首页 > 最新文献

Animal Cells and Systems最新文献

英文 中文
Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. 褐飞虱幼虫干燥油和发酵提取物对老年肥胖小鼠的抗肥胖和免疫调节作用
IF 2.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-07-13 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2374547
Seul-Ki Mun, Chang Joo Jang, Semi Jo, Si-Hyoun Park, Hyun Bo Sim, Sonny C Ramos, Hyeongyeong Kim, Yu-Jeong Choi, Dae-Han Park, Kyung-Wuk Park, Beom-Gyun Jeong, Dae Heon Kim, Kyung-Yun Kang, Jong-Jin Kim

Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.

预防疾病和保持老年人健康是老龄化人口的重要目标,其中肥胖和免疫功能恢复至关重要。肥胖症,尤其是以腹部器官周围脂肪过度堆积为特征的内脏肥胖症,与糖尿病、高血压、心血管疾病和免疫功能障碍等慢性疾病有关。在全球范围内,肥胖被认为是一种疾病,这促使人们对其治疗产生了浓厚的研究兴趣。因此,有必要探索潜在的治疗和预防策略,以解决肥胖和衰老带来的免疫功能下降问题。Tenebrio molitor 幼虫(TML)俗称 "黄粉虫",富含不饱和脂肪酸(包括油酸和亚油酸)以及必需氨基酸(如异亮氨酸和酪氨酸)。在这项研究中,我们旨在调查食用 TML 油和黄粉虫发酵提取物(MWF-1)对老年肥胖小鼠肥胖和免疫学变化的影响。我们的数据显示,喂食 TML 加工产品 6 周的 23 周大 C57BL/6 小鼠体内脂肪减少。此外,使用 TML 油治疗后,小鼠血清甘油三酯水平明显降低。免疫反应性结果证实,用 MWF-1 治疗可增加 B 细胞,而细胞因子水平(γ 干扰素、肿瘤坏死因子-α、白细胞介素-2 和-6)则恢复到与年轻小鼠相似的水平。这些结果表明,TML 油和 MWF-1 是解决肥胖问题和恢复免疫功能的有前途的膳食补充剂。
{"title":"Anti-obesity and immunomodulatory effects of oil and fermented extract dried from <i>Tenebrio molitor</i> larvae on aged obese mice.","authors":"Seul-Ki Mun, Chang Joo Jang, Semi Jo, Si-Hyoun Park, Hyun Bo Sim, Sonny C Ramos, Hyeongyeong Kim, Yu-Jeong Choi, Dae-Han Park, Kyung-Wuk Park, Beom-Gyun Jeong, Dae Heon Kim, Kyung-Yun Kang, Jong-Jin Kim","doi":"10.1080/19768354.2024.2374547","DOIUrl":"10.1080/19768354.2024.2374547","url":null,"abstract":"<p><p>Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. <i>Tenebrio molitor</i> larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piperlongumine regulates genes involved in the skin barrier in epidermal keratinocyte HaCaT cells. 胡椒龙葵碱调控表皮角质细胞 HaCaT 细胞中涉及皮肤屏障的基因。
IF 2.5 2区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-06-25 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2361144
Kyung-Ha Lee, Deok Gyeong Kang, Dae-Wook Kim, Hwan-Kwon Do, Do-Yeon Kim, Wanil Kim

Given that the skin is the largest tissue in the human body, performing external barrier functions with innate and adaptive immunity and undergoing substantial changes during aging, it is under investigation as a major target of various bioactive molecules. In the present study, we examined the biological activity of the senolytic piperlongumine by analyzing alterations in mRNA expression of notable skin genes using transformed aneuploid immortal epidermal keratinocytes, HaCaT cells. We observed that piperlongumine increased the mRNA expression of genes playing critical roles in skin barrier function. In addition, piperlongumine increased expression enzymes involved in the synthesis of ceramide, a major component of intercellular lipids. Furthermore, we measured the protein levels of various cytokines secreted by epidermal keratinocytes and found changes in the release of GRO-αβγ, CCL5, and MCP1. Additionally, we observed that piperlongumine treatment modulated the expression of keratinocyte-specific aging markers and influenced telomerase activity. Based on these findings, piperlongumine could regulate the physiological activity of epidermal keratinocytes to induce beneficial effects in human skin by regulating important skin-related genes.

皮肤是人体最大的组织,具有先天性免疫和适应性免疫的外部屏障功能,并且在衰老过程中会发生巨大变化,因此皮肤作为各种生物活性分子的主要靶点正在接受研究。在本研究中,我们利用转化的非整倍体永生表皮角质细胞--HaCaT 细胞,通过分析重要皮肤基因 mRNA 表达的变化,研究了哌隆鲁明的生物活性。我们观察到,哌隆罗明增加了在皮肤屏障功能中起关键作用的基因的 mRNA 表达。此外,哌隆芦明还能增加参与合成神经酰胺(细胞间脂质的主要成分)的酶的表达。此外,我们还测量了表皮角质细胞分泌的各种细胞因子的蛋白水平,发现 GRO-αβγ、CCL5 和 MCP1 的释放发生了变化。此外,我们还观察到,哌隆鲁明治疗可调节角朊细胞特异性衰老标志物的表达并影响端粒酶活性。基于这些发现,哌隆鲁明可以调节表皮角质形成细胞的生理活性,从而通过调节重要的皮肤相关基因对人体皮肤产生有益的影响。
{"title":"Piperlongumine regulates genes involved in the skin barrier in epidermal keratinocyte HaCaT cells.","authors":"Kyung-Ha Lee, Deok Gyeong Kang, Dae-Wook Kim, Hwan-Kwon Do, Do-Yeon Kim, Wanil Kim","doi":"10.1080/19768354.2024.2361144","DOIUrl":"10.1080/19768354.2024.2361144","url":null,"abstract":"<p><p>Given that the skin is the largest tissue in the human body, performing external barrier functions with innate and adaptive immunity and undergoing substantial changes during aging, it is under investigation as a major target of various bioactive molecules. In the present study, we examined the biological activity of the senolytic piperlongumine by analyzing alterations in mRNA expression of notable skin genes using transformed aneuploid immortal epidermal keratinocytes, HaCaT cells. We observed that piperlongumine increased the mRNA expression of genes playing critical roles in skin barrier function. In addition, piperlongumine increased expression enzymes involved in the synthesis of ceramide, a major component of intercellular lipids. Furthermore, we measured the protein levels of various cytokines secreted by epidermal keratinocytes and found changes in the release of GRO-αβγ, CCL5, and MCP1. Additionally, we observed that piperlongumine treatment modulated the expression of keratinocyte-specific aging markers and influenced telomerase activity. Based on these findings, piperlongumine could regulate the physiological activity of epidermal keratinocytes to induce beneficial effects in human skin by regulating important skin-related genes.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of a stress granule reporter system for evaluating in vitro colon toxicity. 建立应激颗粒报告系统,用于评估体外结肠毒性。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-17 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2364673
Namjoon Cho, Da-Min Jung, Eun-Mi Kim, Kee K Kim

Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.

暴露于食物或口服药物中的有毒分子会诱导结肠细胞产生毒性,从而导致各种人类疾病;然而,结肠细胞毒性的体外监测系统还没有很好地建立起来。应激颗粒是暴露于细胞应激的细胞中形成的非膜状病灶。当细胞感知到有毒环境时,它们会急性地、系统性地促进应激颗粒的形成,Ras GTPase激活蛋白结合蛋白1(G3BP1)是保护其mRNA不被异常降解的核心成分。在这里,我们通过CRISPR-Cas9介导的同源重组将绿色荧光蛋白(GFP)编码序列敲入人结肠细胞系的G3BP1基因C端区域,并证实在细胞应激暴露下,这些细胞中的G3BP1-GFP蛋白形成了应激颗粒。我们使用荧光显微镜实时监测了表达 G3BP1-GFP 的结肠细胞中应激颗粒的形成和解离。此外,我们还通过观察暴露于二氢辣椒素、双酚 A 和山梨醇后应激颗粒的形成,验证了已建立的结肠细胞系中的毒性监测系统。总之,我们在结肠细胞系中建立了应激颗粒报告系统,为实时监测结肠对各种化学物质的毒性提供了一种新的评估方法。
{"title":"Establishment of a stress granule reporter system for evaluating <i>in vitro</i> colon toxicity.","authors":"Namjoon Cho, Da-Min Jung, Eun-Mi Kim, Kee K Kim","doi":"10.1080/19768354.2024.2364673","DOIUrl":"10.1080/19768354.2024.2364673","url":null,"abstract":"<p><p>Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, <i>in vitro</i> monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the <i>G3BP1</i> gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of mouse and rat xenogeneic ovaries in vitro for production of mouse oocyte. 在体外生成小鼠和大鼠异种卵巢,用于生产小鼠卵母细胞。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-06-11 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2363601
Si Won Jang, Ye Rim Kim, Jae Ho Han, Hoon Jang, Hyun Woo Choi

The system forming ovarian follicles is developed to investigate in vitro folliculogenesis in a confined environment to obtain functional oocytes. Several studies have reported the successful generation of fully functional oocytes using mouse-induced pluripotent stem cells (iPSCs) and mouse female germline stem cells (fGSCs) as sources of stem cells for in vitro gametogenesis models. In addition, human oogonia have been generated through heterologous co-culture of differentiated human primordial germ cell-like cells (hPGCLCs) with mouse germline somatic cells, although oocyte formation remains challenging. Thus, studies on in vitro ovarian formation in other species are utilized as an introductory approach for in vitro mammalian gametogenesis by understanding the differences in culture systems between species and underlying mechanisms. In this study, we optimized the method of the entire oogenesis process from rat embryonic gonads. We identified well-maturated MII oocytes from rat gonads using our constructed method. Moreover, we generated the first successful in vitro reconstitution of xenogeneic follicles from mouse primordial germ cells (PGCs) and rat somatic cells. We also established an appropriate culture medium and incubation period for xenogeneic follicles. This method will be helpful in studies of xenogeneic follicular development and oocyte generation.

开发形成卵巢滤泡的系统是为了研究在密闭环境中的体外卵泡生成,以获得功能性卵母细胞。一些研究报告称,利用小鼠诱导多能干细胞(iPSCs)和小鼠雌性生殖干细胞(fGSCs)作为体外配子生成模型的干细胞来源,成功生成了全功能卵母细胞。此外,已分化的人类原始生殖细胞样细胞(hPGCLCs)与小鼠生殖系体细胞异源共培养产生了人类卵原细胞,但卵母细胞的形成仍具有挑战性。因此,对其他物种体外卵巢形成的研究可作为哺乳动物体外配子发生的入门方法,了解不同物种培养系统的差异和内在机制。在这项研究中,我们优化了大鼠胚胎性腺整个卵子发生过程的方法。利用我们构建的方法,我们从大鼠性腺中鉴定出了饱和度良好的 MII 卵母细胞。此外,我们首次成功地从小鼠原始生殖细胞(PGCs)和大鼠体细胞体外重组了异种卵泡。我们还为异种卵泡建立了合适的培养基和培养期。这种方法将有助于异种卵泡发育和卵母细胞生成的研究。
{"title":"Generation of mouse and rat xenogeneic ovaries <i>in vitro</i> for production of mouse oocyte.","authors":"Si Won Jang, Ye Rim Kim, Jae Ho Han, Hoon Jang, Hyun Woo Choi","doi":"10.1080/19768354.2024.2363601","DOIUrl":"10.1080/19768354.2024.2363601","url":null,"abstract":"<p><p>The system forming ovarian follicles is developed to investigate <i>in vitro</i> folliculogenesis in a confined environment to obtain functional oocytes. Several studies have reported the successful generation of fully functional oocytes using mouse-induced pluripotent stem cells (iPSCs) and mouse female germline stem cells (fGSCs) as sources of stem cells for <i>in vitro</i> gametogenesis models. In addition, human oogonia have been generated through heterologous co-culture of differentiated human primordial germ cell-like cells (hPGCLCs) with mouse germline somatic cells, although oocyte formation remains challenging. Thus, studies on <i>in vitro</i> ovarian formation in other species are utilized as an introductory approach for <i>in vitro</i> mammalian gametogenesis by understanding the differences in culture systems between species and underlying mechanisms. In this study, we optimized the method of the entire oogenesis process from rat embryonic gonads. We identified well-maturated MII oocytes from rat gonads using our constructed method. Moreover, we generated the first successful <i>in vitro</i> reconstitution of xenogeneic follicles from mouse primordial germ cells (PGCs) and rat somatic cells. We also established an appropriate culture medium and incubation period for xenogeneic follicles. This method will be helpful in studies of xenogeneic follicular development and oocyte generation.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice. 细胞自主减少 CYFIP2 会改变 17 个月大小鼠海马 CA1 锥体神经元的树突长度、树突突起形态和抑制性突触密度。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2360740
Yoonhee Kim, Ruiying Ma, Yinhua Zhang, Hyae Rim Kang, U Suk Kim, Kihoon Han

The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.

细胞质 FMR1 结合蛋白 2(CYFIP2)在神经元中具有多种分子功能,包括调节肌动蛋白聚合、mRNA 翻译以及线粒体形态和功能。CYFIP2 基因突变与早发性癫痫和神经发育障碍有关,而其蛋白水平的降低则与阿尔茨海默病(AD)有关。值得注意的是,先前的研究发现,12个月大的Cyfip2杂合小鼠的海马CA1锥体神经元出现了类似于AD的表型,如树突棘缺失,但年龄匹配的CA1锥体神经元特异性Cyfip2条件性敲除(cKO)小鼠却没有出现这种表型。本研究旨在探讨与 Cyfip2 杂合子小鼠相比,Cyfip2 cKO 小鼠的树突棘丢失是否只是延迟,并进一步探讨 CYFIP2 在老年小鼠中调控的神经元表型。我们对 17 个月大的 Cyfip2 cKO 小鼠 CA1 锥体神经元的树突和树突突起形态以及兴奋/抑制突触密度进行了鉴定。Cyfip2 cKO小鼠CA1锥体神经元的树突分枝总体正常,但基部树突长度缩短,而非顶端树突长度缩短。此外,虽然树突突起密度保持正常,但在 Cyfip2 cKO 小鼠的基底树突(而非顶端树突)中,观察到蘑菇棘的长度和粗壮棘的头部体积发生了变化。虽然兴奋性突触密度保持不变,但抑制性突触密度在Cyfip2 cKO小鼠的顶端树突而非基部树突中有所增加。因此,细胞自主减少 CYFIP2 似乎不足以诱导老龄小鼠 CA1 锥体神经元树突棘的缺失。然而,CYFIP2 是维持正常树突长度、树突突起形态和抑制性突触密度所必需的。
{"title":"Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice.","authors":"Yoonhee Kim, Ruiying Ma, Yinhua Zhang, Hyae Rim Kang, U Suk Kim, Kihoon Han","doi":"10.1080/19768354.2024.2360740","DOIUrl":"10.1080/19768354.2024.2360740","url":null,"abstract":"<p><p>The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the <i>CYFIP2</i> gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old <i>Cyfip2</i> heterozygous mice but not of age-matched CA1 pyramidal neuron-specific <i>Cyfip2</i> conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in <i>Cyfip2</i> cKO mice is merely delayed compared to <i>Cyfip2</i> heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old <i>Cyfip2</i> cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of <i>Cyfip2</i> cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of <i>Cyfip2</i> cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of <i>Cyfip2</i> cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Producing highly effective extracellular vesicles using IBAR and talin F3 domain fusion. 利用 IBAR 和 talin F3 结构域融合生产高效细胞外囊泡。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-18 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2353159
Joonha Lee, MinHyeong Lee, Jiyoon Kim, Eun-Gyung Cho, Chungho Kim

Extracellular vesicles (EVs), transporting diverse cellular components, play a crucial role in intercellular communication in numerous physiological and pathological processes. EVs have also been recognized as a drug delivery platform for therapeutic purposes and cell-free regenerative medicine. While various approaches have focused on increasing EV production for efficient use therapeutic use of EVs, enhancing the quality of EVs, such as ensuring efficient uptake by their target cells, has not been widely explored. In this study, we linked a negative membrane curvature-forming inverse BAR (IBAR) domain with an integrin β tail-binding talin F3 domain to create the IBAR-F3 fusion protein. We observed that IBAR-F3 can trigger filopodia-like membrane protrusions and attract integrins to those protrusion-rich regions, when expressed in Chinese hamster ovary cells expressing integrin αIIbβ3. Surprisingly, the expression of IBAR-F3 also induced a robust production of EVs, which were then efficiently taken up by nearby cells in an integrin-dependent manner. Moreover, IBAR triggered integrin activation, presumably by inducing negative membrane curvature that likely disrupts the interaction between the integrin α and β transmembrane domain. Therefore, we suggest that IBAR-F3 should be utilized to promote both EV production and efficient uptake mediated by integrins. Furthermore, the negative curvature-inducing integrin activation suggests that integrins on EVs can be activated by the nanoscale change in the curvature of the EV without the need for conventional machinery to activate integrin inside the EVs.

细胞外囊泡(EVs)运输多种细胞成分,在许多生理和病理过程中的细胞间通讯中发挥着至关重要的作用。EVs 还被认为是一种用于治疗和无细胞再生医学的药物输送平台。虽然各种方法都侧重于提高 EVs 的产量,以有效利用 EVs 进行治疗,但提高 EVs 的质量,如确保其靶细胞的有效吸收,尚未得到广泛探讨。在这项研究中,我们将负膜曲率形成的反向 BAR(IBAR)结构域与整合素 β 尾部结合的 talin F3 结构域连接起来,形成了 IBAR-F3 融合蛋白。我们观察到,当在表达整合素αⅡbβ3的中国仓鼠卵巢细胞中表达时,IBAR-F3能引发丝状膜突起,并吸引整合素到这些突起丰富的区域。令人惊讶的是,IBAR-F3的表达还能诱导EV的大量产生,然后以整合素依赖的方式被附近的细胞有效吸收。此外,IBAR 可能通过诱导负膜弯曲而引发整合素活化,这种负膜弯曲可能会破坏整合素 α 和 β 跨膜结构域之间的相互作用。因此,我们建议利用 IBAR-F3 促进整合素介导的 EV 生成和有效摄取。此外,负曲率诱导整合素激活表明,EV 上的整合素可以通过 EV 的纳米级曲率变化激活,而不需要传统的机制来激活 EV 内部的整合素。
{"title":"Producing highly effective extracellular vesicles using IBAR and talin F3 domain fusion.","authors":"Joonha Lee, MinHyeong Lee, Jiyoon Kim, Eun-Gyung Cho, Chungho Kim","doi":"10.1080/19768354.2024.2353159","DOIUrl":"10.1080/19768354.2024.2353159","url":null,"abstract":"<p><p>Extracellular vesicles (EVs), transporting diverse cellular components, play a crucial role in intercellular communication in numerous physiological and pathological processes. EVs have also been recognized as a drug delivery platform for therapeutic purposes and cell-free regenerative medicine. While various approaches have focused on increasing EV production for efficient use therapeutic use of EVs, enhancing the quality of EVs, such as ensuring efficient uptake by their target cells, has not been widely explored. In this study, we linked a negative membrane curvature-forming inverse BAR (IBAR) domain with an integrin β tail-binding talin F3 domain to create the IBAR-F3 fusion protein. We observed that IBAR-F3 can trigger filopodia-like membrane protrusions and attract integrins to those protrusion-rich regions, when expressed in Chinese hamster ovary cells expressing integrin αIIbβ3. Surprisingly, the expression of IBAR-F3 also induced a robust production of EVs, which were then efficiently taken up by nearby cells in an integrin-dependent manner. Moreover, IBAR triggered integrin activation, presumably by inducing negative membrane curvature that likely disrupts the interaction between the integrin α and β transmembrane domain. Therefore, we suggest that IBAR-F3 should be utilized to promote both EV production and efficient uptake mediated by integrins. Furthermore, the negative curvature-inducing integrin activation suggests that integrins on EVs can be activated by the nanoscale change in the curvature of the EV without the need for conventional machinery to activate integrin inside the EVs.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HSPA5 and FGFR1 genes in the mesenchymal subtype of glioblastoma can improve a treatment efficacy. 间质亚型胶质母细胞瘤中的 HSPA5 和 FGFR1 基因可提高治疗效果。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-18 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2347538
Ju Young Lee, Jongkeun Park, Dongwan Hong

Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To devise more effective treatments for GBM, genetic characteristics must be considered in addition to pre-existing treatments. We performed an integrative analysis with heterogeneous GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. We found that poor prognosis was induced by co-upregulation of heat shock protein family A member 5 (HSPA5) and fibroblast growth factor receptor 1 (FGFR1). Co-up regulation of these two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. Furthermore, we found this newly discovered subtype was correlated with homologous recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies for combination therapy.

酪氨酸激酶抑制剂(TKIs)已成为多形性胶质母细胞瘤(GBM)的一种潜在治疗策略。然而,它们的疗效受到各种耐药机制的限制。为了设计出更有效的 GBM 治疗方法,除了现有的治疗方法外,还必须考虑遗传特征。我们利用来自 DepMap、TCGA 和 CPTAC 的基因组、转录组和蛋白质组异构 GBM 数据集进行了综合分析。我们发现,热休克蛋白家族 A 成员 5(HSPA5)和成纤维细胞生长因子受体 1(FGFR1)的共调控诱导了不良预后。这两个基因的共调控可调节 PI3K/AKT 通路。这两个基因共同上调的 GBM 细胞系对 PI3K 抑制剂的药物敏感性更高。在间质亚型中,FGFR1 和 HSPA5 的共重复性导致 GBM 亚型的恶性程度最高。此外,我们还发现这种新发现的亚型与同源重组缺陷(HRD)相关。总之,我们发现了GBM中这两个基因共调控群体中的新型药物候选者,并提出了联合治疗的潜在策略。
{"title":"HSPA5 and FGFR1 genes in the mesenchymal subtype of glioblastoma can improve a treatment efficacy.","authors":"Ju Young Lee, Jongkeun Park, Dongwan Hong","doi":"10.1080/19768354.2024.2347538","DOIUrl":"10.1080/19768354.2024.2347538","url":null,"abstract":"<p><p>Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To devise more effective treatments for GBM, genetic characteristics must be considered in addition to pre-existing treatments. We performed an integrative analysis with heterogeneous GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. We found that poor prognosis was induced by co-upregulation of heat shock protein family A member 5 (<i>HSPA5</i>) and fibroblast growth factor receptor 1 (<i>FGFR1</i>). Co-up regulation of these two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. Furthermore, we found this newly discovered subtype was correlated with homologous recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies for combination therapy.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the structure, chemical composition, and conserved signaling in leech teeth. 揭示水蛭牙齿的结构、化学成分和保守信号。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-11 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2350736
Yam Prasad Aryal, Sanjiv Neupane, Hee-Jin Kwak, Chang-Hyeon An, Wern-Joo Sohn, Hitoshi Yamamoto, Tae-Yub Kwon, Bong-Ki Min, Jae-Young Kim, Sung-Jin Cho

Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically Hirudo nipponia and Haemadipsa rjukjuana, was revealed, which showed sharp and pointed teeth along the apex of three jaws. Understanding conserved signaling regulations among analogous organs is crucial for uncovering the underlying mechanisms during organogenesis. Therefore, to shed light on the evolutionary perspective of odontogenesis to some extent, we conducted de novo transcriptome analyses using embryonic mouse tooth germs, Hirudo teeth, and Helobdella proboscises to identify conserved signaling molecules involved in tooth development. The selection criteria were particularly based on the presence of tooth-related genes in mice, Hirudo teeth, and Helobdella proboscis, wherein 4113 genes were commonly expressed in all three specimens. Furthermore, the chemical nature of leech teeth was also examined via TEM-EDS to compare the chemical composition with vertebrate teeth. The examination of tissue-specific genetic information and chemical nature between leeches and mice revealed chemical similarities between leech and mice teeth, as well as conserved signaling molecules involved in tooth formation, including Ptpro, Prickle2, and Wnt16. Based on our findings, we propose that leech teeth express signaling molecules conserved in mice and these conserved tooth-specific signaling for dental hard tissue formation in mice would corresponds to the structural formation of the toothed jaw in leeches.

与脊椎动物不同,无脊椎动物中有牙齿的类群数量很少,水蛭是无脊椎动物门中唯一有牙齿的生物。有关脊椎动物牙齿的研究已经很多,但有关无脊椎动物牙齿结构和功能的研究却很有限。本研究揭示了水蛭(特别是 Hirudo nipponia 和 Haemadipsa rjukjuana)的牙齿结构,它们的三个颚的顶端都有尖锐的牙齿。了解类似器官之间保守的信号调节对于揭示器官发生过程中的内在机制至关重要。因此,为了在一定程度上揭示牙齿发生的进化过程,我们利用胚胎小鼠牙胚、Hirudo牙齿和Helobdella长鼻进行了全新的转录组分析,以确定参与牙齿发育的保守信号分子。选择标准主要基于小鼠、Hirudo牙齿和Helobdella长鼻鸟中存在的牙齿相关基因,其中4113个基因在这三种标本中普遍表达。此外,还通过 TEM-EDS 对水蛭牙齿的化学性质进行了研究,以比较其与脊椎动物牙齿的化学成分。通过对水蛭和小鼠的组织特异性遗传信息和化学性质的研究,我们发现水蛭和小鼠牙齿的化学性质相似,并且在牙齿形成过程中存在保守的信号分子,包括 Ptpro、Prickle2 和 Wnt16。根据我们的研究结果,我们认为水蛭牙齿表达的信号分子在小鼠中是保守的,而这些保守的牙齿特异性信号在小鼠牙齿硬组织形成过程中的作用与水蛭牙齿颌骨的结构形成是相对应的。
{"title":"Unraveling the structure, chemical composition, and conserved signaling in leech teeth.","authors":"Yam Prasad Aryal, Sanjiv Neupane, Hee-Jin Kwak, Chang-Hyeon An, Wern-Joo Sohn, Hitoshi Yamamoto, Tae-Yub Kwon, Bong-Ki Min, Jae-Young Kim, Sung-Jin Cho","doi":"10.1080/19768354.2024.2350736","DOIUrl":"10.1080/19768354.2024.2350736","url":null,"abstract":"<p><p>Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically <i>Hirudo nipponia</i> and <i>Haemadipsa rjukjuana</i>, was revealed, which showed sharp and pointed teeth along the apex of three jaws. Understanding conserved signaling regulations among analogous organs is crucial for uncovering the underlying mechanisms during organogenesis. Therefore, to shed light on the evolutionary perspective of odontogenesis to some extent, we conducted de novo transcriptome analyses using embryonic mouse tooth germs, <i>Hirudo</i> teeth, and <i>Helobdella</i> proboscises to identify conserved signaling molecules involved in tooth development. The selection criteria were particularly based on the presence of tooth-related genes in mice, <i>Hirudo</i> teeth, and <i>Helobdella</i> proboscis, wherein 4113 genes were commonly expressed in all three specimens. Furthermore, the chemical nature of leech teeth was also examined via TEM-EDS to compare the chemical composition with vertebrate teeth. The examination of tissue-specific genetic information and chemical nature between leeches and mice revealed chemical similarities between leech and mice teeth, as well as conserved signaling molecules involved in tooth formation, including <i>Ptpro</i>, <i>Prickle2</i>, and <i>Wnt16</i>. Based on our findings, we propose that leech teeth express signaling molecules conserved in mice and these conserved tooth-specific signaling for dental hard tissue formation in mice would corresponds to the structural formation of the toothed jaw in leeches.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway. RNF113A 缺乏对氧化应激诱导的 NRF2 通路的影响
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-11 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2349758
Namjoon Cho, Yong-Eun Kim, Yunkyeong Lee, Dong Wook Choi, Chungoo Park, Jung-Hwan Kim, Keun Il Kim, Kee K Kim

The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.

环指蛋白 113A(RNF113A)是一种 E3 泛素连接酶,也是剪接体的一个亚基。RNF113A 基因突变与 X 连锁毛滴虫营养不良症(TTD)有关。然而,RNF113A 在细胞中的作用在很大程度上仍不为人所知。在这项研究中,我们利用 RNA 测序技术对 RNF113A 基因敲除(KO)的 HeLa 细胞进行了转录组分析,发现 NRF2 通路相关基因上调。进一步分析证实,RNF113A KO促进了NRF2蛋白的核定位,并提高了NRF2靶基因的mRNA水平。RNF113A KO细胞在H2O2处理后表现出高水平的细胞内活性氧(ROS),对细胞死亡的抵抗力下降。此外,RNF113A KO 细胞在亚砷酸盐诱导的氧化应激下更敏感地形成应激颗粒(SGs)。此外,RNF113A KO 细胞表现出谷胱甘肽水平下降,这可能是由于 GLUT1 表达水平降低,导致葡萄糖摄取反应减少和细胞内葡萄糖水平降低。这些变化可能导致 ROS 清除活性降低。综上所述,我们的研究结果表明,RNF113A 的缺失促进了氧化应激介导的 NRF2 通路的激活,为 RNF113A 相关人类疾病提供了新的见解。
{"title":"Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway.","authors":"Namjoon Cho, Yong-Eun Kim, Yunkyeong Lee, Dong Wook Choi, Chungoo Park, Jung-Hwan Kim, Keun Il Kim, Kee K Kim","doi":"10.1080/19768354.2024.2349758","DOIUrl":"10.1080/19768354.2024.2349758","url":null,"abstract":"<p><p>The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the <i>RNF113A</i> gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H<sub>2</sub>O<sub>2</sub> treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in <i>GLUT1</i> expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking SLC7A11 attenuates the proliferation of esophageal squamous cell carcinoma cells. 阻断 SLC7A11 可减轻食管鳞状细胞癌细胞的增殖。
IF 2.9 2区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-11 eCollection Date: 2024-01-01 DOI: 10.1080/19768354.2024.2346981
Wen-Ting Li, Xin Jin, Sheng-Jie Song, Chong Wang, Chuang Fu, Wen Jiang, Jie Bai, Zhi-Zhou Shi

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of β-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

铁变态相关基因 SLC7A11 在食管癌进展过程中的作用尚不清楚,因此本研究评估了阻断 SLC7A11 对食管鳞状细胞癌(ESCC)细胞的影响。结果表明,SLC7A11在ESCC组织中的mRNA和蛋白水平均过表达。使用 Erastin 阻断 SLC7A11 可抑制 ESCC 细胞的增殖和集落形成,降低细胞 ATP 水平,并改善 ROS 的产生。利用IP-MS方法鉴定出了63种SLC7A11结合蛋白,这些蛋白富集在四种信号通路中,包括剪接体、核糖体、亨廷顿病和糖尿病心肌病。去泛素化酶抑制剂PR-619、GRL0617和P 22077能使ESCC细胞中SLC7A11的蛋白表达水平降低至少40%,PR-619和GRL0617分别对KYSE30细胞的活力和集落形成能力有抑制作用。Erastin可下调ESCC细胞中的GPX4和DHODH,还可降低β-catenin、p-STAT3和IL-6的水平。总之,SLC7A11在ESCC中过表达,使用Erastin阻断SLC7A11可减轻ESCC细胞的恶性表型,并下调关键的铁氧化相关分子GPX4和DHODH。未来应进一步评估靶向SLC7A11的治疗潜力。
{"title":"Blocking SLC7A11 attenuates the proliferation of esophageal squamous cell carcinoma cells.","authors":"Wen-Ting Li, Xin Jin, Sheng-Jie Song, Chong Wang, Chuang Fu, Wen Jiang, Jie Bai, Zhi-Zhou Shi","doi":"10.1080/19768354.2024.2346981","DOIUrl":"10.1080/19768354.2024.2346981","url":null,"abstract":"<p><p>The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of β-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Animal Cells and Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1