首页 > 最新文献

Shock Waves最新文献

英文 中文
On the effect of characterised initial conditions on the evolution of the mixing induced by the Richtmyer–Meshkov instability 论特征初始条件对由richmyer - meshkov不稳定性引起的混合演化的影响
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-04-12 DOI: 10.1007/s00193-023-01124-7
M. Rasteiro dos Santos, Y. Bury, S. Jamme, J. Griffond

Time-resolved schlieren photography was used to visualise mixing zones induced by the Richtmyer–Meshkov instability. These were initiated with four different initial conditions: three of them with monotonic, single-mode shapes and one with a non-monotonic, multi-mode shape. These initial conditions were generated by an innovative experimental concept, the Micro Rotating Shutter System. The results of this experimental campaign reveal that the shape of the initial air–helium interface influences the subsequent development of the resulting mixing zone. Over the measurement time range, the width of the mixing zone induced by this instability is correctly fitted by a power law. Its growth exponent depends on the monotonicity of the initial air–helium interface: while mixing widths originating from single-mode initial conditions are almost superimposed, a lesser growth exponent is found for the multi-mode initial condition. The Reynolds number based on the width of the mixing zone suggests that both flows initiated with single- and multi-mode initial conditions reach a fully turbulent state after the interaction with the reflected shock wave (reshock). The schlieren photography visualisations presented here also allow to illustrate the structure of the induced mixing and highlight the effect of the initial conditions on the large-scale structures of the Richtmyer–Meshkov instability-induced mixing.

时间分辨纹影摄影用于观察由richhtmyer - meshkov不稳定性引起的混合区。它们由四种不同的初始条件启动:其中三种具有单调单模态形状,另一种具有非单调多模态形状。这些初始条件是由一个创新的实验概念产生的,即微旋转快门系统。实验结果表明,初始空气-氦界面的形状影响混合区的后续发展。在测量时间范围内,由这种不稳定性引起的混合区宽度可以用幂律正确地拟合。它的增长指数取决于初始气氦界面的单调性:单模初始条件下产生的混合宽度几乎是叠加的,而多模初始条件下的增长指数较小。基于混合区宽度的雷诺数表明,在与反射激波(再激波)相互作用后,以单模态和多模态初始条件启动的流动均达到完全湍流状态。这里展示的纹影摄影可视化也可以说明诱导混合的结构,并突出了初始条件对richhtmyer - meshkov不稳定诱导混合的大尺度结构的影响。
{"title":"On the effect of characterised initial conditions on the evolution of the mixing induced by the Richtmyer–Meshkov instability","authors":"M. Rasteiro dos Santos,&nbsp;Y. Bury,&nbsp;S. Jamme,&nbsp;J. Griffond","doi":"10.1007/s00193-023-01124-7","DOIUrl":"10.1007/s00193-023-01124-7","url":null,"abstract":"<div><p>Time-resolved schlieren photography was used to visualise mixing zones induced by the Richtmyer–Meshkov instability. These were initiated with four different initial conditions: three of them with monotonic, single-mode shapes and one with a non-monotonic, multi-mode shape. These initial conditions were generated by an innovative experimental concept, the Micro Rotating Shutter System. The results of this experimental campaign reveal that the shape of the initial air–helium interface influences the subsequent development of the resulting mixing zone. Over the measurement time range, the width of the mixing zone induced by this instability is correctly fitted by a power law. Its growth exponent depends on the monotonicity of the initial air–helium interface: while mixing widths originating from single-mode initial conditions are almost superimposed, a lesser growth exponent is found for the multi-mode initial condition. The Reynolds number based on the width of the mixing zone suggests that both flows initiated with single- and multi-mode initial conditions reach a fully turbulent state after the interaction with the reflected shock wave (reshock). The schlieren photography visualisations presented here also allow to illustrate the structure of the induced mixing and highlight the effect of the initial conditions on the large-scale structures of the Richtmyer–Meshkov instability-induced mixing.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 2","pages":"117 - 130"},"PeriodicalIF":2.2,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4484201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors 25-mm和51-mm旋转爆轰火箭发动机燃烧室实验结果
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-04-12 DOI: 10.1007/s00193-023-01120-x
C. Knowlen, T. Mundt, M. Kurosaka

An ongoing rotating detonation rocket engine program is investigating the influence of combustor annulus radii on RDRE operating characteristics with flat-faced impinging injectors. To facilitate the isolation of all but the radius of curvature effects in the experiments, the annular gap was kept constant at 5 mm in combustors having either 25-mm or 51-mm outer diameter. The mixing processes were kept similar by utilizing injectors with the same net injector-to-annular gap area ratio (AR = 0.11), same radial separation distance of the orifices, and same center-of-gap impingement distance from the front-end wall. The wave dynamics, plenum pressure, and axial pressure profiles in these RDREs were compared over the mass flux and equivalence ratio ranges of (80{-}400,text {kg/s/m}^{2}) and 0.26(-)2.6, respectively, with gaseous methane–oxygen propellant. Experiments showed that stable one-wave operation would occur in the 25-mm RDRE at most mass fluxes where stable two-wave operation was established in the 51-mm RDRE. Stable one-wave operation with a single counter-rotating wave was maintained in the 51-mm RDRE at mass fluxes of (240,text {kg/s/m}^{2}) and below. Under these fueling conditions in the 25-mm RDRE, a counter-rotating wave also appeared while it operated with a single dominant wave. The wave spin speeds were typically 20–40% less than the Chapman–Jouguet detonation speed of the propellant and depended only on mass flux and wave number rather than the annulus diameter.

一个正在进行的旋转爆轰火箭发动机项目正在研究燃烧室环空半径对平面撞击喷油器RDRE工作特性的影响。为了在实验中隔离除曲率半径外的所有影响,在外径为25mm或51mm的燃烧室中,环形间隙保持在5mm不变。使用相同净喷口与环空间隙面积比(AR = 0.11)、相同孔口径向分离距离和相同间隙中心与前壁撞击距离的喷嘴,可以保持混合过程相似。分别在质量通量(80{-}400,text {kg/s/m}^{2})和等效比0.26 (-) 2.6范围内比较了这些气体甲烷-氧气推进剂的波动动力学、充气压力和轴向压力分布。实验表明,在大多数质量通量下,25mm rdrre会出现稳定的一波运行,而51 mm rdrre则会出现稳定的两波运行。在质量通量为(240,text {kg/s/m}^{2})及以下的51-mm rdrre中,保持了稳定的单波反向旋转波运行。在这些加注条件下,在25毫米rdrre中,当它以单一主导波运行时,也出现了反向旋转波。波的自旋速度通常在20-40之间% less than the Chapman–Jouguet detonation speed of the propellant and depended only on mass flux and wave number rather than the annulus diameter.
{"title":"Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors","authors":"C. Knowlen,&nbsp;T. Mundt,&nbsp;M. Kurosaka","doi":"10.1007/s00193-023-01120-x","DOIUrl":"10.1007/s00193-023-01120-x","url":null,"abstract":"<div><p>An ongoing rotating detonation rocket engine program is investigating the influence of combustor annulus radii on RDRE operating characteristics with flat-faced impinging injectors. To facilitate the isolation of all but the radius of curvature effects in the experiments, the annular gap was kept constant at 5 mm in combustors having either 25-mm or 51-mm outer diameter. The mixing processes were kept similar by utilizing injectors with the same net injector-to-annular gap area ratio (AR = 0.11), same radial separation distance of the orifices, and same center-of-gap impingement distance from the front-end wall. The wave dynamics, plenum pressure, and axial pressure profiles in these RDREs were compared over the mass flux and equivalence ratio ranges of <span>(80{-}400,text {kg/s/m}^{2})</span> and 0.26<span>(-)</span>2.6, respectively, with gaseous methane–oxygen propellant. Experiments showed that stable one-wave operation would occur in the 25-mm RDRE at most mass fluxes where stable two-wave operation was established in the 51-mm RDRE. Stable one-wave operation with a single counter-rotating wave was maintained in the 51-mm RDRE at mass fluxes of <span>(240,text {kg/s/m}^{2})</span> and below. Under these fueling conditions in the 25-mm RDRE, a counter-rotating wave also appeared while it operated with a single dominant wave. The wave spin speeds were typically 20–40% less than the Chapman–Jouguet detonation speed of the propellant and depended only on mass flux and wave number rather than the annulus diameter.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 3","pages":"237 - 252"},"PeriodicalIF":2.2,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4484613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real gas effect on ignition in ideal and non-ideal reactors 理想和非理想反应器中实际气体对点火的影响
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-02-17 DOI: 10.1007/s00193-022-01118-x
I. Farias, Z. Weng, R. Mével

We studied the real gas effect on the ignition characteristics in chemical reactors with one-step irreversible reaction. The real gas effects were characterized by the inter-molecular attraction term ((alpha )) and the finite molecular volume term ((beta )). The Noble-Abel and van der Waals equations of state were employed to derive non-dimensional reactor models. In addition to ideal reactors, i.e., constant volume and constant pressure, non-ideal reactors that account for the non-ideal pressure variation in shock tube and rapid compression machine were also considered. For all reactors, low value of (alpha /beta ) and high value of (beta ) (approximately (alpha /beta <{{1.0}}) and (beta >{{0.1}})) induce a decrease of the ignition delay-time, while high value of both (alpha /beta ) and (beta ) (approximately (alpha /beta >{{2.0}}) and (beta >{{0.1}})) induces an increase of the ignition delay-time. The variations of the ignition delay-time induced by real gas effects are mainly related to the change of the fugacity coefficient with (alpha ) and (beta ). Additional contributions are due to the real gas heat capacity at constant pressure when considering a constant pressure reactor and to non-ideal volume variation when considering non-ideal reactors. The impact of various parameters was also investigated, including the heat capacity ratio of perfect gas, the reduced activation energy of the one-step reaction, and the heat content of the mixtures. Comparison with simulation performed with detailed reaction mechanisms and considering real gas models demonstrates that the present approach constitutes a rapid and simple, yet qualitatively or even quantitatively accurate method to assess the need of accounting for real gas effects to model chemical kinetics under high-pressure conditions.

研究了一步不可逆反应中真实气体对化学反应器着火特性的影响。实际气体效应由分子间引力项((alpha ))和有限分子体积项((beta ))表征。利用Noble-Abel和van der Waals状态方程推导了无量纲反应堆模型。除了理想反应器,即定容定压外,还考虑了激波管和快速压缩机中造成非理想压力变化的非理想反应器。对于所有反应堆来说,低(alpha /beta )值和高(beta )值(约为(alpha /beta <{{1.0}})和(beta >{{0.1}}))导致点火延迟时间减少,高(alpha /beta )和(beta )值(约为(alpha /beta >{{2.0}})和(beta >{{0.1}}))导致点火延迟时间增加。实际气体效应引起的点火延迟时间的变化主要与逸度系数(alpha )和(beta )的变化有关。当考虑定压反应器时,额外的贡献是由于恒压下的实际气体热容量,当考虑非理想反应器时,是非理想体积变化。考察了理想气体的热容比、一步反应的还原活化能、混合物的热含量等参数对反应的影响。与详细反应机理的模拟和考虑真实气体模型的模拟比较表明,本方法是一种快速、简单、定性甚至定量准确的方法,可以评估在模拟高压条件下化学动力学时考虑真实气体效应的必要性。
{"title":"Real gas effect on ignition in ideal and non-ideal reactors","authors":"I. Farias,&nbsp;Z. Weng,&nbsp;R. Mével","doi":"10.1007/s00193-022-01118-x","DOIUrl":"10.1007/s00193-022-01118-x","url":null,"abstract":"<div><p>We studied the real gas effect on the ignition characteristics in chemical reactors with one-step irreversible reaction. The real gas effects were characterized by the inter-molecular attraction term (<span>(alpha )</span>) and the finite molecular volume term (<span>(beta )</span>). The Noble-Abel and van der Waals equations of state were employed to derive non-dimensional reactor models. In addition to ideal reactors, i.e., constant volume and constant pressure, non-ideal reactors that account for the non-ideal pressure variation in shock tube and rapid compression machine were also considered. For all reactors, low value of <span>(alpha /beta )</span> and high value of <span>(beta )</span> (approximately <span>(alpha /beta &lt;{{1.0}})</span> and <span>(beta &gt;{{0.1}})</span>) induce a decrease of the ignition delay-time, while high value of both <span>(alpha /beta )</span> and <span>(beta )</span> (approximately <span>(alpha /beta &gt;{{2.0}})</span> and <span>(beta &gt;{{0.1}})</span>) induces an increase of the ignition delay-time. The variations of the ignition delay-time induced by real gas effects are mainly related to the change of the fugacity coefficient with <span>(alpha )</span> and <span>(beta )</span>. Additional contributions are due to the real gas heat capacity at constant pressure when considering a constant pressure reactor and to non-ideal volume variation when considering non-ideal reactors. The impact of various parameters was also investigated, including the heat capacity ratio of perfect gas, the reduced activation energy of the one-step reaction, and the heat content of the mixtures. Comparison with simulation performed with detailed reaction mechanisms and considering real gas models demonstrates that the present approach constitutes a rapid and simple, yet qualitatively or even quantitatively accurate method to assess the need of accounting for real gas effects to model chemical kinetics under high-pressure conditions.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 3","pages":"275 - 286"},"PeriodicalIF":2.2,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-022-01118-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4971197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Critical shock initiation characteristics of TNT with different charging types 不同装药类型TNT的临界起爆特性
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-02-06 DOI: 10.1007/s00193-022-01115-0
J. H. Wang, M. Xia, N. Jiang

To study the shock wave initiation characteristics of 2,4,6-trinitrotoluene (TNT) under different charging types, the shock wave pressure and shock wave attenuation of standard Pentolite explosives under different diaphragm thicknesses were quantitatively studied using the ion probe method. The gap tests of three explosives were carried out, including pressed TNT without restraint, pressed TNT with steel pipe restraint, and cast TNT with steel pipe restraint. The shock wave initiation pressures of TNT under the three different conditions were compared. Moreover, combined with the numerical simulation technology, the critical initiation pressure and the pressure cloud diagram of the gap test of TNT were obtained, and the dynamic change process of the shock wave in the diaphragm was acquired, which was difficult to measure in the experiments. The results showed that the critical initiation pressure of pressed TNT was significantly lower than that of cast TNT and that restraint can reduce the measured critical initiation pressure of TNT under certain conditions. Therefore, the research results may provide a basis for the damage range of TNTs with different charging types and the determination of the safety protection distance of shock wave initiation.

为了研究不同装药类型下2,4,6-三硝基甲苯(TNT)的冲击波起爆特性,采用离子探针法定量研究了不同膜片厚度下标准戊olite炸药的冲击波压力和冲击波衰减。进行了三种炸药的间隙试验,包括无约束的压制TNT、有钢管约束的压制TNT和有钢管约束的铸造TNT。比较了三种不同条件下TNT的冲击波起爆压力。结合数值模拟技术,获得了TNT爆轰试验的临界起爆压力和压力云图,获得了实验中难以测量的冲击波在膜片内的动态变化过程。结果表明:压型TNT的临界起爆压力明显低于铸型TNT,在一定条件下抑制可以降低TNT的实测临界起爆压力。因此,研究结果可为不同装药类型tnt的损伤范围及冲击波起爆安全防护距离的确定提供依据。
{"title":"Critical shock initiation characteristics of TNT with different charging types","authors":"J. H. Wang,&nbsp;M. Xia,&nbsp;N. Jiang","doi":"10.1007/s00193-022-01115-0","DOIUrl":"10.1007/s00193-022-01115-0","url":null,"abstract":"<div><p>To study the shock wave initiation characteristics of 2,4,6-trinitrotoluene (TNT) under different charging types, the shock wave pressure and shock wave attenuation of standard Pentolite explosives under different diaphragm thicknesses were quantitatively studied using the ion probe method. The gap tests of three explosives were carried out, including pressed TNT without restraint, pressed TNT with steel pipe restraint, and cast TNT with steel pipe restraint. The shock wave initiation pressures of TNT under the three different conditions were compared. Moreover, combined with the numerical simulation technology, the critical initiation pressure and the pressure cloud diagram of the gap test of TNT were obtained, and the dynamic change process of the shock wave in the diaphragm was acquired, which was difficult to measure in the experiments. The results showed that the critical initiation pressure of pressed TNT was significantly lower than that of cast TNT and that restraint can reduce the measured critical initiation pressure of TNT under certain conditions. Therefore, the research results may provide a basis for the damage range of TNTs with different charging types and the determination of the safety protection distance of shock wave initiation.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"39 - 49"},"PeriodicalIF":2.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4575208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Propagation characteristics of blast shock waves in low-pressure environment 爆炸冲击波在低压环境下的传播特性
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-02-06 DOI: 10.1007/s00193-022-01116-z
L. Chen, Z. Li, R. Chen, F. Lu

The blast loading from a detonation of a high explosive charge at high altitude is quite different from that at sea level. Due to diminished ambient pressure, the damage caused by the blast load may be more minor at high altitude. However, the shock wave parameters at diminished ambient pressure have not yet been thoroughly studied. In this research, experiments were carried out to study the relation between ambient air pressure and shock wave parameters. The explosion experiments were carried out in a sealed explosion chamber with an initial pressure of 95 kPa, 74 kPa, and 57 kPa. For these three atmospheric conditions, the history profiles of incident shock wave pressure generated by TNT charges of 106 g and 292 g were recorded. The influence of ambient pressure and temperature on the shock wave parameters was analyzed through numerical simulations. By analyzing the experimental and numerical data, it was found that ambient pressure is the main factor affecting the shock wave parameters, while the effect of temperature is not so obvious. Furthermore, based on the analysis of experimental data, formulas for evaluating shock wave overpressure, specific impulse, and arrival time using the Sachs variables are given, and the shock wave parameters at an altitude of 5000 m are calculated using these formulas. The observed maximum reduction in the shock wave overpressure was 23%, in specific impulse 27%, and in arrival time 12%, compared to the results calculated at sea level. The results can be applied to blast-resistant analyses of buildings in low-pressure environment.

高爆药在高空爆炸产生的爆炸载荷与在海平面爆炸产生的爆炸载荷大不相同。由于环境压力降低,在高空爆炸载荷造成的破坏可能更小。然而,在降低环境压力下的激波参数尚未得到充分的研究。本文通过实验研究了环境气压与激波参数之间的关系。爆炸实验在密封爆炸室内进行,初始压力分别为95 kPa、74 kPa和57 kPa。在这三种大气条件下,分别记录了106 g和292 g TNT装药产生的入射冲击波压力的历史剖面图。通过数值模拟分析了环境压力和温度对激波参数的影响。通过对实验和数值数据的分析,发现环境压力是影响激波参数的主要因素,而温度的影响并不明显。在分析实验数据的基础上,给出了用Sachs变量计算冲击波超压、比冲和到达时间的公式,并利用这些公式计算了海拔5000 m时的冲击波参数。与海平面计算结果相比,观测到的冲击波超压最大降幅为23%,比冲最大降幅为27%,到达时间最大降幅为12%。研究结果可用于低压环境下建筑物的抗爆分析。
{"title":"Propagation characteristics of blast shock waves in low-pressure environment","authors":"L. Chen,&nbsp;Z. Li,&nbsp;R. Chen,&nbsp;F. Lu","doi":"10.1007/s00193-022-01116-z","DOIUrl":"10.1007/s00193-022-01116-z","url":null,"abstract":"<div><p>The blast loading from a detonation of a high explosive charge at high altitude is quite different from that at sea level. Due to diminished ambient pressure, the damage caused by the blast load may be more minor at high altitude. However, the shock wave parameters at diminished ambient pressure have not yet been thoroughly studied. In this research, experiments were carried out to study the relation between ambient air pressure and shock wave parameters. The explosion experiments were carried out in a sealed explosion chamber with an initial pressure of 95 kPa, 74 kPa, and 57 kPa. For these three atmospheric conditions, the history profiles of incident shock wave pressure generated by TNT charges of 106 g and 292 g were recorded. The influence of ambient pressure and temperature on the shock wave parameters was analyzed through numerical simulations. By analyzing the experimental and numerical data, it was found that ambient pressure is the main factor affecting the shock wave parameters, while the effect of temperature is not so obvious. Furthermore, based on the analysis of experimental data, formulas for evaluating shock wave overpressure, specific impulse, and arrival time using the Sachs variables are given, and the shock wave parameters at an altitude of 5000 m are calculated using these formulas. The observed maximum reduction in the shock wave overpressure was 23%, in specific impulse 27%, and in arrival time 12%, compared to the results calculated at sea level. The results can be applied to blast-resistant analyses of buildings in low-pressure environment.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"61 - 74"},"PeriodicalIF":2.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4245320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flow acceleration in an RDRE with gradual chamber constriction 腔室逐渐收缩时rdrre中的流动加速度
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-02-06 DOI: 10.1007/s00193-022-01117-y
M. Ross, J. Burr, Y. Desai, A. Batista, C. Lietz

Rotating detonation propulsion technologies have the potential to create highly efficient engines in a small form factor. However, the detonation dynamics and complex flowfields inside the combustion chamber are greatly dependent on geometry; in particular, the downstream nozzle design affects dynamics inside the combustion chamber. In this work, three-dimensional large eddy simulations of a gaseous methane–oxygen rotating detonation rocket engine are presented for two geometries. The geometries match experimental tests previously conducted at the Air Force Research Laboratory and are chosen to compare engine operation with and without a converging–diverging nozzle. It is shown that flow in the unconstricted chamber exceeds Mach 1 behind the generated oblique shock structure, but that the addition of a 4.4(^circ ) converging section results in supersonic flow existing only in the diverging section of the nozzle. The formation enthalpy of the flow is calculated inside the chamber and demonstrates that the difference in pressures and detonation structures associated with the chamber area constriction do not result in a significant change in energy released through combustion.

旋转爆轰推进技术有潜力制造出体积小、效率高的发动机。然而,爆震动力学和燃烧室内部复杂的流场在很大程度上取决于几何形状;特别是,下游喷嘴的设计会影响燃烧室内部的动力学。在这项工作中,气态甲烷-氧气旋转爆轰火箭发动机的三维大涡模拟提出了两种几何形状。这些几何形状与先前在空军研究实验室进行的实验测试相匹配,选择这些几何形状是为了比较有和没有会聚-发散喷嘴的发动机运行情况。结果表明,在产生斜激波结构后,无缩窄腔内的流动超过1马赫,但增加4.4 (^circ )会聚段后,只在喷管的发散段存在超声速流动。在燃烧室内计算了流动的形成焓,并证明了与燃烧室面积收缩相关的压力和爆轰结构的差异不会导致燃烧释放的能量发生显着变化。
{"title":"Flow acceleration in an RDRE with gradual chamber constriction","authors":"M. Ross,&nbsp;J. Burr,&nbsp;Y. Desai,&nbsp;A. Batista,&nbsp;C. Lietz","doi":"10.1007/s00193-022-01117-y","DOIUrl":"10.1007/s00193-022-01117-y","url":null,"abstract":"<div><p>Rotating detonation propulsion technologies have the potential to create highly efficient engines in a small form factor. However, the detonation dynamics and complex flowfields inside the combustion chamber are greatly dependent on geometry; in particular, the downstream nozzle design affects dynamics inside the combustion chamber. In this work, three-dimensional large eddy simulations of a gaseous methane–oxygen rotating detonation rocket engine are presented for two geometries. The geometries match experimental tests previously conducted at the Air Force Research Laboratory and are chosen to compare engine operation with and without a converging–diverging nozzle. It is shown that flow in the unconstricted chamber exceeds Mach 1 behind the generated oblique shock structure, but that the addition of a 4.4<span>(^circ )</span> converging section results in supersonic flow existing only in the diverging section of the nozzle. The formation enthalpy of the flow is calculated inside the chamber and demonstrates that the difference in pressures and detonation structures associated with the chamber area constriction do not result in a significant change in energy released through combustion.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 3","pages":"253 - 265"},"PeriodicalIF":2.2,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-022-01117-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4249604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of ozone addition and LTC progression on detonation of O(_{3})-enhanced DME–O(_{2}) 臭氧添加和LTC进程对O (_{3}) -增强DME-O爆轰的影响(_{2})
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2023-01-13 DOI: 10.1007/s00193-022-01113-2
M. C. Brown, E. L. Belmont

The effects of ozone addition and low-temperature chemistry (LTC) progression on DME/O(_{2}) detonations are evaluated with experimental detonation velocity and cell size measurements and one-dimensional ZND simulations. For ( phi = 1.2) and (P_{textrm{o}}= 22.7) kPa, detonations are experimentally investigated over a range of ozone enhancement levels (0.0–1.6-mol%), initial reactant temperatures (293 K and 468 K), and LTC progression times (250–6000 ms). A 33-K gas temperature rise from LTC heat release is observed for mixtures with 1.0-mol% ozone enhancement and initial temperature of 468 K, suggesting a limited extent of LTC progression in this study. Experiments showed minimal detonation velocity dependence on ozone enhancement level or LTC progression despite the increased radical pool. Average cell size is found to decrease 15–30% with 1.6-mol% ozone addition, indicating a greater reactant mixture sensitivity to detonation. To estimate the cell size, a center-of-exothermic-length induction length is defined and used with an empirical correlation to calculate a singular cell size when multiple thermicity peaks are present in ZND modeling. This approach shows good agreement with experimental findings. Cell size dependence on LTC progression is found to have a statistically insignificant variance for LTC progression times at the temperatures used in this study.

通过实验爆轰速度和电池尺寸测量以及一维ZND模拟,评估了臭氧添加和低温化学(LTC)进展对DME/O (_{2})爆轰的影响。对于( phi = 1.2)和(P_{textrm{o}}= 22.7) kPa,实验研究了在臭氧增强水平(0.0 - 1.6 mol)范围内的爆炸%), initial reactant temperatures (293 K and 468 K), and LTC progression times (250–6000 ms). A 33-K gas temperature rise from LTC heat release is observed for mixtures with 1.0-mol% ozone enhancement and initial temperature of 468 K, suggesting a limited extent of LTC progression in this study. Experiments showed minimal detonation velocity dependence on ozone enhancement level or LTC progression despite the increased radical pool. Average cell size is found to decrease 15–30% with 1.6-mol% ozone addition, indicating a greater reactant mixture sensitivity to detonation. To estimate the cell size, a center-of-exothermic-length induction length is defined and used with an empirical correlation to calculate a singular cell size when multiple thermicity peaks are present in ZND modeling. This approach shows good agreement with experimental findings. Cell size dependence on LTC progression is found to have a statistically insignificant variance for LTC progression times at the temperatures used in this study.
{"title":"Effects of ozone addition and LTC progression on detonation of O(_{3})-enhanced DME–O(_{2})","authors":"M. C. Brown,&nbsp;E. L. Belmont","doi":"10.1007/s00193-022-01113-2","DOIUrl":"10.1007/s00193-022-01113-2","url":null,"abstract":"<div><p>The effects of ozone addition and low-temperature chemistry (LTC) progression on DME/O<span>(_{2})</span> detonations are evaluated with experimental detonation velocity and cell size measurements and one-dimensional ZND simulations. For <span>( phi = 1.2)</span> and <span>(P_{textrm{o}}= 22.7)</span> kPa, detonations are experimentally investigated over a range of ozone enhancement levels (0.0–1.6-mol%), initial reactant temperatures (293 K and 468 K), and LTC progression times (250–6000 ms). A 33-K gas temperature rise from LTC heat release is observed for mixtures with 1.0-mol% ozone enhancement and initial temperature of 468 K, suggesting a limited extent of LTC progression in this study. Experiments showed minimal detonation velocity dependence on ozone enhancement level or LTC progression despite the increased radical pool. Average cell size is found to decrease 15–30% with 1.6-mol% ozone addition, indicating a greater reactant mixture sensitivity to detonation. To estimate the cell size, a center-of-exothermic-length induction length is defined and used with an empirical correlation to calculate a singular cell size when multiple thermicity peaks are present in ZND modeling. This approach shows good agreement with experimental findings. Cell size dependence on LTC progression is found to have a statistically insignificant variance for LTC progression times at the temperatures used in this study.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"21 - 37"},"PeriodicalIF":2.2,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4535663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Atomville: Architects, Planners, and How to Survive the Bomb. Atomville:建筑师,规划师,以及如何在炸弹中生存
IF 0.7 4区 工程技术 Q3 MECHANICS Pub Date : 2023-01-01 DOI: 10.1353/tech.2023.a903974
Arthur Molella, Robert Kargon

In the post-Hiroshima era, atomic cities-designed to survive a nuclear attack-remain in the science fiction realm. Yet Hungarian émigré Paul Laszlo, a successful architect in Southern California suburbia, had a utopian vision for a futuristic, paradoxically luxurious atomic city he called "Atomville," never built but nonetheless seriously proposed. Laszlo was one of the very few architects known to venture into atomic survival on this scale. This article focuses on why the architectural profession for the most part ignored the issues raised by the atomic bomb, and on Laszlo's role as an outlier. It also deals with the genesis of Atomville and its place among the many unrealized ideas put forward in the 1940s and 1950s for urban survival, including underground buildings, urban dispersal, linear cities, and cluster cities.

摘要:在后广岛时代,为了在核袭击中幸存下来而设计的原子能城市仍然停留在科幻小说领域。然而,匈牙利移民保罗·拉斯洛(Paul Laszlo)是南加州郊区的一位成功建筑师,他对一座未来主义的、矛盾奢华的原子城有着乌托邦式的愿景,他称之为“原子城”,从未建造过,但还是认真地提出了。拉斯洛是为数不多的以这种规模冒险进入原子能生存的建筑师之一。这篇文章的重点是为什么建筑界在很大程度上忽视了原子弹引发的问题,以及拉斯洛作为局外人的角色。它还涉及Atomville的起源及其在20世纪40年代和50年代为城市生存提出的许多未实现的想法中的地位,包括地下建筑、城市分散、线性城市和集群城市。
{"title":"Atomville: Architects, Planners, and How to Survive the Bomb.","authors":"Arthur Molella, Robert Kargon","doi":"10.1353/tech.2023.a903974","DOIUrl":"10.1353/tech.2023.a903974","url":null,"abstract":"<p><p>In the post-Hiroshima era, atomic cities-designed to survive a nuclear attack-remain in the science fiction realm. Yet Hungarian émigré Paul Laszlo, a successful architect in Southern California suburbia, had a utopian vision for a futuristic, paradoxically luxurious atomic city he called \"Atomville,\" never built but nonetheless seriously proposed. Laszlo was one of the very few architects known to venture into atomic survival on this scale. This article focuses on why the architectural profession for the most part ignored the issues raised by the atomic bomb, and on Laszlo's role as an outlier. It also deals with the genesis of Atomville and its place among the many unrealized ideas put forward in the 1940s and 1950s for urban survival, including underground buildings, urban dispersal, linear cities, and cluster cities.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"9 2","pages":"823-844"},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41305622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the factors influencing the interaction and coalescence of shock waves from multiple explosion sources in free field 自由场多爆炸源激波相互作用与聚并的影响因素研究
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2022-12-28 DOI: 10.1007/s00193-022-01111-4
S. Y. Wang, J. L. Qiu, Y. W. Wang, J. W. Jiang

The interaction and coalescence of shock waves originating from multiple explosion sources were studied using numerical simulations and theoretical analysis. The effects of the mass distribution, layout, and quantity of explosion sources were considered, and an engineering calculation model for shock wave parameters at the focus center was established. The results show that the peak overpressure at the focus center is significantly changed only when the mass ratio of the two explosion sources increases beyond two. Overall, the peak overpressure at the focus center decreases with the increase in mass ratio. The focus effect of multiple explosion sources is the greatest when the sources are uniformly distributed on a circle. When the number of explosion sources is less than four, the peak overpressure and specific impulse at the focus center increase with the increase of the number of explosion sources. Increasing the number of explosion sources from one to four results in an increase in the peak overpressure by a factor of 0.73–5.23 and an increase in the specific impulse gain by a factor of 1.59–4.71. The results from simulations and experiments verify the validity of the model used to characterize multiple explosion sources.

采用数值模拟和理论分析相结合的方法研究了多个爆炸源产生的激波相互作用和聚并。考虑了爆炸源的质量分布、布置和数量等因素的影响,建立了焦点中心冲击波参数的工程计算模型。结果表明,只有当两个爆炸源的质量比大于2时,焦点中心的峰值超压才会发生显著变化。总体而言,焦点中心峰值超压随质量比的增大而减小。当多个爆炸源均匀分布在一个圆上时,多个爆炸源的聚焦效应最大。当爆炸源数量小于4个时,随着爆炸源数量的增加,焦点中心的峰值超压和比冲增大。将爆炸源数量从1个增加到4个,峰值超压增加了0.73-5.23倍,比脉冲增益增加了1.59-4.71倍。仿真和实验结果验证了该模型用于多爆炸源特征描述的有效性。
{"title":"Study on the factors influencing the interaction and coalescence of shock waves from multiple explosion sources in free field","authors":"S. Y. Wang,&nbsp;J. L. Qiu,&nbsp;Y. W. Wang,&nbsp;J. W. Jiang","doi":"10.1007/s00193-022-01111-4","DOIUrl":"10.1007/s00193-022-01111-4","url":null,"abstract":"<div><p>The interaction and coalescence of shock waves originating from multiple explosion sources were studied using numerical simulations and theoretical analysis. The effects of the mass distribution, layout, and quantity of explosion sources were considered, and an engineering calculation model for shock wave parameters at the focus center was established. The results show that the peak overpressure at the focus center is significantly changed only when the mass ratio of the two explosion sources increases beyond two. Overall, the peak overpressure at the focus center decreases with the increase in mass ratio. The focus effect of multiple explosion sources is the greatest when the sources are uniformly distributed on a circle. When the number of explosion sources is less than four, the peak overpressure and specific impulse at the focus center increase with the increase of the number of explosion sources. Increasing the number of explosion sources from one to four results in an increase in the peak overpressure by a factor of 0.73–5.23 and an increase in the specific impulse gain by a factor of 1.59–4.71. The results from simulations and experiments verify the validity of the model used to characterize multiple explosion sources.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"51 - 60"},"PeriodicalIF":2.2,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5078899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-sustained oscillations of lift and drag forces, heat fluxes, and flowfield parameters over supersonic bodies under asymmetrical energy deposition 在不对称能量沉积下超音速物体上升力和阻力、热通量和流场参数的自持续振荡
IF 2.2 4区 工程技术 Q3 MECHANICS Pub Date : 2022-12-22 DOI: 10.1007/s00193-022-01114-1
O. A. Azarova, D. D. Knight, O. V. Kravchenko

This paper examines the effect of an asymmetrical energy source impact on the flow around supersonic aerodynamic bodies in a viscous heat-conducting gas (air) at Mach 2.5. The simulations are based on the Navier–Stokes equations with temperature-dependent viscosity and thermal conductivity. The dynamics of density, pressure, temperature, and heat fluxes were analyzed. Specific emphasis is placed on the effects of viscosity and thermal conductivity. Self-sustained oscillations of the flow parameters, lift and drag forces, and heat fluxes were obtained and studied. The mechanism of these oscillations was established, and the conditions of their presence in a flow in relation to the energy source characteristics and location were researched. Possible approaches for elimination of these oscillations were discussed.

本文研究了非对称能量源冲击对粘性导热气体(空气)中以2.5马赫速度绕超音速气动体流动的影响。模拟基于具有温度依赖性粘度和导热系数的Navier-Stokes方程。分析了密度、压力、温度和热流的动态变化。特别强调的是粘度和导热性的影响。得到并研究了流动参数、升力和阻力以及热通量的自持续振荡。建立了这些振荡的机理,并研究了它们在流动中存在的条件与能量源特性和位置的关系。讨论了消除这些振荡的可能方法。
{"title":"Self-sustained oscillations of lift and drag forces, heat fluxes, and flowfield parameters over supersonic bodies under asymmetrical energy deposition","authors":"O. A. Azarova,&nbsp;D. D. Knight,&nbsp;O. V. Kravchenko","doi":"10.1007/s00193-022-01114-1","DOIUrl":"10.1007/s00193-022-01114-1","url":null,"abstract":"<div><p>This paper examines the effect of an asymmetrical energy source impact on the flow around supersonic aerodynamic bodies in a viscous heat-conducting gas (air) at Mach 2.5. The simulations are based on the Navier–Stokes equations with temperature-dependent viscosity and thermal conductivity. The dynamics of density, pressure, temperature, and heat fluxes were analyzed. Specific emphasis is placed on the effects of viscosity and thermal conductivity. Self-sustained oscillations of the flow parameters, lift and drag forces, and heat fluxes were obtained and studied. The mechanism of these oscillations was established, and the conditions of their presence in a flow in relation to the energy source characteristics and location were researched. Possible approaches for elimination of these oscillations were discussed.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"1 - 19"},"PeriodicalIF":2.2,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4848102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Shock Waves
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1