Pub Date : 2025-02-21eCollection Date: 2025-01-01DOI: 10.3934/Neuroscience.2025002
Mi Zhang, Junjie Ren, Ni Li, Yongyi Li, Linxi Yang, Wenzhuo Wei, Juan Qiu, Xiaochu Zhang, Xiaoming Li
Despite hypnosis showing efficacy in treating nicotine dependence, its neurobiological impacts on a smokers' brain function remain underexplored. Thirty-three smokers underwent electroencephalography (EEG) recording during pre- and post-hypnosis sessions, each 8 minutes long, alongside Tobacco Craving Questionnaire (TCQ) assessments. Four distinct EEG microstate classes (A, B, C, D) were identified. Daily cigarette consumption negatively correlated with the microstate A duration (r = -0.39, P = 0.03). Hypnosis increased the microstate A parameters while decreasing those of microstate B. Reduced microstate B parameters positively correlated with lower TCQ scores (r = 0.46, P = 0.02). Post-hypnosis, there was a decreased variability and sample entropy in low-frequency theta-band signals, indicating a shift towards more ordered theta oscillations. This shift was inversely related to the microstate D parameters and positively correlated with the microstate C occurrences. Dynamic changes in the brain microstates and theta oscillations elucidate the neurological mechanisms underlying hypnotherapy's effectiveness in treating smoking addiction. These findings provide new insights into the mechanisms by which hypnosis influences brain function and offer potential biomarkers for the treatment of smoking addiction, thus deepening our understanding of therapeutic approaches for substance use disorders.
尽管催眠在治疗尼古丁依赖方面显示出疗效,但其对吸烟者大脑功能的神经生物学影响仍未得到充分研究。33名吸烟者在催眠前和催眠后接受了脑电图(EEG)记录,每次8分钟,并进行了烟草渴望问卷(TCQ)评估。EEG微状态分为A、B、C、D四类。日卷烟消费量与微状态A持续时间呈负相关(r = -0.39, P = 0.03)。催眠提高了微状态A参数,降低了微状态B参数。微状态B参数降低与TCQ分数降低正相关(r = 0.46, P = 0.02)。催眠后,低频θ波段信号的可变性和样本熵降低,表明向更有序的θ振荡转变。这种变化与微态D参数呈负相关,与微态C的出现正相关。大脑微观状态和θ波振荡的动态变化阐明了催眠治疗有效治疗吸烟成瘾的神经机制。这些发现为催眠影响大脑功能的机制提供了新的见解,并为治疗吸烟成瘾提供了潜在的生物标志物,从而加深了我们对物质使用障碍治疗方法的理解。
{"title":"Hypnosis efficacy on nicotine addiction: An analysis of EEG microstates and brain oscillation entropy.","authors":"Mi Zhang, Junjie Ren, Ni Li, Yongyi Li, Linxi Yang, Wenzhuo Wei, Juan Qiu, Xiaochu Zhang, Xiaoming Li","doi":"10.3934/Neuroscience.2025002","DOIUrl":"https://doi.org/10.3934/Neuroscience.2025002","url":null,"abstract":"<p><p>Despite hypnosis showing efficacy in treating nicotine dependence, its neurobiological impacts on a smokers' brain function remain underexplored. Thirty-three smokers underwent electroencephalography (EEG) recording during pre- and post-hypnosis sessions, each 8 minutes long, alongside Tobacco Craving Questionnaire (TCQ) assessments. Four distinct EEG microstate classes (A, B, C, D) were identified. Daily cigarette consumption negatively correlated with the microstate A duration (r = -0.39, P = 0.03). Hypnosis increased the microstate A parameters while decreasing those of microstate B. Reduced microstate B parameters positively correlated with lower TCQ scores (r = 0.46, P = 0.02). Post-hypnosis, there was a decreased variability and sample entropy in low-frequency theta-band signals, indicating a shift towards more ordered theta oscillations. This shift was inversely related to the microstate D parameters and positively correlated with the microstate C occurrences. Dynamic changes in the brain microstates and theta oscillations elucidate the neurological mechanisms underlying hypnotherapy's effectiveness in treating smoking addiction. These findings provide new insights into the mechanisms by which hypnosis influences brain function and offer potential biomarkers for the treatment of smoking addiction, thus deepening our understanding of therapeutic approaches for substance use disorders.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"12 1","pages":"15-31"},"PeriodicalIF":3.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143952587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11eCollection Date: 2025-01-01DOI: 10.3934/Neuroscience.2025001
Jad El Choueiri, Leonardo Di Cosmo, Francesca Pellicanò, Francesca Romana Centini
Objective: Anatomical variations in the Circle of Willis (CoW) may mediate the prevalence of migraines with aura (MWA) and without aura (MWoA) in patients. The aim of this review is to describe and evaluate contrasting studies to clarify the current understanding of this association within the literature.
Methods: A comprehensive search across PubMed, Google Scholar, and the Cochrane Library resulted in 10 relevant studies that met our selection criteria and examined the association between the CoW and migraine prevalence.
Results: Conflicting results were reported across the prospective and retrospective studies, which varied among different populations and the inclusion classification of CoW variants. Studies that evaluated posterior CoW variations repeatedly reported differential associations between migraines with aura (MWA) and without aura (MWoA), thus revealing a significant association only with the former. Two mechanisms of actions were hypothesized to be attributed to such associations; one hypothesized a resultant cerebral hypovascularization, whilst the other emphasized the role of shear stress in associated small arteries.
Discussion: While some studies reported significant associations between specific CoW variations and migraines, particularly with the posterior CoW variations and MWA, conflicting evidence emphasizes the necessity for further investigations to provide a greater understanding between CoW variations and different migraine subtypes. A consensus calls for future studies to include larger samples over various ethnic populations to overcome the biases encountered within the current field of literature.
{"title":"Dissecting the Circle of Willis-Migraine connection: A review.","authors":"Jad El Choueiri, Leonardo Di Cosmo, Francesca Pellicanò, Francesca Romana Centini","doi":"10.3934/Neuroscience.2025001","DOIUrl":"https://doi.org/10.3934/Neuroscience.2025001","url":null,"abstract":"<p><strong>Objective: </strong>Anatomical variations in the Circle of Willis (CoW) may mediate the prevalence of migraines with aura (MWA) and without aura (MWoA) in patients. The aim of this review is to describe and evaluate contrasting studies to clarify the current understanding of this association within the literature.</p><p><strong>Methods: </strong>A comprehensive search across PubMed, Google Scholar, and the Cochrane Library resulted in 10 relevant studies that met our selection criteria and examined the association between the CoW and migraine prevalence.</p><p><strong>Results: </strong>Conflicting results were reported across the prospective and retrospective studies, which varied among different populations and the inclusion classification of CoW variants. Studies that evaluated posterior CoW variations repeatedly reported differential associations between migraines with aura (MWA) and without aura (MWoA), thus revealing a significant association only with the former. Two mechanisms of actions were hypothesized to be attributed to such associations; one hypothesized a resultant cerebral hypovascularization, whilst the other emphasized the role of shear stress in associated small arteries.</p><p><strong>Discussion: </strong>While some studies reported significant associations between specific CoW variations and migraines, particularly with the posterior CoW variations and MWA, conflicting evidence emphasizes the necessity for further investigations to provide a greater understanding between CoW variations and different migraine subtypes. A consensus calls for future studies to include larger samples over various ethnic populations to overcome the biases encountered within the current field of literature.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"12 1","pages":"1-14"},"PeriodicalIF":3.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143971409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024032
Ubaid Ansari, Alexi Omid, Dawnica Nadora, Jimmy Wen, Arman Omid, Forshing Lui
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles. Given the increasing prevalence of PD, particularly in aging populations, effective preventive and therapeutic strategies are urgently needed. Emerging research suggests that dietary interventions might offer promising approaches to managing PD progression. This literature review examines various dietary interventions that differ in their composition and mechanisms of action, including the Mediterranean, vegan, carnivore, paleo, and ketogenic diets, and their potential neuroprotective effects. By evaluating the current evidence, this review aims to identify dietary strategies that may improve the quality of life for individuals with PD. Additionally, it explores the underlying mechanisms through which diet may influence PD pathophysiology, thus providing insights into how nutritional modifications can be integrated into holistic management plans for the disease.
{"title":"Outcomes of dietary interventions in the prevention and progression of Parkinson's disease: A literature review.","authors":"Ubaid Ansari, Alexi Omid, Dawnica Nadora, Jimmy Wen, Arman Omid, Forshing Lui","doi":"10.3934/Neuroscience.2024032","DOIUrl":"10.3934/Neuroscience.2024032","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Factors contributing to this neuronal degeneration include mitochondrial dysfunction, oxidative stress, and neuronal excitotoxicity. Despite extensive research, the exact etiology of PD remains unclear, with both genetic and environmental factors playing significant roles. Given the increasing prevalence of PD, particularly in aging populations, effective preventive and therapeutic strategies are urgently needed. Emerging research suggests that dietary interventions might offer promising approaches to managing PD progression. This literature review examines various dietary interventions that differ in their composition and mechanisms of action, including the Mediterranean, vegan, carnivore, paleo, and ketogenic diets, and their potential neuroprotective effects. By evaluating the current evidence, this review aims to identify dietary strategies that may improve the quality of life for individuals with PD. Additionally, it explores the underlying mechanisms through which diet may influence PD pathophysiology, thus providing insights into how nutritional modifications can be integrated into holistic management plans for the disease.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"520-532"},"PeriodicalIF":3.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024031
Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui
Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation. In Alzheimer's and Parkinson's diseases, NP2 is linked to amyloid-beta aggregation and dopaminergic neuron degeneration, respectively. Additionally, altered NP2 expression is observed in schizophrenia and bipolar disorder, thus suggesting its involvement in synaptic dysfunction and neurotransmitter imbalance. In neuropathic pain and epilepsy, NP2 modulates the synaptic plasticity and inflammatory responses, with altered levels correlating with disease severity. Furthermore, NP2's involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) emphasizes its broad impact on neuronal health. Understanding NP2's multifaceted roles may reveal novel therapeutic targets and improve the clinical outcomes for these neurological disorders. Though the precise role of NP2 remains uncertain, its clinical potential and initial findings justify further investigations into neuronal pentraxins and other related neuroproteins.
{"title":"Analyzing the potential of neuronal pentraxin 2 as a biomarker in neurological disorders: A literature review.","authors":"Ubaid Ansari, Jimmy Wen, Burhaan Syed, Dawnica Nadora, Romteen Sedighi, Denise Nadora, Vincent Chen, Forshing Lui","doi":"10.3934/Neuroscience.2024031","DOIUrl":"10.3934/Neuroscience.2024031","url":null,"abstract":"<p><p>Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation. In Alzheimer's and Parkinson's diseases, NP2 is linked to amyloid-beta aggregation and dopaminergic neuron degeneration, respectively. Additionally, altered NP2 expression is observed in schizophrenia and bipolar disorder, thus suggesting its involvement in synaptic dysfunction and neurotransmitter imbalance. In neuropathic pain and epilepsy, NP2 modulates the synaptic plasticity and inflammatory responses, with altered levels correlating with disease severity. Furthermore, NP2's involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) emphasizes its broad impact on neuronal health. Understanding NP2's multifaceted roles may reveal novel therapeutic targets and improve the clinical outcomes for these neurological disorders. Though the precise role of NP2 remains uncertain, its clinical potential and initial findings justify further investigations into neuronal pentraxins and other related neuroproteins.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"505-519"},"PeriodicalIF":3.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024030
Francesco Ciaramella, Lorenzo Cipriano, Emahnuel Troisi Lopez, Arianna Polverino, Fabio Lucidi, Giuseppe Sorrentino, Laura Mandolesi, Pierpaolo Sorrentino
Personality can be considered a system characterized by complex dynamics that are extremely adaptive depending on continuous interactions with the environment and situations. The present preliminary study explores the dynamic interplay between brain flexibility and personality by taking the dynamic approach to personality into account, thereby drawing from Cloninger's psychobiological model. 46 healthy individuals were recruited, and their brain dynamics were assessed using magnetoencephalography (MEG) during the resting state. We identified brain activation patterns and measured brain flexibility by employing the theory of neuronal avalanches. Subsequent correlation analyses revealed a significant positive association between brain flexibility and cooperativeness, thus highlighting the role of brain reconfiguration tendencies in fostering openness, tolerance, and empathy towards others. Additionally, this preliminary finding suggests a neurobiological basis for adaptive social behaviors. Although the results are preliminary, this study provides initial insights into the intricate relationship between brain dynamics and personality, thus laying the groundwork for further research in this emerging field using a dynamic network analysis of the functional activity of the brain.
{"title":"Brain dynamics and personality: a preliminary study.","authors":"Francesco Ciaramella, Lorenzo Cipriano, Emahnuel Troisi Lopez, Arianna Polverino, Fabio Lucidi, Giuseppe Sorrentino, Laura Mandolesi, Pierpaolo Sorrentino","doi":"10.3934/Neuroscience.2024030","DOIUrl":"10.3934/Neuroscience.2024030","url":null,"abstract":"<p><p>Personality can be considered a system characterized by complex dynamics that are extremely adaptive depending on continuous interactions with the environment and situations. The present preliminary study explores the dynamic interplay between brain flexibility and personality by taking the dynamic approach to personality into account, thereby drawing from Cloninger's psychobiological model. 46 healthy individuals were recruited, and their brain dynamics were assessed using magnetoencephalography (MEG) during the resting state. We identified brain activation patterns and measured brain flexibility by employing the theory of neuronal avalanches. Subsequent correlation analyses revealed a significant positive association between brain flexibility and cooperativeness, thus highlighting the role of brain reconfiguration tendencies in fostering openness, tolerance, and empathy towards others. Additionally, this preliminary finding suggests a neurobiological basis for adaptive social behaviors. Although the results are preliminary, this study provides initial insights into the intricate relationship between brain dynamics and personality, thus laying the groundwork for further research in this emerging field using a dynamic network analysis of the functional activity of the brain.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"490-504"},"PeriodicalIF":3.1,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024029
Mark Reed, Christopher Miller, Cortney Connor, Jason S Chang, Forshing Lui
It is rare to find free floating fat droplets in the cerebral spinal fluid (CSF) spaces of the brain. When fat droplets are seen in the CSF spaces, the most common cause is the rupture of a dermoid cyst. Dermoid cysts are congenital inclusion cysts that form during the neural tube closure between the third and fifth weeks of embryogenesis. In this case report, we describe a case of a 74-year-old, right-handed female who presented with an acute onset of visual disturbances and left-hand numbness. Computed tomography (CT) and magnetic resonance imaging (MRI) of the head revealed hypodense "lesions" in the lateral ventricles and basal cisterns. The CT Hounsfield unit was between -41 to -83 Hounsfield Units, which is compatible with fat rather than air. The T1 weighted and FLAIR MRI showed hyperintense lesions "floating" on top of the CSF in the lateral ventricles, which is typical for fat droplets, presumably caused by a ruptured dermoid cyst. This case emphasizes the importance of analyzing Hounsfield Units to distinguish lesions by density, where fat ranges from -50 to -150 Hounsfield Units and air is -1000 Hounsfield Units. Pneumocephalus is the presence of air in the epidural, subdural, or subarachnoid space and can cause confusion, nausea, seizures and focal neurological symptoms. A careful analysis of the neuroimaging findings in the CT with or without MRI is important in making a correct diagnosis of a ruptured dermoid cyst versus pneumocephalus.
{"title":"Fat droplets in the cerebrospinal fluid (CSF) spaces of the brain.","authors":"Mark Reed, Christopher Miller, Cortney Connor, Jason S Chang, Forshing Lui","doi":"10.3934/Neuroscience.2024029","DOIUrl":"10.3934/Neuroscience.2024029","url":null,"abstract":"<p><p>It is rare to find free floating fat droplets in the cerebral spinal fluid (CSF) spaces of the brain. When fat droplets are seen in the CSF spaces, the most common cause is the rupture of a dermoid cyst. Dermoid cysts are congenital inclusion cysts that form during the neural tube closure between the third and fifth weeks of embryogenesis. In this case report, we describe a case of a 74-year-old, right-handed female who presented with an acute onset of visual disturbances and left-hand numbness. Computed tomography (CT) and magnetic resonance imaging (MRI) of the head revealed hypodense \"lesions\" in the lateral ventricles and basal cisterns. The CT Hounsfield unit was between -41 to -83 Hounsfield Units, which is compatible with fat rather than air. The T1 weighted and FLAIR MRI showed hyperintense lesions \"floating\" on top of the CSF in the lateral ventricles, which is typical for fat droplets, presumably caused by a ruptured dermoid cyst. This case emphasizes the importance of analyzing Hounsfield Units to distinguish lesions by density, where fat ranges from -50 to -150 Hounsfield Units and air is -1000 Hounsfield Units. Pneumocephalus is the presence of air in the epidural, subdural, or subarachnoid space and can cause confusion, nausea, seizures and focal neurological symptoms. A careful analysis of the neuroimaging findings in the CT with or without MRI is important in making a correct diagnosis of a ruptured dermoid cyst versus pneumocephalus.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"484-489"},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Parkinson's disease (PD) remains incurable and its prevalence is increasing as the population ages. Although physical activity is considered a therapeutic treatment to slow the progression of the disease, it is considered to be an effective non-pharmacological adjuvant to medication to improve the symptom management.
Methods: The training program was offered for all the participants (N = 50) in three non-consecutive sessions per week for 60 minutes and a total duration of 12 to 16 months. Each session is composed of warming up, adapted boxing training exercises, muscle building and resistance exercises, and returning to calm. For the measurement of physical capacities, the following tests were administered: the Fullerton Advanced Balance Scale (FAB), Timed Up and Go (TUG), and the 30-second chair lift test (TLC30). With regard to quality of life, the Parkinson's Disease Questionnaire of 39 questions (PDQ-39) was used. The participants (age range from 60 to 80 years) were divided following the results of the Parkinson disease severity (Questionnaire Hoehn and Yahr; H&Y) into two groups (H&Y 1-2: mild to moderate symptoms; H&Y 3-4: moderate to severe symptoms).
Objective: The aim of this research was to assess the long-term effects (12 to 16 months) of a community-wide adapted physical program on the physical capacity and quality of life of people with Parkinson disease.
Conclusion: In view of the results, adapted physical training appears to be beneficial for physical capacity and life quality and considered to be an important approch for maintaining the physical and mental capacities and slowing down the proression of neurodegenrative disease.
{"title":"Effects of long-term adapted physical training on functional capacity and quality of life in older adults with Parkinson's disease.","authors":"Oussama Gaied Chortane, Elmoetez Magtouf, Wael Maktouf, Sabri Gaied Chortane","doi":"10.3934/Neuroscience.2024028","DOIUrl":"10.3934/Neuroscience.2024028","url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) remains incurable and its prevalence is increasing as the population ages. Although physical activity is considered a therapeutic treatment to slow the progression of the disease, it is considered to be an effective non-pharmacological adjuvant to medication to improve the symptom management.</p><p><strong>Methods: </strong>The training program was offered for all the participants (N = 50) in three non-consecutive sessions per week for 60 minutes and a total duration of 12 to 16 months. Each session is composed of warming up, adapted boxing training exercises, muscle building and resistance exercises, and returning to calm. For the measurement of physical capacities, the following tests were administered: the Fullerton Advanced Balance Scale (FAB), Timed Up and Go (TUG), and the 30-second chair lift test (TLC30). With regard to quality of life, the Parkinson's Disease Questionnaire of 39 questions (PDQ-39) was used. The participants (age range from 60 to 80 years) were divided following the results of the Parkinson disease severity (Questionnaire Hoehn and Yahr; H&Y) into two groups (H&Y 1-2: mild to moderate symptoms; H&Y 3-4: moderate to severe symptoms).</p><p><strong>Objective: </strong>The aim of this research was to assess the long-term effects (12 to 16 months) of a community-wide adapted physical program on the physical capacity and quality of life of people with Parkinson disease.</p><p><strong>Conclusion: </strong>In view of the results, adapted physical training appears to be beneficial for physical capacity and life quality and considered to be an important approch for maintaining the physical and mental capacities and slowing down the proression of neurodegenrative disease.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"468-483"},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews. The PubMed/MEDLINE database was queried for systematic reviews, and yielded 7 systematic reviews with a substantial sample size (N = 4,252), some of which included meta-analyses. A significant finding across these studies was the effectiveness of neuromodulation techniques to reduce nicotine cravings and consumption, through the evidence remains not yet conclusive. A significant efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation that targeted the dorsolateral prefrontal cortex was found, as well as the lateral prefrontal cortex and insula bilaterally, on smoking frequency and craving. Moreover, smoking behaviors may also be positively affected by the use of deep brain stimulation (DBS) targeting the nucleus accumbens. In conclusion, neuromodulation approaches hold promise as effective treatments for tobacco use disorder. Nonetheless, further research is required to comprehensively understand their effectiveness and to determine if combining them with other treatments can aid individuals to successfully quit smoking.
{"title":"Exploring the therapeutic potential of tDCS, TMS and DBS in overcoming tobacco use disorder: an umbrella review.","authors":"Graziella Orrù, Marina Baroni, Ciro Conversano, Angelo Gemignani","doi":"10.3934/Neuroscience.2024027","DOIUrl":"10.3934/Neuroscience.2024027","url":null,"abstract":"<p><p>The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews. The PubMed/MEDLINE database was queried for systematic reviews, and yielded 7 systematic reviews with a substantial sample size (N = 4,252), some of which included meta-analyses. A significant finding across these studies was the effectiveness of neuromodulation techniques to reduce nicotine cravings and consumption, through the evidence remains not yet conclusive. A significant efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation that targeted the dorsolateral prefrontal cortex was found, as well as the lateral prefrontal cortex and insula bilaterally, on smoking frequency and craving. Moreover, smoking behaviors may also be positively affected by the use of deep brain stimulation (DBS) targeting the nucleus accumbens. In conclusion, neuromodulation approaches hold promise as effective treatments for tobacco use disorder. Nonetheless, further research is required to comprehensively understand their effectiveness and to determine if combining them with other treatments can aid individuals to successfully quit smoking.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"449-467"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024026
Tien-Wen Lee, Gerald Tramontano
Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can alleviate anxiety symptoms. We aimed to explore the connectivity changes following the treatment. We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after the tACS treatment during a single session. Electric stimulation was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8, following the 10-10 EEG convention. With eLORETA, the scalp signals were transformed into the cortex's current source density. We assessed the connectivity changes at theta frequency between the centers of Brodmann area (BA) 6/8 (frontal), BA 39/40 (parietal), and BA 21 (middle temporal). Functional connectivity was indicated by lagged coherences and lagged phase synchronization. Paired t-tests were used to quantify the differences statistically. We observed enhanced lagged phase synchronization at theta frequency between the frontal and parietal regions (P = 0.002) and between the parietal and temporal regions (P = 0.005) after Bonferroni correction. Applying tACS 5-Hz over the right hemisphere enhanced inter-regional interaction, which was spectrum-specific and mainly mediated by phase rather than power synchrony. The potential neural mechanisms are discussed.
{"title":"Connectivity changes following transcranial alternating current stimulation at 5-Hz: an EEG study.","authors":"Tien-Wen Lee, Gerald Tramontano","doi":"10.3934/Neuroscience.2024026","DOIUrl":"10.3934/Neuroscience.2024026","url":null,"abstract":"<p><p>Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can alleviate anxiety symptoms. We aimed to explore the connectivity changes following the treatment. We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after the tACS treatment during a single session. Electric stimulation was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8, following the 10-10 EEG convention. With eLORETA, the scalp signals were transformed into the cortex's current source density. We assessed the connectivity changes at theta frequency between the centers of Brodmann area (BA) 6/8 (frontal), BA 39/40 (parietal), and BA 21 (middle temporal). Functional connectivity was indicated by lagged coherences and lagged phase synchronization. Paired t-tests were used to quantify the differences statistically. We observed enhanced lagged phase synchronization at theta frequency between the frontal and parietal regions (<i>P</i> = 0.002) and between the parietal and temporal regions (<i>P</i> = 0.005) after Bonferroni correction. Applying tACS 5-Hz over the right hemisphere enhanced inter-regional interaction, which was spectrum-specific and mainly mediated by phase rather than power synchrony. The potential neural mechanisms are discussed.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"439-448"},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12eCollection Date: 2024-01-01DOI: 10.3934/Neuroscience.2024025
Monireh Asadi Ghaleni, Forouzan Fattahi Masrour, Narjes Saryar, Alexandra J Bratty, Ebrahim Norouzi, Matheus Santos de Sousa Fernandes, Georgian Badicu
Background: Older individuals are at a particular risk of sleep disorders, a loss of cognitive and emotional control, and a poor quality of life. Pharmaceutical therapy for these conditions is commonplace but has not been particularly effective, and relatively little research exists for their treatment using non-pharmacological approaches. The effectiveness of Physical Activity plus selected components of Amygdala and Insula Retraining (PAAIR) was tested to improve sleep quality, depression, working memory, and emotion regulation among older males.
Methods: This was a parallel, randomized control trial. The study was conducted in-person among 40 older Iranian men (Mage: 65.78, SD = 2.41). The participants were randomly assigned with equal allocation to either the PAAIR or a control condition. Both interventions were conducted in-person over 12 weeks. The participants met twice weekly for 45-minute sessions at a local elderly training and rehabilitation center. All participants completed measurements for sleep quality, depressive symptoms, working memory, and emotion regulation at baseline, 12 weeks (immediately after the intervention), and 8 weeks later.
Results: Among the 36 individuals who finished the study, their sleep quality, working memory, and emotion regulation improved, and their depressive symptoms were reduced from baseline to 12 weeks (post-intervention) and 8 weeks later; these effects were seen even more so for the PAAIR group compared to the control group, with large to extremely large effect sizes.
Conclusion: The findings suggest that PAAIR has the potential to enhance sleep quality, cognitive function, and emotion regulation and reduce depressive symptoms among older men, thus contributing to their quality of life and mental health.
{"title":"Effects of an intervention combining physical activity and components of Amygdala and Insula Retraining (AIR) on sleep and working memory among older male adults.","authors":"Monireh Asadi Ghaleni, Forouzan Fattahi Masrour, Narjes Saryar, Alexandra J Bratty, Ebrahim Norouzi, Matheus Santos de Sousa Fernandes, Georgian Badicu","doi":"10.3934/Neuroscience.2024025","DOIUrl":"10.3934/Neuroscience.2024025","url":null,"abstract":"<p><strong>Background: </strong>Older individuals are at a particular risk of sleep disorders, a loss of cognitive and emotional control, and a poor quality of life. Pharmaceutical therapy for these conditions is commonplace but has not been particularly effective, and relatively little research exists for their treatment using non-pharmacological approaches. The effectiveness of Physical Activity plus selected components of Amygdala and Insula Retraining (PAAIR) was tested to improve sleep quality, depression, working memory, and emotion regulation among older males.</p><p><strong>Methods: </strong>This was a parallel, randomized control trial. The study was conducted in-person among 40 older Iranian men (<i>M</i> <sub>age</sub>: 65.78, <i>SD</i> = 2.41). The participants were randomly assigned with equal allocation to either the PAAIR or a control condition. Both interventions were conducted in-person over 12 weeks. The participants met twice weekly for 45-minute sessions at a local elderly training and rehabilitation center. All participants completed measurements for sleep quality, depressive symptoms, working memory, and emotion regulation at baseline, 12 weeks (immediately after the intervention), and 8 weeks later.</p><p><strong>Results: </strong>Among the 36 individuals who finished the study, their sleep quality, working memory, and emotion regulation improved, and their depressive symptoms were reduced from baseline to 12 weeks (post-intervention) and 8 weeks later; these effects were seen even more so for the PAAIR group compared to the control group, with large to extremely large effect sizes.</p><p><strong>Conclusion: </strong>The findings suggest that PAAIR has the potential to enhance sleep quality, cognitive function, and emotion regulation and reduce depressive symptoms among older men, thus contributing to their quality of life and mental health.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"11 4","pages":"421-438"},"PeriodicalIF":3.1,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11712235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}