Pub Date : 2024-07-25eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2380294
Jisoo Park, Jongyoon Kim, Hyungsun Park, Taewan Kim, Seongju Lee
The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
{"title":"ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases.","authors":"Jisoo Park, Jongyoon Kim, Hyungsun Park, Taewan Kim, Seongju Lee","doi":"10.1080/19768354.2024.2380294","DOIUrl":"10.1080/19768354.2024.2380294","url":null,"abstract":"<p><p>The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"367-380"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2381578
Hyun Ji Kim, Dong Woo Seo, Jaewon Shim, Jun-Seok Lee, Sang-Hyun Choi, Dong-Hoon Kim, Seok Jun Moon, Han-Sung Jung, Yong Taek Jeong
Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, Lgr5 and Lgr6 were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual Lgr5- and Lgr6-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse Lgr5-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the Lgr5 reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing Lgr6, another stem/progenitor cell marker candidate and an analog of Lgr5, also do not generate recombined clones. In contrast, Lgr5-expressing cells in fungiform papillae can transform into Lgr5-negative progeny. Together, our data indicate that lingual Lgr5- and Lgr6-expressing cells exhibit diversity in their capacity to transform into Lgr5- and Lgr6-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.
{"title":"Reassessing the genetic lineage tracing of lingual <i>Lgr5<sup>+</sup></i> and <i>Lgr6<sup>+</sup></i> cells <i>in vivo</i>.","authors":"Hyun Ji Kim, Dong Woo Seo, Jaewon Shim, Jun-Seok Lee, Sang-Hyun Choi, Dong-Hoon Kim, Seok Jun Moon, Han-Sung Jung, Yong Taek Jeong","doi":"10.1080/19768354.2024.2381578","DOIUrl":"10.1080/19768354.2024.2381578","url":null,"abstract":"<p><p>Taste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, <i>Lgr5</i> and <i>Lgr6</i> were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual <i>Lgr5</i>- and <i>Lgr6</i>-expressing cells. Unexpectedly, we found that antibody staining revealed more diverse <i>Lgr5</i>-expressing cells inside and outside the taste buds of circumvallate papillae than was previously suggested. We also found that, while tamoxifen-induced genetic recombination occurred only in cells expressing the <i>Lgr5</i> reporter GFP, we did not see any increase in the number of recombined daughter cells induced by consecutive injections of tamoxifen. Similarly, we found that cells expressing <i>Lgr6</i>, another stem/progenitor cell marker candidate and an analog of <i>Lgr5</i>, also do not generate recombined clones. In contrast, <i>Lgr5</i>-expressing cells in fungiform papillae can transform into <i>Lgr5-</i>negative progeny. Together, our data indicate that lingual <i>Lgr5</i>- and <i>Lgr6</i>-expressing cells exhibit diversity in their capacity to transform into <i>Lgr5</i>- and <i>Lgr6</i>-negative cells, depending on their location. Our results complement previous findings that did not distinguish this diversity.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"353-366"},"PeriodicalIF":2.5,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2374547
Seul-Ki Mun, Chang Joo Jang, Semi Jo, Si-Hyoun Park, Hyun Bo Sim, Sonny C Ramos, Hyeongyeong Kim, Yu-Jeong Choi, Dae-Han Park, Kyung-Wuk Park, Beom-Gyun Jeong, Dae Heon Kim, Kyung-Yun Kang, Jong-Jin Kim
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
{"title":"Anti-obesity and immunomodulatory effects of oil and fermented extract dried from <i>Tenebrio molitor</i> larvae on aged obese mice.","authors":"Seul-Ki Mun, Chang Joo Jang, Semi Jo, Si-Hyoun Park, Hyun Bo Sim, Sonny C Ramos, Hyeongyeong Kim, Yu-Jeong Choi, Dae-Han Park, Kyung-Wuk Park, Beom-Gyun Jeong, Dae Heon Kim, Kyung-Yun Kang, Jong-Jin Kim","doi":"10.1080/19768354.2024.2374547","DOIUrl":"10.1080/19768354.2024.2374547","url":null,"abstract":"<p><p>Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. <i>Tenebrio molitor</i> larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"340-352"},"PeriodicalIF":2.5,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2361144
Kyung-Ha Lee, Deok Gyeong Kang, Dae-Wook Kim, Hwan-Kwon Do, Do-Yeon Kim, Wanil Kim
Given that the skin is the largest tissue in the human body, performing external barrier functions with innate and adaptive immunity and undergoing substantial changes during aging, it is under investigation as a major target of various bioactive molecules. In the present study, we examined the biological activity of the senolytic piperlongumine by analyzing alterations in mRNA expression of notable skin genes using transformed aneuploid immortal epidermal keratinocytes, HaCaT cells. We observed that piperlongumine increased the mRNA expression of genes playing critical roles in skin barrier function. In addition, piperlongumine increased expression enzymes involved in the synthesis of ceramide, a major component of intercellular lipids. Furthermore, we measured the protein levels of various cytokines secreted by epidermal keratinocytes and found changes in the release of GRO-αβγ, CCL5, and MCP1. Additionally, we observed that piperlongumine treatment modulated the expression of keratinocyte-specific aging markers and influenced telomerase activity. Based on these findings, piperlongumine could regulate the physiological activity of epidermal keratinocytes to induce beneficial effects in human skin by regulating important skin-related genes.
{"title":"Piperlongumine regulates genes involved in the skin barrier in epidermal keratinocyte HaCaT cells.","authors":"Kyung-Ha Lee, Deok Gyeong Kang, Dae-Wook Kim, Hwan-Kwon Do, Do-Yeon Kim, Wanil Kim","doi":"10.1080/19768354.2024.2361144","DOIUrl":"10.1080/19768354.2024.2361144","url":null,"abstract":"<p><p>Given that the skin is the largest tissue in the human body, performing external barrier functions with innate and adaptive immunity and undergoing substantial changes during aging, it is under investigation as a major target of various bioactive molecules. In the present study, we examined the biological activity of the senolytic piperlongumine by analyzing alterations in mRNA expression of notable skin genes using transformed aneuploid immortal epidermal keratinocytes, HaCaT cells. We observed that piperlongumine increased the mRNA expression of genes playing critical roles in skin barrier function. In addition, piperlongumine increased expression enzymes involved in the synthesis of ceramide, a major component of intercellular lipids. Furthermore, we measured the protein levels of various cytokines secreted by epidermal keratinocytes and found changes in the release of GRO-αβγ, CCL5, and MCP1. Additionally, we observed that piperlongumine treatment modulated the expression of keratinocyte-specific aging markers and influenced telomerase activity. Based on these findings, piperlongumine could regulate the physiological activity of epidermal keratinocytes to induce beneficial effects in human skin by regulating important skin-related genes.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"326-339"},"PeriodicalIF":2.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2364673
Namjoon Cho, Da-Min Jung, Eun-Mi Kim, Kee K Kim
Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.
暴露于食物或口服药物中的有毒分子会诱导结肠细胞产生毒性,从而导致各种人类疾病;然而,结肠细胞毒性的体外监测系统还没有很好地建立起来。应激颗粒是暴露于细胞应激的细胞中形成的非膜状病灶。当细胞感知到有毒环境时,它们会急性地、系统性地促进应激颗粒的形成,Ras GTPase激活蛋白结合蛋白1(G3BP1)是保护其mRNA不被异常降解的核心成分。在这里,我们通过CRISPR-Cas9介导的同源重组将绿色荧光蛋白(GFP)编码序列敲入人结肠细胞系的G3BP1基因C端区域,并证实在细胞应激暴露下,这些细胞中的G3BP1-GFP蛋白形成了应激颗粒。我们使用荧光显微镜实时监测了表达 G3BP1-GFP 的结肠细胞中应激颗粒的形成和解离。此外,我们还通过观察暴露于二氢辣椒素、双酚 A 和山梨醇后应激颗粒的形成,验证了已建立的结肠细胞系中的毒性监测系统。总之,我们在结肠细胞系中建立了应激颗粒报告系统,为实时监测结肠对各种化学物质的毒性提供了一种新的评估方法。
{"title":"Establishment of a stress granule reporter system for evaluating <i>in vitro</i> colon toxicity.","authors":"Namjoon Cho, Da-Min Jung, Eun-Mi Kim, Kee K Kim","doi":"10.1080/19768354.2024.2364673","DOIUrl":"10.1080/19768354.2024.2364673","url":null,"abstract":"<p><p>Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, <i>in vitro</i> monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the <i>G3BP1</i> gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"315-325"},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2363601
Si Won Jang, Ye Rim Kim, Jae Ho Han, Hoon Jang, Hyun Woo Choi
The system forming ovarian follicles is developed to investigate in vitro folliculogenesis in a confined environment to obtain functional oocytes. Several studies have reported the successful generation of fully functional oocytes using mouse-induced pluripotent stem cells (iPSCs) and mouse female germline stem cells (fGSCs) as sources of stem cells for in vitro gametogenesis models. In addition, human oogonia have been generated through heterologous co-culture of differentiated human primordial germ cell-like cells (hPGCLCs) with mouse germline somatic cells, although oocyte formation remains challenging. Thus, studies on in vitro ovarian formation in other species are utilized as an introductory approach for in vitro mammalian gametogenesis by understanding the differences in culture systems between species and underlying mechanisms. In this study, we optimized the method of the entire oogenesis process from rat embryonic gonads. We identified well-maturated MII oocytes from rat gonads using our constructed method. Moreover, we generated the first successful in vitro reconstitution of xenogeneic follicles from mouse primordial germ cells (PGCs) and rat somatic cells. We also established an appropriate culture medium and incubation period for xenogeneic follicles. This method will be helpful in studies of xenogeneic follicular development and oocyte generation.
开发形成卵巢滤泡的系统是为了研究在密闭环境中的体外卵泡生成,以获得功能性卵母细胞。一些研究报告称,利用小鼠诱导多能干细胞(iPSCs)和小鼠雌性生殖干细胞(fGSCs)作为体外配子生成模型的干细胞来源,成功生成了全功能卵母细胞。此外,已分化的人类原始生殖细胞样细胞(hPGCLCs)与小鼠生殖系体细胞异源共培养产生了人类卵原细胞,但卵母细胞的形成仍具有挑战性。因此,对其他物种体外卵巢形成的研究可作为哺乳动物体外配子发生的入门方法,了解不同物种培养系统的差异和内在机制。在这项研究中,我们优化了大鼠胚胎性腺整个卵子发生过程的方法。利用我们构建的方法,我们从大鼠性腺中鉴定出了饱和度良好的 MII 卵母细胞。此外,我们首次成功地从小鼠原始生殖细胞(PGCs)和大鼠体细胞体外重组了异种卵泡。我们还为异种卵泡建立了合适的培养基和培养期。这种方法将有助于异种卵泡发育和卵母细胞生成的研究。
{"title":"Generation of mouse and rat xenogeneic ovaries <i>in vitro</i> for production of mouse oocyte.","authors":"Si Won Jang, Ye Rim Kim, Jae Ho Han, Hoon Jang, Hyun Woo Choi","doi":"10.1080/19768354.2024.2363601","DOIUrl":"10.1080/19768354.2024.2363601","url":null,"abstract":"<p><p>The system forming ovarian follicles is developed to investigate <i>in vitro</i> folliculogenesis in a confined environment to obtain functional oocytes. Several studies have reported the successful generation of fully functional oocytes using mouse-induced pluripotent stem cells (iPSCs) and mouse female germline stem cells (fGSCs) as sources of stem cells for <i>in vitro</i> gametogenesis models. In addition, human oogonia have been generated through heterologous co-culture of differentiated human primordial germ cell-like cells (hPGCLCs) with mouse germline somatic cells, although oocyte formation remains challenging. Thus, studies on <i>in vitro</i> ovarian formation in other species are utilized as an introductory approach for <i>in vitro</i> mammalian gametogenesis by understanding the differences in culture systems between species and underlying mechanisms. In this study, we optimized the method of the entire oogenesis process from rat embryonic gonads. We identified well-maturated MII oocytes from rat gonads using our constructed method. Moreover, we generated the first successful <i>in vitro</i> reconstitution of xenogeneic follicles from mouse primordial germ cells (PGCs) and rat somatic cells. We also established an appropriate culture medium and incubation period for xenogeneic follicles. This method will be helpful in studies of xenogeneic follicular development and oocyte generation.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"303-314"},"PeriodicalIF":2.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2360740
Yoonhee Kim, Ruiying Ma, Yinhua Zhang, Hyae Rim Kang, U Suk Kim, Kihoon Han
The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.
{"title":"Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice.","authors":"Yoonhee Kim, Ruiying Ma, Yinhua Zhang, Hyae Rim Kang, U Suk Kim, Kihoon Han","doi":"10.1080/19768354.2024.2360740","DOIUrl":"10.1080/19768354.2024.2360740","url":null,"abstract":"<p><p>The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the <i>CYFIP2</i> gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old <i>Cyfip2</i> heterozygous mice but not of age-matched CA1 pyramidal neuron-specific <i>Cyfip2</i> conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in <i>Cyfip2</i> cKO mice is merely delayed compared to <i>Cyfip2</i> heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old <i>Cyfip2</i> cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of <i>Cyfip2</i> cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of <i>Cyfip2</i> cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of <i>Cyfip2</i> cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"294-302"},"PeriodicalIF":2.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2353159
Joonha Lee, MinHyeong Lee, Jiyoon Kim, Eun-Gyung Cho, Chungho Kim
Extracellular vesicles (EVs), transporting diverse cellular components, play a crucial role in intercellular communication in numerous physiological and pathological processes. EVs have also been recognized as a drug delivery platform for therapeutic purposes and cell-free regenerative medicine. While various approaches have focused on increasing EV production for efficient use therapeutic use of EVs, enhancing the quality of EVs, such as ensuring efficient uptake by their target cells, has not been widely explored. In this study, we linked a negative membrane curvature-forming inverse BAR (IBAR) domain with an integrin β tail-binding talin F3 domain to create the IBAR-F3 fusion protein. We observed that IBAR-F3 can trigger filopodia-like membrane protrusions and attract integrins to those protrusion-rich regions, when expressed in Chinese hamster ovary cells expressing integrin αIIbβ3. Surprisingly, the expression of IBAR-F3 also induced a robust production of EVs, which were then efficiently taken up by nearby cells in an integrin-dependent manner. Moreover, IBAR triggered integrin activation, presumably by inducing negative membrane curvature that likely disrupts the interaction between the integrin α and β transmembrane domain. Therefore, we suggest that IBAR-F3 should be utilized to promote both EV production and efficient uptake mediated by integrins. Furthermore, the negative curvature-inducing integrin activation suggests that integrins on EVs can be activated by the nanoscale change in the curvature of the EV without the need for conventional machinery to activate integrin inside the EVs.
细胞外囊泡(EVs)运输多种细胞成分,在许多生理和病理过程中的细胞间通讯中发挥着至关重要的作用。EVs 还被认为是一种用于治疗和无细胞再生医学的药物输送平台。虽然各种方法都侧重于提高 EVs 的产量,以有效利用 EVs 进行治疗,但提高 EVs 的质量,如确保其靶细胞的有效吸收,尚未得到广泛探讨。在这项研究中,我们将负膜曲率形成的反向 BAR(IBAR)结构域与整合素 β 尾部结合的 talin F3 结构域连接起来,形成了 IBAR-F3 融合蛋白。我们观察到,当在表达整合素αⅡbβ3的中国仓鼠卵巢细胞中表达时,IBAR-F3能引发丝状膜突起,并吸引整合素到这些突起丰富的区域。令人惊讶的是,IBAR-F3的表达还能诱导EV的大量产生,然后以整合素依赖的方式被附近的细胞有效吸收。此外,IBAR 可能通过诱导负膜弯曲而引发整合素活化,这种负膜弯曲可能会破坏整合素 α 和 β 跨膜结构域之间的相互作用。因此,我们建议利用 IBAR-F3 促进整合素介导的 EV 生成和有效摄取。此外,负曲率诱导整合素激活表明,EV 上的整合素可以通过 EV 的纳米级曲率变化激活,而不需要传统的机制来激活 EV 内部的整合素。
{"title":"Producing highly effective extracellular vesicles using IBAR and talin F3 domain fusion.","authors":"Joonha Lee, MinHyeong Lee, Jiyoon Kim, Eun-Gyung Cho, Chungho Kim","doi":"10.1080/19768354.2024.2353159","DOIUrl":"10.1080/19768354.2024.2353159","url":null,"abstract":"<p><p>Extracellular vesicles (EVs), transporting diverse cellular components, play a crucial role in intercellular communication in numerous physiological and pathological processes. EVs have also been recognized as a drug delivery platform for therapeutic purposes and cell-free regenerative medicine. While various approaches have focused on increasing EV production for efficient use therapeutic use of EVs, enhancing the quality of EVs, such as ensuring efficient uptake by their target cells, has not been widely explored. In this study, we linked a negative membrane curvature-forming inverse BAR (IBAR) domain with an integrin β tail-binding talin F3 domain to create the IBAR-F3 fusion protein. We observed that IBAR-F3 can trigger filopodia-like membrane protrusions and attract integrins to those protrusion-rich regions, when expressed in Chinese hamster ovary cells expressing integrin αIIbβ3. Surprisingly, the expression of IBAR-F3 also induced a robust production of EVs, which were then efficiently taken up by nearby cells in an integrin-dependent manner. Moreover, IBAR triggered integrin activation, presumably by inducing negative membrane curvature that likely disrupts the interaction between the integrin α and β transmembrane domain. Therefore, we suggest that IBAR-F3 should be utilized to promote both EV production and efficient uptake mediated by integrins. Furthermore, the negative curvature-inducing integrin activation suggests that integrins on EVs can be activated by the nanoscale change in the curvature of the EV without the need for conventional machinery to activate integrin inside the EVs.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"283-293"},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2347538
Ju Young Lee, Jongkeun Park, Dongwan Hong
Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To devise more effective treatments for GBM, genetic characteristics must be considered in addition to pre-existing treatments. We performed an integrative analysis with heterogeneous GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. We found that poor prognosis was induced by co-upregulation of heat shock protein family A member 5 (HSPA5) and fibroblast growth factor receptor 1 (FGFR1). Co-up regulation of these two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. Furthermore, we found this newly discovered subtype was correlated with homologous recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies for combination therapy.
{"title":"HSPA5 and FGFR1 genes in the mesenchymal subtype of glioblastoma can improve a treatment efficacy.","authors":"Ju Young Lee, Jongkeun Park, Dongwan Hong","doi":"10.1080/19768354.2024.2347538","DOIUrl":"10.1080/19768354.2024.2347538","url":null,"abstract":"<p><p>Tyrosine kinase inhibitors (TKIs) have emerged as a potential treatment strategy for glioblastoma multiforme (GBM). However, their efficacy is limited by various drug resistance mechanisms. To devise more effective treatments for GBM, genetic characteristics must be considered in addition to pre-existing treatments. We performed an integrative analysis with heterogeneous GBM datasets of genomic, transcriptomic, and proteomic data from DepMap, TCGA and CPTAC. We found that poor prognosis was induced by co-upregulation of heat shock protein family A member 5 (<i>HSPA5</i>) and fibroblast growth factor receptor 1 (<i>FGFR1</i>). Co-up regulation of these two genes could regulate the PI3K/AKT pathway. GBM cell lines with co-upregulation of these two genes showed higher drug sensitivity to PI3K inhibitors. In the mesenchymal subtype, the co-upregulation of FGFR1 and HSPA5 resulted in the most malignant subtype of GBM. Furthermore, we found this newly discovered subtype was correlated with homologous recombination deficiency (HRD) In conclusion, we discovered novel druggable candidates within the group exhibiting co-upregulation of these two genes in GBM, suggest potential strategies for combination therapy.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"216-227"},"PeriodicalIF":2.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2350736
Yam Prasad Aryal, Sanjiv Neupane, Hee-Jin Kwak, Chang-Hyeon An, Wern-Joo Sohn, Hitoshi Yamamoto, Tae-Yub Kwon, Bong-Ki Min, Jae-Young Kim, Sung-Jin Cho
Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically Hirudo nipponia and Haemadipsa rjukjuana, was revealed, which showed sharp and pointed teeth along the apex of three jaws. Understanding conserved signaling regulations among analogous organs is crucial for uncovering the underlying mechanisms during organogenesis. Therefore, to shed light on the evolutionary perspective of odontogenesis to some extent, we conducted de novo transcriptome analyses using embryonic mouse tooth germs, Hirudo teeth, and Helobdella proboscises to identify conserved signaling molecules involved in tooth development. The selection criteria were particularly based on the presence of tooth-related genes in mice, Hirudo teeth, and Helobdella proboscis, wherein 4113 genes were commonly expressed in all three specimens. Furthermore, the chemical nature of leech teeth was also examined via TEM-EDS to compare the chemical composition with vertebrate teeth. The examination of tissue-specific genetic information and chemical nature between leeches and mice revealed chemical similarities between leech and mice teeth, as well as conserved signaling molecules involved in tooth formation, including Ptpro, Prickle2, and Wnt16. Based on our findings, we propose that leech teeth express signaling molecules conserved in mice and these conserved tooth-specific signaling for dental hard tissue formation in mice would corresponds to the structural formation of the toothed jaw in leeches.
{"title":"Unraveling the structure, chemical composition, and conserved signaling in leech teeth.","authors":"Yam Prasad Aryal, Sanjiv Neupane, Hee-Jin Kwak, Chang-Hyeon An, Wern-Joo Sohn, Hitoshi Yamamoto, Tae-Yub Kwon, Bong-Ki Min, Jae-Young Kim, Sung-Jin Cho","doi":"10.1080/19768354.2024.2350736","DOIUrl":"10.1080/19768354.2024.2350736","url":null,"abstract":"<p><p>Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically <i>Hirudo nipponia</i> and <i>Haemadipsa rjukjuana</i>, was revealed, which showed sharp and pointed teeth along the apex of three jaws. Understanding conserved signaling regulations among analogous organs is crucial for uncovering the underlying mechanisms during organogenesis. Therefore, to shed light on the evolutionary perspective of odontogenesis to some extent, we conducted de novo transcriptome analyses using embryonic mouse tooth germs, <i>Hirudo</i> teeth, and <i>Helobdella</i> proboscises to identify conserved signaling molecules involved in tooth development. The selection criteria were particularly based on the presence of tooth-related genes in mice, <i>Hirudo</i> teeth, and <i>Helobdella</i> proboscis, wherein 4113 genes were commonly expressed in all three specimens. Furthermore, the chemical nature of leech teeth was also examined via TEM-EDS to compare the chemical composition with vertebrate teeth. The examination of tissue-specific genetic information and chemical nature between leeches and mice revealed chemical similarities between leech and mice teeth, as well as conserved signaling molecules involved in tooth formation, including <i>Ptpro</i>, <i>Prickle2</i>, and <i>Wnt16</i>. Based on our findings, we propose that leech teeth express signaling molecules conserved in mice and these conserved tooth-specific signaling for dental hard tissue formation in mice would corresponds to the structural formation of the toothed jaw in leeches.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"272-282"},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}