Pub Date : 2019-09-26DOI: 10.24200/amecj.v2.i03.67
Ahmad Ghozatlu
In this study, the surface modification of graphene (SMG) was developed for efficient speciation and determination of chromium in water and wastewater samples. By procedure, the chromium ions were extracted from water/wastewater samples based on sulfonated and amine graphene (S-NG, N-NG) by suspension solid-phase microextraction procedure (SMSPE). Hydrophobic ionic liquid ([HMIM] [PF6]) was used for separation graphene from 10 mL of water. After shaking and centrifuging, the phase of Cr→ S-NG, Cr→N-NG was back-extracted by 0.2 mL of HNO3 (0.4 mol L-1) and finally chromium concentration determined with ET-AAS. The results showed the sulfonated and amine graphene can successfully extract Cr(III) and Cr(VI) from water and wastewater samples at pH=3.5-5.5 and pH<3, respectively. Also, the most Cr(VI) extracted by N-graphene at pH=2(NH3+→Cr2O7─). Under the optimal conditions, the linear range, LOD, and preconcentration factor were obtained 0.02–2.4 µg L−1, 5.0 ng L−1 and 20.2, respectively for Cr(III, VI) (%RSD<5%).
在本研究中,开发了石墨烯(SMG)的表面改性,用于水和废水样品中铬的有效形态形成和测定。采用悬浮固相微萃取法(SMSPE)从磺化和胺化石墨烯(S-NG, N-NG)水/废水样品中提取铬离子。使用疏水离子液体([HMIM] [PF6])将石墨烯从10 mL水中分离出来。摇匀离心后,用0.2 mL HNO3 (0.4 mol L-1)反提Cr→S-NG、Cr→N-NG相,最后用ET-AAS测定铬浓度。结果表明,磺化石墨烯和胺化石墨烯分别在pH=3.5 ~ 5.5和pH<3的条件下能够成功地从水和废水样品中提取Cr(III)和Cr(VI)。在pH=2(NH3+→Cr2O7─)条件下,n -石墨烯萃取出的Cr(VI)最多。在最佳条件下,Cr(III, VI)的线性范围为0.02 ~ 2.4µg L−1,检出限为5.0 ng L−1,富集系数为20.2 (%RSD<5%)。
{"title":"Modification of graphene for speciation of chromium in wastewater samples by suspension solid phase microextraction procedure","authors":"Ahmad Ghozatlu","doi":"10.24200/amecj.v2.i03.67","DOIUrl":"https://doi.org/10.24200/amecj.v2.i03.67","url":null,"abstract":" In this study, the surface modification of graphene (SMG) was developed for efficient speciation and determination of chromium in water and wastewater samples. By procedure, the chromium ions were extracted from water/wastewater samples based on sulfonated and amine graphene (S-NG, N-NG) by suspension solid-phase microextraction procedure (SMSPE). Hydrophobic ionic liquid ([HMIM] [PF6]) was used for separation graphene from 10 mL of water. After shaking and centrifuging, the phase of Cr→ S-NG, Cr→N-NG was back-extracted by 0.2 mL of HNO3 (0.4 mol L-1) and finally chromium concentration determined with ET-AAS. The results showed the sulfonated and amine graphene can successfully extract Cr(III) and Cr(VI) from water and wastewater samples at pH=3.5-5.5 and pH<3, respectively. Also, the most Cr(VI) extracted by N-graphene at pH=2(NH3+→Cr2O7─). Under the optimal conditions, the linear range, LOD, and preconcentration factor were obtained 0.02–2.4 µg L−1, 5.0 ng L−1 and 20.2, respectively for Cr(III, VI) (%RSD<5%). ","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85494095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-24DOI: 10.24200/amecj.v2.i03.66
Isiuku Beniah Obinna, Enyoh Christian Ebere
Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water. Strategies involving aquatic plant use are preferable to conventional methods. In this study, an attempt was made to provide a brief review on recent progresses in research and practical applications of phytoremediation for water resources with the following objectives: (1) to discuss the toxicity of toxic chemicals pollution in water to plant, animals and human health (2) to summarise the physicochemical factors affecting removal of toxic chemicals such as heavy metals and organic contaminants in aqueous solutions by aquatic plants; (3) to summarise and compare the removal rates of heavy metals and organic contaminants in aqueous solutions by diverse aquatic plants; and (4) to summaries chemometric models for testing aquatic plant performance.
{"title":"A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants","authors":"Isiuku Beniah Obinna, Enyoh Christian Ebere","doi":"10.24200/amecj.v2.i03.66","DOIUrl":"https://doi.org/10.24200/amecj.v2.i03.66","url":null,"abstract":"Heavy metals and organic pollutants are ubiquitous environmental pollutants affecting the quality of soil, water and air. Over the past 5 decades, many strategies have been developed for the remediation of polluted water. Strategies involving aquatic plant use are preferable to conventional methods. In this study, an attempt was made to provide a brief review on recent progresses in research and practical applications of phytoremediation for water resources with the following objectives: (1) to discuss the toxicity of toxic chemicals pollution in water to plant, animals and human health (2) to summarise the physicochemical factors affecting removal of toxic chemicals such as heavy metals and organic contaminants in aqueous solutions by aquatic plants; (3) to summarise and compare the removal rates of heavy metals and organic contaminants in aqueous solutions by diverse aquatic plants; and (4) to summaries chemometric models for testing aquatic plant performance.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76606745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-23DOI: 10.24200/amecj.v2.i03.69
V. A. Wirnkor, Enyoh Christian Ebere, Verla Evelyn Ngozi
The microplastics in the environment is a novel problem to scientists, public media, governmental and non-governmental organizations. The major problem is from the difficultness of removing them from the ecosystem. Elsewhere studies are being conducted while in Nigeria studies are relatively lacking. Production (10.3 %) and consumption (6.5 %) of plastics are on the increase annually, thereby, causing an increase in the amount of plastic waste generated annually. Finally, from such studies, data generated will provide insight and understanding into the extent of microplastic pollution in Nigeria. Furthermore, the data will be important not only for both remediation and minimization of effects but could be employed in averting occurrence through policies such as ban on some types of plastic uses in Nigeria. In this study, four manually generally microplastic types (PVC, acrylics, polyesters, silicones) were evaluated for heavy metals (Pb, Cd, Hg, and As) adsorption at optimized pH by ETAAS.
{"title":"The importance of microplastics pollution studies in water and soil of Nigeria ecosystems","authors":"V. A. Wirnkor, Enyoh Christian Ebere, Verla Evelyn Ngozi","doi":"10.24200/amecj.v2.i03.69","DOIUrl":"https://doi.org/10.24200/amecj.v2.i03.69","url":null,"abstract":"The microplastics in the environment is a novel problem to scientists, public media, governmental and non-governmental organizations. The major problem is from the difficultness of removing them from the ecosystem. Elsewhere studies are being conducted while in Nigeria studies are relatively lacking. Production (10.3 %) and consumption (6.5 %) of plastics are on the increase annually, thereby, causing an increase in the amount of plastic waste generated annually. Finally, from such studies, data generated will provide insight and understanding into the extent of microplastic pollution in Nigeria. Furthermore, the data will be important not only for both remediation and minimization of effects but could be employed in averting occurrence through policies such as ban on some types of plastic uses in Nigeria. In this study, four manually generally microplastic types (PVC, acrylics, polyesters, silicones) were evaluated for heavy metals (Pb, Cd, Hg, and As) adsorption at optimized pH by ETAAS.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74856786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-20DOI: 10.24200/amecj.v2.i03.72
M. Gou, Baharak Bahrami Yarahmadi
An efficient method based on thiol functionalized mesoporous silica nanoparticles (HS-MSNPs) was used for extraction of lead ions (PbII) from urine and water samples by packed column micro solid phase extraction (PC-MSPE). By procedure, 15 mg of HS-MSNPs packed in syringe cartridges (SC, 5 mL) with cellulose membrane and pH adjusting at 5.5-6.5. Then, the lead of urine and water sample was efficiently extracted on HS-MSNPs after pushing the plunger of a syringe. Finally, the Pb (II) was back-extracted with inorganic acid solution and the remained solution determined by electrothermal atomic absorption spectrometry (ET-AAS). By optimization conditions, the enrichment factor, LOD, linear range and RSD% was obtained 24.8, 0.04 μg L-1, 0.12-5.5 μg L-1 and less than 5%, respectively for 5 mL of urine samples. The validation was confirmed by spiking of real samples and using certified reference material (CRM, NIST) in water and urine sample.
{"title":"Separation and determination of lead in human urine and water samples based on thiol functionalized mesoporous silica nanoparticles packed on cartridges by micro column fast micro solid-phase extraction","authors":"M. Gou, Baharak Bahrami Yarahmadi","doi":"10.24200/amecj.v2.i03.72","DOIUrl":"https://doi.org/10.24200/amecj.v2.i03.72","url":null,"abstract":"An efficient method based on thiol functionalized mesoporous silica nanoparticles (HS-MSNPs) was used for extraction of lead ions (PbII) from urine and water samples by packed column micro solid phase extraction (PC-MSPE). By procedure, 15 mg of HS-MSNPs packed in syringe cartridges (SC, 5 mL) with cellulose membrane and pH adjusting at 5.5-6.5. Then, the lead of urine and water sample was efficiently extracted on HS-MSNPs after pushing the plunger of a syringe. Finally, the Pb (II) was back-extracted with inorganic acid solution and the remained solution determined by electrothermal atomic absorption spectrometry (ET-AAS). By optimization conditions, the enrichment factor, LOD, linear range and RSD% was obtained 24.8, 0.04 μg L-1, 0.12-5.5 μg L-1 and less than 5%, respectively for 5 mL of urine samples. The validation was confirmed by spiking of real samples and using certified reference material (CRM, NIST) in water and urine sample.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"394 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78709957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates an application of zinc metalloporphyrin grafted Fe3O4 nanoparticles as a new adsorbent for removal of sulfate ions from wastewaters. The modification of magnetite nanoparticles was conducted by 3-aminopropyltriethoxysilane followed by zinc (II) porphyrin in order to enhance the removal of sulfate ions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) was used to characterize the synthesized nano sorbent. The effect of important experimental factors such as pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions were investigated. Under optimal conditions (i.e. contact time: 30 min, pH: 6.5 and nanosorbents dosage: 100 mg) for a sulfate sample (50 mL, 50 mgL-1 ) the percentage of the extracted sulfate ions was 94.5%. Regeneration of sulfate adsorbed material could be possible by NaOH solution and the modified magnetic nano sorbent exhibited good reusability.
{"title":"The use of zinc metalloporphyrin grafted magnetic nanoparticles for the removal of sulfate ions from wastewaters","authors":"T. Poursaberi, A. M. Beigi","doi":"10.24200/AMECJ.V2.I2.62","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.62","url":null,"abstract":"This study investigates an application of zinc metalloporphyrin grafted Fe3O4 nanoparticles as a new adsorbent for removal of sulfate ions from wastewaters. The modification of magnetite nanoparticles was conducted by 3-aminopropyltriethoxysilane followed by zinc (II) porphyrin in order to enhance the removal of sulfate ions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) was used to characterize the synthesized nano sorbent. The effect of important experimental factors such as pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions were investigated. Under optimal conditions (i.e. contact time: 30 min, pH: 6.5 and nanosorbents dosage: 100 mg) for a sulfate sample (50 mL, 50 mgL-1 ) the percentage of the extracted sulfate ions was 94.5%. Regeneration of sulfate adsorbed material could be possible by NaOH solution and the modified magnetic nano sorbent exhibited good reusability.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88576866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel task-specific ionic liquid (TSILs) was used for highly sensitive extraction and separation of nickel and cadmium in olive oil by thermal ultrasound-assisted dispersive multiphasic microextraction (TUSA-DMPμE). By proposed method, a mixture containing of hydrophilic TSILs (α- Cyano-4-hydroxycinnamic acid diethylamine; [CHCA] [DEA] and 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate; [HEMIM][BF4]) as a complexing and extracting solvent, acetone as a dispersant of TSILs was added to diluted olive oil with n-hexane containing Cd (II) and Ni (II) that was already complexed by TSILs in 60OC at pH 6.0-7.5. After optimized conditions, the enrichment factor (EF), Linear range (LR) and limit of detection (LOD) were obtained (19.3; 19.6), (5.0- 415 μg L-1; 2.7- 92 μg L-1) and (1.3 μg L-1; 0.6 μg L-1) with [CHCA] [DEA] and (13.7; 14.2), (7.5- 600 μg L-1; 3.6- 128 μg L-1) and (2.2 ng L-1; 0.9 μg L-1) with [HEMIM][BF4] for Ni and Cd ions in olive samples respectively.
{"title":"Food Analysis: Task specific ionic liquids for separation of nickel and cadmium from olive oil samples by thermal ultrasound-assisted dispersive multiphasic microextraction","authors":"H. Shirkhanloo","doi":"10.24200/AMECJ.V2.I2.64","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.64","url":null,"abstract":"A novel task-specific ionic liquid (TSILs) was used for highly sensitive extraction and separation of nickel and cadmium in olive oil by thermal ultrasound-assisted dispersive multiphasic microextraction (TUSA-DMPμE). By proposed method, a mixture containing of hydrophilic TSILs (α- Cyano-4-hydroxycinnamic acid diethylamine; [CHCA] [DEA] and 1-(2-Hydroxyethyl)-3-methylimidazolium tetrafluoroborate; [HEMIM][BF4]) as a complexing and extracting solvent, acetone as a dispersant of TSILs was added to diluted olive oil with n-hexane containing Cd (II) and Ni (II) that was already complexed by TSILs in 60OC at pH 6.0-7.5. After optimized conditions, the enrichment factor (EF), Linear range (LR) and limit of detection (LOD) were obtained (19.3; 19.6), (5.0- 415 μg L-1; 2.7- 92 μg L-1) and (1.3 μg L-1; 0.6 μg L-1) with [CHCA] [DEA] and (13.7; 14.2), (7.5- 600 μg L-1; 3.6- 128 μg L-1) and (2.2 ng L-1; 0.9 μg L-1) with [HEMIM][BF4] for Ni and Cd ions in olive samples respectively.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76448157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Wirnkor, Enyoh Christian Ebere, Verla Evelyn Ngozi
Microplastics are ubiquitous tiny plastic particles (< 5 mm) nonbiodegradable and have large surface area in the environment or the body of living things from anthropogenic activities or fragmentation of plastic debris. Though found in sea food and human body, their health implications are still speculative. A major reason for dearth of information on this topical issue is the lack of standard methods for analyzing microplastics in more complex environmental matrices. In the present review some methodologies for analyzing microplastics reported in the period 2000 to 2018 have been documented with the aim of assessing which methods is most suitable and in what matrix. The following methods have been studied: CHN analyzers, pyrolysis-gas chromatography/mass spectroscopy (PyrGC/MS), optical microscopy, fourier transform infrared microspectroscopy (Micro-FTIR), raman microspectroscopy (RMS) and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Studies have been conducted with often a combination of two methods; one separating and the other quantifying which can be problematic moreso in living tissue where there is no harm reported as at the time of this study. However, microplastics have become a cause for concern and advance studies are required to unravel the potential risk of their presence in our food and environment.
{"title":"Microplastics, an Emerging Concern: A Review of Analytical Techniques for Detecting and Quantifying Microplatics","authors":"V. A. Wirnkor, Enyoh Christian Ebere, Verla Evelyn Ngozi","doi":"10.24200/AMECJ.V2.I2.57","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.57","url":null,"abstract":"Microplastics are ubiquitous tiny plastic particles (< 5 mm) nonbiodegradable and have large surface area in the environment or the body of living things from anthropogenic activities or fragmentation of plastic debris. Though found in sea food and human body, their health implications are still speculative. A major reason for dearth of information on this topical issue is the lack of standard methods for analyzing microplastics in more complex environmental matrices. In the present review some methodologies for analyzing microplastics reported in the period 2000 to 2018 have been documented with the aim of assessing which methods is most suitable and in what matrix. The following methods have been studied: CHN analyzers, pyrolysis-gas chromatography/mass spectroscopy (PyrGC/MS), optical microscopy, fourier transform infrared microspectroscopy (Micro-FTIR), raman microspectroscopy (RMS) and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS). Studies have been conducted with often a combination of two methods; one separating and the other quantifying which can be problematic moreso in living tissue where there is no harm reported as at the time of this study. However, microplastics have become a cause for concern and advance studies are required to unravel the potential risk of their presence in our food and environment.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77300499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Determination of hydrogen sulfide, (H2S) in crude oil is very important due to the environmental impacts, industrial problems and legal international limitation of transportation. In the present work, H2S of crude oil is determined by liquid-liquid extraction followed by potentiometric titration. Three factors including dilution ratio of crude oil with toluene, extraction time of H2S into the caustic phase and API of crude oil was investigated via factorial design. The ANOVA results revealed that the dilution ratio, crude type and extraction time have the highest effect of the recovery of H2S from crude oil. The linear dynamic range of the method was from 1 up to 2000 ppm which can be manipulated for lower or higher concentration by further optimization of the above-mentioned parameters. This method is rapid, reliable, operator-independent which make it a useful technique for the field test of crude oil and overcome extreme uncertainty of H2S measurement.
{"title":"Determination of H2S in Crude Oil via a Rapid, Reliable and Sensitive Method","authors":"A. Vahid","doi":"10.24200/AMECJ.V2.I2.61","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.61","url":null,"abstract":"Determination of hydrogen sulfide, (H2S) in crude oil is very important due to the environmental impacts, industrial problems and legal international limitation of transportation. In the present work, H2S of crude oil is determined by liquid-liquid extraction followed by potentiometric titration. Three factors including dilution ratio of crude oil with toluene, extraction time of H2S into the caustic phase and API of crude oil was investigated via factorial design. The ANOVA results revealed that the dilution ratio, crude type and extraction time have the highest effect of the recovery of H2S from crude oil. The linear dynamic range of the method was from 1 up to 2000 ppm which can be manipulated for lower or higher concentration by further optimization of the above-mentioned parameters. This method is rapid, reliable, operator-independent which make it a useful technique for the field test of crude oil and overcome extreme uncertainty of H2S measurement.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87588148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chitosan nanocomposites were rapidly prepared by simple solution method. This biopolymer matrix was modified by prepared nanoscale silver (Ag) using in situ synthesis from precursor and nanomontmorillonite (NMMT). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and energy dispersive x-ray spectroscopy (EDX). The water vapor properties (WVP) of nanocomposites were investigated using gravimetric standard. The antibacterial activity of nanocomposite was measured by the well diffusion method on Muller–Hinton Agar against Escherichia coli (E. coli) by zone inhibition. Based on the obtained results, the nanocomposite can have a good candidate for different applications and food packaging industry.
{"title":"Preparation and Characterization of Chitosan Nanocomposite Based on Nanoscale Silver and Nanomontmorillonite","authors":"Fatemeh Sadat Ebnerasool, N. Kazemi","doi":"10.24200/AMECJ.V2.I2.56","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.56","url":null,"abstract":"The chitosan nanocomposites were rapidly prepared by simple solution method. This biopolymer matrix was modified by prepared nanoscale silver (Ag) using in situ synthesis from precursor and nanomontmorillonite (NMMT). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and energy dispersive x-ray spectroscopy (EDX). The water vapor properties (WVP) of nanocomposites were investigated using gravimetric standard. The antibacterial activity of nanocomposite was measured by the well diffusion method on Muller–Hinton Agar against Escherichia coli (E. coli) by zone inhibition. Based on the obtained results, the nanocomposite can have a good candidate for different applications and food packaging industry.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80847684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Majid Bagheri Hosseinabadi, shahnaz Timoori, A. Zarandi
A new synthesized sorbent based on functionalizing graphene with N-Phenyl-3-aminopropyl trimethoxy silane (G-PhAPTMS, C12H21NO3Si), was developed as a novel sorbent for removal of toluene from air by sorbent gas extraction procedure (SGEP). By proposed method, the removal efficiency of G-PhAPTMS was compared with other sorbents such as activated carbon (AC), graphene (G) and graphene oxide (GO). The standard gas of toluene generated in pure air with different concentrations and the effects of parameters such as temperature (10-90 °C), flow rate (50-500 mL min-1) and the amount of sorbent (2-30 mg) were investigated. According to the results, increasing the flow rate and temperature had negative effects on the removal efficiency of all sorbents. The highest removal efficiency of G-PhAPTMS was obtained up to 35 °C and less than 250 mL min-1 (>95%). In optimized conditions, the amount of sorbent for toluene removal was achieved more than 10 mg of G-PhAPTMS.
{"title":"Functionalized graphene-trimethoxyphenyl silane for toluene removal from workplace air by sorbent gas extraction method","authors":"Majid Bagheri Hosseinabadi, shahnaz Timoori, A. Zarandi","doi":"10.24200/AMECJ.V2.I2.63","DOIUrl":"https://doi.org/10.24200/AMECJ.V2.I2.63","url":null,"abstract":"A new synthesized sorbent based on functionalizing graphene with N-Phenyl-3-aminopropyl trimethoxy silane (G-PhAPTMS, C12H21NO3Si), was developed as a novel sorbent for removal of toluene from air by sorbent gas extraction procedure (SGEP). By proposed method, the removal efficiency of G-PhAPTMS was compared with other sorbents such as activated carbon (AC), graphene (G) and graphene oxide (GO). The standard gas of toluene generated in pure air with different concentrations and the effects of parameters such as temperature (10-90 °C), flow rate (50-500 mL min-1) and the amount of sorbent (2-30 mg) were investigated. According to the results, increasing the flow rate and temperature had negative effects on the removal efficiency of all sorbents. The highest removal efficiency of G-PhAPTMS was obtained up to 35 °C and less than 250 mL min-1 (>95%). In optimized conditions, the amount of sorbent for toluene removal was achieved more than 10 mg of G-PhAPTMS.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81522277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}