":"10.3934/Neuroscience.2024009","url":null,"abstract":"<p><p>Marijuana has been used by humans for thousands of years for both medicinal and recreational purposes. This included the treatment of pain, inflammation, seizures, and nausea. In the 1960s, the structure of the principal psychoactive ingredient Δ9-tetrahydrocannabinol was determined, and over the next few decades, two cannabinoid receptors were characterized along with the human endocannabinoid system and what it affects. This includes metabolism, the cardiovascular and reproductive systems, and it is involved in such conditions as inflammation, cancer, glaucoma, and liver and musculoskeletal disorders. In the central nervous system, the endocannabinoid system has been linked to appetite, learning, memory, and conditions such as depression, anxiety, schizophrenia, stroke, multiple sclerosis, neurodegeneration, addiction, and epilepsy. It was the profound effectiveness of cannabidiol, a non-psychoactive ingredient of marijuana, to relieve the symptoms of Dravet syndrome, a severe form of childhood epilepsy, that recently helped spur marijuana research. This has helped substantially to change society's attitude towards this potential source of useful drugs. However, research has also revealed that the actions of endocannabinoids, such as anandamide and 2-arachidonoylglycerol, and the phytocannabinoids, tetrahydrocannabinol and cannabidiol, were not just due to interactions with the two cannabinoid receptors but by acting directly on many other targets including various G-protein receptors and cation channels, such as the transient receptor potential channels for example. This mini-review attempts to survey the effects of these 4 important cannabinoids on these currently identified targets.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"144-165"},"PeriodicalIF":3.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024010
Ubaid Ansari, Meraj Alam, Dawnica Nadora, Zohaer Muttalib, Vincent Chen, Isabel Taguinod, Megan FitzPatrick, Jimmy Wen, Zaid Ansari, Forshing Lui
Amyotrophic lateral sclerosis (ALS) is a fatal and intricate neurodegenerative disease that impacts upper and lower motor neurons within the central nervous system, leading to their progressive destruction. Despite extensive research, the pathogenesis of this multifaceted disease remains elusive. The United States Food and Drug Administration (FDA) has granted approval for seven medications designed to address ALS and mitigate its associated symptoms. These FDA-sanctioned treatments are Qalsody, Relyvrio, Radicava, Rilutek, Tiglutik, Exservan, and Nuedexta. In this review, the effects of these seven drugs on ALS based on their mechanism of action, dosing, and clinical presentations are comprehensively summarized. Each medication offers a distinct approach to manage ALS, aiming to alleviate the burdensome symptoms and slow the disease's progression, thereby improving the quality of life for individuals affected by this neurological condition. However, despite these advancements in pharmaceutical interventions, finding a definitive cure for ALS remains a significant challenge. Continuous investigation into ALS pathophysiology and therapeutic avenues remains imperative, necessitating further research collaborations and innovative approaches to unravel the complex mechanisms underlying this debilitating condition.
肌萎缩性脊髓侧索硬化症(ALS)是一种致命而复杂的神经退行性疾病,会影响中枢神经系统内的上下运动神经元,导致其进行性破坏。尽管进行了广泛的研究,但这种多发性疾病的发病机制仍然难以捉摸。美国食品和药物管理局(FDA)已批准七种药物用于治疗 ALS 并减轻其相关症状。这些获得 FDA 批准的治疗药物是 Qalsody、Relyvrio、Radicava、Rilutek、Tiglutik、Exservan 和 Nuedexta。本综述全面总结了这七种药物的作用机制、剂量和临床表现对 ALS 的影响。每种药物都提供了治疗 ALS 的独特方法,旨在减轻患者的症状负担并延缓病情发展,从而改善这种神经系统疾病患者的生活质量。然而,尽管在药物干预方面取得了这些进展,但找到彻底治愈 ALS 的方法仍然是一项重大挑战。对 ALS 病理生理学和治疗途径的持续研究仍然势在必行,这就需要进一步的研究合作和创新方法,以揭示这种使人衰弱的疾病的复杂机制。
{"title":"Assessing the efficacy of amyotrophic lateral sclerosis drugs in slowing disease progression: A literature review.","authors":"Ubaid Ansari, Meraj Alam, Dawnica Nadora, Zohaer Muttalib, Vincent Chen, Isabel Taguinod, Megan FitzPatrick, Jimmy Wen, Zaid Ansari, Forshing Lui","doi":"10.3934/Neuroscience.2024010","DOIUrl":"10.3934/Neuroscience.2024010","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal and intricate neurodegenerative disease that impacts upper and lower motor neurons within the central nervous system, leading to their progressive destruction. Despite extensive research, the pathogenesis of this multifaceted disease remains elusive. The United States Food and Drug Administration (FDA) has granted approval for seven medications designed to address ALS and mitigate its associated symptoms. These FDA-sanctioned treatments are Qalsody, Relyvrio, Radicava, Rilutek, Tiglutik, Exservan, and Nuedexta. In this review, the effects of these seven drugs on ALS based on their mechanism of action, dosing, and clinical presentations are comprehensively summarized. Each medication offers a distinct approach to manage ALS, aiming to alleviate the burdensome symptoms and slow the disease's progression, thereby improving the quality of life for individuals affected by this neurological condition. However, despite these advancements in pharmaceutical interventions, finding a definitive cure for ALS remains a significant challenge. Continuous investigation into ALS pathophysiology and therapeutic avenues remains imperative, necessitating further research collaborations and innovative approaches to unravel the complex mechanisms underlying this debilitating condition.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"166-177"},"PeriodicalIF":3.1,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024008
Orish E Orisakwe, Evelyn Utomoibor Ikpeama, Chinna N Orish, Anthonet N Ezejiofor, Kenneth O Okolo, Aleksandar Cirovic, Ana Cirovic, Ify L Nwaogazie, Chinekwu Samson Onoyima
The beneficial effects of Prosopis africana (PA) on human health have been demonstrated; however, its protective effects against heavy metals (HM) are not yet understood. This study evaluated the potential neuroprotective effects of PA in the cerebral cortex and cerebellum. To accomplish this, we divided 35 albino Sprague Dawley rats into five groups. Group I did not receive either heavy metal mixture (HMM) or PA. Group II received a HMM of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg) orally for a period of two months. Groups III, IV, and V received HMM along with PA at doses of 500, 1000, and 1500 mg/kg, respectively. PA caused decreased levels of HM accumulation in the cerebral cortex and cerebellum and improved performance in the Barnes maze and rotarod tests. PA significantly reduced levels of IL-6 and TNF-α. PA increased concentrations of SOD, CAT, GSH, and Hmox-1 and decreased the activities of AChE and Nrf2. In addition, levels of MDA and NO decreased in groups III, IV, and V, along with an increase in the number of live neurons. In conclusion, PA demonstrates a complex neuroprotective effect with the potential to alleviate various aspects of HM-induced neurotoxicity.
{"title":"<i>Prosopis africana</i> exerts neuroprotective activity against quaternary metal mixture-induced memory impairment mediated by oxido-inflammatory response via Nrf2 pathway.","authors":"Orish E Orisakwe, Evelyn Utomoibor Ikpeama, Chinna N Orish, Anthonet N Ezejiofor, Kenneth O Okolo, Aleksandar Cirovic, Ana Cirovic, Ify L Nwaogazie, Chinekwu Samson Onoyima","doi":"10.3934/Neuroscience.2024008","DOIUrl":"10.3934/Neuroscience.2024008","url":null,"abstract":"<p><p>The beneficial effects of <i>Prosopis africana</i> (PA) on human health have been demonstrated; however, its protective effects against heavy metals (HM) are not yet understood. This study evaluated the potential neuroprotective effects of PA in the cerebral cortex and cerebellum. To accomplish this, we divided 35 albino Sprague Dawley rats into five groups. Group I did not receive either heavy metal mixture (HMM) or PA. Group II received a HMM of PbCl<sub>2</sub> (20 mg/kg), CdCl<sub>2</sub> (1.61 mg/kg), HgCl<sub>2</sub> (0.40 mg/kg), and NaAsO<sub>3</sub> (10 mg/kg) orally for a period of two months. Groups III, IV, and V received HMM along with PA at doses of 500, 1000, and 1500 mg/kg, respectively. PA caused decreased levels of HM accumulation in the cerebral cortex and cerebellum and improved performance in the Barnes maze and rotarod tests. PA significantly reduced levels of IL-6 and TNF-α. PA increased concentrations of SOD, CAT, GSH, and Hmox-1 and decreased the activities of AChE and Nrf2. In addition, levels of MDA and NO decreased in groups III, IV, and V, along with an increase in the number of live neurons. In conclusion, PA demonstrates a complex neuroprotective effect with the potential to alleviate various aspects of HM-induced neurotoxicity.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"118-143"},"PeriodicalIF":3.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024007
Dimitra Anatolou, Marios G Krokidis
The central nervous system (CNS) and the immune system collectively coordinate cellular functionalities, sharing common developmental mechanisms. Immunity-related molecules exert an influence on brain development, challenging the conventional view of the brain as immune-privileged. Chronic inflammation emerges as a key player in the pathophysiology of Alzheimer's disease (AD), with increased stress contributing to the disease progression and potentially exacerbating existing symptoms. In this study, the most significant gene signatures from selected RNA-sequencing (RNA-seq) data from AD patients and healthy individuals were obtained and a functional analysis and biological interpretation was conducted, including network and pathway enrichment analysis. Important evidence was reported, such as enrichment in immune system responses and antigen processes, as well as positive regulation of T-cell mediated cytotoxicity and endogenous and exogenous peptide antigen, thus indicating neuroinflammation and immune response participation in disease progression. These findings suggest a disturbance in the immune infiltration of the peripheral immune environment, providing new challenges to explore key biological processes from a molecular perspective that strongly participate in AD development.
中枢神经系统(CNS)和免疫系统共同协调细胞功能,共享共同的发育机制。与免疫相关的分子对大脑的发育产生影响,挑战了大脑具有免疫特权的传统观点。慢性炎症是阿尔茨海默病(AD)病理生理学的一个关键因素,压力的增加会导致疾病的发展,并有可能加重现有症状。在这项研究中,我们从选定的阿尔茨海默病患者和健康人的 RNA 序列(RNA-seq)数据中获得了最重要的基因特征,并进行了功能分析和生物学解释,包括网络和通路富集分析。研究发现了一些重要的证据,如免疫系统反应和抗原过程的富集,以及 T 细胞介导的细胞毒性和内源性及外源性肽抗原的正调控,从而表明神经炎症和免疫反应参与了疾病的进展。这些研究结果表明,外周免疫环境的免疫浸润发生了紊乱,这为从分子角度探索强烈参与 AD 发展的关键生物过程提供了新的挑战。
{"title":"Computational analysis of peripheral blood RNA sequencing data unravels disrupted immune patterns in Alzheimer's disease.","authors":"Dimitra Anatolou, Marios G Krokidis","doi":"10.3934/Neuroscience.2024007","DOIUrl":"10.3934/Neuroscience.2024007","url":null,"abstract":"<p><p>The central nervous system (CNS) and the immune system collectively coordinate cellular functionalities, sharing common developmental mechanisms. Immunity-related molecules exert an influence on brain development, challenging the conventional view of the brain as immune-privileged. Chronic inflammation emerges as a key player in the pathophysiology of Alzheimer's disease (AD), with increased stress contributing to the disease progression and potentially exacerbating existing symptoms. In this study, the most significant gene signatures from selected RNA-sequencing (RNA-seq) data from AD patients and healthy individuals were obtained and a functional analysis and biological interpretation was conducted, including network and pathway enrichment analysis. Important evidence was reported, such as enrichment in immune system responses and antigen processes, as well as positive regulation of T-cell mediated cytotoxicity and endogenous and exogenous peptide antigen, thus indicating neuroinflammation and immune response participation in disease progression. These findings suggest a disturbance in the immune infiltration of the peripheral immune environment, providing new challenges to explore key biological processes from a molecular perspective that strongly participate in AD development.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"103-117"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024006
Evgenia Lazarou, Themis P Exarchos
Stress has emerged as a prominent and multifaceted health concern in contemporary society, manifesting detrimental effects on individuals' physical and mental health and well-being. The ability to accurately predict stress levels in real time holds significant promise for facilitating timely interventions and personalized stress management strategies. The increasing incidence of stress-related physical and mental health issues highlights the importance of thoroughly understanding stress prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical health problems, objectively assessing stress is crucial for behavioral and physiological studies. While numerous studies have assessed stress levels in controlled environments, the objective evaluation of stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations in self-report adherence. This short review explored the emerging field of real-time stress prediction, focusing on utilizing physiological data collected by wearable devices. Stress was examined from a comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The review synthesized existing research on the development and application of stress prediction models, underscoring advancements, challenges, and future directions in this rapidly evolving domain. Emphasis was placed on examining and critically evaluating the existing research and literature on stress prediction, physiological data analysis, and wearable devices for stress monitoring. The synthesis of findings aimed to contribute to a better understanding of the potential of wearable technology in objectively assessing and predicting stress levels in real time, thereby informing the design of effective interventions and personalized stress management approaches.
{"title":"Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices.","authors":"Evgenia Lazarou, Themis P Exarchos","doi":"10.3934/Neuroscience.2024006","DOIUrl":"10.3934/Neuroscience.2024006","url":null,"abstract":"<p><p>Stress has emerged as a prominent and multifaceted health concern in contemporary society, manifesting detrimental effects on individuals' physical and mental health and well-being. The ability to accurately predict stress levels in real time holds significant promise for facilitating timely interventions and personalized stress management strategies. The increasing incidence of stress-related physical and mental health issues highlights the importance of thoroughly understanding stress prediction mechanisms. Given that stress is a contributing factor to a wide array of mental and physical health problems, objectively assessing stress is crucial for behavioral and physiological studies. While numerous studies have assessed stress levels in controlled environments, the objective evaluation of stress in everyday settings still needs to be explored, primarily due to contextual factors and limitations in self-report adherence. This short review explored the emerging field of real-time stress prediction, focusing on utilizing physiological data collected by wearable devices. Stress was examined from a comprehensive standpoint, acknowledging its effects on both physical and mental well-being. The review synthesized existing research on the development and application of stress prediction models, underscoring advancements, challenges, and future directions in this rapidly evolving domain. Emphasis was placed on examining and critically evaluating the existing research and literature on stress prediction, physiological data analysis, and wearable devices for stress monitoring. The synthesis of findings aimed to contribute to a better understanding of the potential of wearable technology in objectively assessing and predicting stress levels in real time, thereby informing the design of effective interventions and personalized stress management approaches.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"76-102"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024005
Ubaid Ansari, Dawnica Nadora, Meraj Alam, Jimmy Wen, Shaheryar Asad, Forshing Lui
Huntington's disease (HD), a rare autosomal dominant neurodegenerative disease, causes the gradual deterioration of neurons in the basal ganglia, specifically in the striatum. HD displays a wide range of symptoms, from motor disturbances such as chorea, dystonia, and bradykinesia to more debilitating symptoms such as cognitive decline, behavioral abnormalities, and psychiatric disturbances. Current research suggests the potential use of dietary interventions as viable strategies for slowing the progression of HD. Most notably, the Mediterranean, vegan, carnivore, paleo, and ketogenic diets have gained attention due to their hypothesized impact on neuroprotection and symptomatic modulation in various neurodegenerative disorders. Despite substantial nutritional differences among these diets, they share a fundamental premise-that dietary factors have an influential impact in modifying pertinent biological pathways linked to neurodegeneration. Understanding the intricate interactions between these dietary regimens and HD pathogenesis could open avenues for personalized interventions tailored to the individual's specific needs and genetic background. Ultimately, elucidating the multifaceted effects of these diets on HD offers a promising framework for developing comprehensive therapeutic approaches that integrate dietary strategies with conventional treatments.
亨廷顿氏病(Huntington's disease,HD)是一种罕见的常染色体显性神经退行性疾病,会导致基底神经节(尤其是纹状体)的神经元逐渐退化。HD 表现出多种症状,从舞蹈症、肌张力障碍和运动迟缓等运动障碍,到认知能力下降、行为异常和精神障碍等更令人衰弱的症状。目前的研究表明,饮食干预是减缓 HD 病程进展的可行策略。最值得注意的是,地中海饮食、素食者饮食、肉食者饮食、古法饮食和生酮饮食因其对神经保护和各种神经退行性疾病症状调节的假设影响而备受关注。尽管这些饮食在营养方面存在很大差异,但它们都有一个基本前提,即饮食因素在改变与神经退行性疾病相关的生物通路方面具有重要影响。了解这些饮食方案与 HD 发病机制之间错综复杂的相互作用,可以为根据个人的具体需求和遗传背景进行个性化干预开辟道路。最终,阐明这些饮食对 HD 的多方面影响可为开发将饮食策略与常规治疗相结合的综合治疗方法提供一个前景广阔的框架。
{"title":"Influence of dietary patterns in the pathophysiology of Huntington's Disease: A literature review.","authors":"Ubaid Ansari, Dawnica Nadora, Meraj Alam, Jimmy Wen, Shaheryar Asad, Forshing Lui","doi":"10.3934/Neuroscience.2024005","DOIUrl":"10.3934/Neuroscience.2024005","url":null,"abstract":"<p><p>Huntington's disease (HD), a rare autosomal dominant neurodegenerative disease, causes the gradual deterioration of neurons in the basal ganglia, specifically in the striatum. HD displays a wide range of symptoms, from motor disturbances such as chorea, dystonia, and bradykinesia to more debilitating symptoms such as cognitive decline, behavioral abnormalities, and psychiatric disturbances. Current research suggests the potential use of dietary interventions as viable strategies for slowing the progression of HD. Most notably, the Mediterranean, vegan, carnivore, paleo, and ketogenic diets have gained attention due to their hypothesized impact on neuroprotection and symptomatic modulation in various neurodegenerative disorders. Despite substantial nutritional differences among these diets, they share a fundamental premise-that dietary factors have an influential impact in modifying pertinent biological pathways linked to neurodegeneration. Understanding the intricate interactions between these dietary regimens and HD pathogenesis could open avenues for personalized interventions tailored to the individual's specific needs and genetic background. Ultimately, elucidating the multifaceted effects of these diets on HD offers a promising framework for developing comprehensive therapeutic approaches that integrate dietary strategies with conventional treatments.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 2","pages":"63-75"},"PeriodicalIF":3.1,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}