Pub Date : 2024-05-11eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2349758
Namjoon Cho, Yong-Eun Kim, Yunkyeong Lee, Dong Wook Choi, Chungoo Park, Jung-Hwan Kim, Keun Il Kim, Kee K Kim
The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.
环指蛋白 113A(RNF113A)是一种 E3 泛素连接酶,也是剪接体的一个亚基。RNF113A 基因突变与 X 连锁毛滴虫营养不良症(TTD)有关。然而,RNF113A 在细胞中的作用在很大程度上仍不为人所知。在这项研究中,我们利用 RNA 测序技术对 RNF113A 基因敲除(KO)的 HeLa 细胞进行了转录组分析,发现 NRF2 通路相关基因上调。进一步分析证实,RNF113A KO促进了NRF2蛋白的核定位,并提高了NRF2靶基因的mRNA水平。RNF113A KO细胞在H2O2处理后表现出高水平的细胞内活性氧(ROS),对细胞死亡的抵抗力下降。此外,RNF113A KO 细胞在亚砷酸盐诱导的氧化应激下更敏感地形成应激颗粒(SGs)。此外,RNF113A KO 细胞表现出谷胱甘肽水平下降,这可能是由于 GLUT1 表达水平降低,导致葡萄糖摄取反应减少和细胞内葡萄糖水平降低。这些变化可能导致 ROS 清除活性降低。综上所述,我们的研究结果表明,RNF113A 的缺失促进了氧化应激介导的 NRF2 通路的激活,为 RNF113A 相关人类疾病提供了新的见解。
{"title":"Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway.","authors":"Namjoon Cho, Yong-Eun Kim, Yunkyeong Lee, Dong Wook Choi, Chungoo Park, Jung-Hwan Kim, Keun Il Kim, Kee K Kim","doi":"10.1080/19768354.2024.2349758","DOIUrl":"10.1080/19768354.2024.2349758","url":null,"abstract":"<p><p>The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the <i>RNF113A</i> gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H<sub>2</sub>O<sub>2</sub> treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in <i>GLUT1</i> expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"261-271"},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2346981
Wen-Ting Li, Xin Jin, Sheng-Jie Song, Chong Wang, Chuang Fu, Wen Jiang, Jie Bai, Zhi-Zhou Shi
The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of β-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.
{"title":"Blocking SLC7A11 attenuates the proliferation of esophageal squamous cell carcinoma cells.","authors":"Wen-Ting Li, Xin Jin, Sheng-Jie Song, Chong Wang, Chuang Fu, Wen Jiang, Jie Bai, Zhi-Zhou Shi","doi":"10.1080/19768354.2024.2346981","DOIUrl":"10.1080/19768354.2024.2346981","url":null,"abstract":"<p><p>The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of β-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"237-250"},"PeriodicalIF":2.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2350157
Hyo-Jeong Cha, Changwan Hong
The COVID-19 pandemic has significantly impacted human life, posing serious physical and psychological threats, particularly to the elderly. While individuals of all ages are susceptible to contracting COVID-19, older people face a heightened risk of developing various diseases due to age-related immunophysiological changes and preexisting health conditions. The interplay between immune health and physical activity is believed to hold even greater significance during a pandemic. Recent findings from our research indicate that the intervention of square stepping exercise (SSE), characterized by a rhythmic and controlled stepping pattern, resulted in increased levels of Brain-Derived Neurotrophic Factor (BDNF) in the elderly. BDNF, known to influence not only nerve cells but also immune cells, suggests a potential link between SSE and immune system modulation. Consequently, this exercise regimen holds promise in counteracting age-related immunophysiological changes, fine-tuning immune responses, and mitigating the severity of potential new virus outcomes, such as 'Disease X.' This review aims to underscore the significance of integrating SSE as a home-based program, serving as a potent tool to enhance immune resilience, prepare for future potential pandemics, and empower older individuals during challenging times. Through the practice of SSE, older adults may strengthen their ability to navigate the challenges posed by pandemics and maintain a sense of control over their well-being.
{"title":"New insight of square stepping exercise in immune fine-tuning for anticipating emerging pandemics.","authors":"Hyo-Jeong Cha, Changwan Hong","doi":"10.1080/19768354.2024.2350157","DOIUrl":"10.1080/19768354.2024.2350157","url":null,"abstract":"<p><p>The COVID-19 pandemic has significantly impacted human life, posing serious physical and psychological threats, particularly to the elderly. While individuals of all ages are susceptible to contracting COVID-19, older people face a heightened risk of developing various diseases due to age-related immunophysiological changes and preexisting health conditions. The interplay between immune health and physical activity is believed to hold even greater significance during a pandemic. Recent findings from our research indicate that the intervention of square stepping exercise (SSE), characterized by a rhythmic and controlled stepping pattern, resulted in increased levels of Brain-Derived Neurotrophic Factor (BDNF) in the elderly. BDNF, known to influence not only nerve cells but also immune cells, suggests a potential link between SSE and immune system modulation. Consequently, this exercise regimen holds promise in counteracting age-related immunophysiological changes, fine-tuning immune responses, and mitigating the severity of potential new virus outcomes, such as 'Disease X.' This review aims to underscore the significance of integrating SSE as a home-based program, serving as a potent tool to enhance immune resilience, prepare for future potential pandemics, and empower older individuals during challenging times. Through the practice of SSE, older adults may strengthen their ability to navigate the challenges posed by pandemics and maintain a sense of control over their well-being.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"251-260"},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1080/19768354.2024.2347503
Jeongah Kim, Woong Sun
Biological rhythms play a crucial role in temporally regulating behavioral, physiological, and cellular processes within our bodies. One prominent example is the circadian rhythm, which enables our...
{"title":"Circadian coordination: understanding interplay between circadian clock and mitochondria","authors":"Jeongah Kim, Woong Sun","doi":"10.1080/19768354.2024.2347503","DOIUrl":"https://doi.org/10.1080/19768354.2024.2347503","url":null,"abstract":"Biological rhythms play a crucial role in temporally regulating behavioral, physiological, and cellular processes within our bodies. One prominent example is the circadian rhythm, which enables our...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"10 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30eCollection Date: 2024-01-01DOI: 10.1080/19768354.2024.2348671
Bohye Kim, Sungmoo Hong, Jeongmin Lee, Sohi Kang, Joong-Sun Kim, Chaeyong Jung, Taekyun Shin, BuHyun Youn, Changjong Moon
Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted p-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (Notch3, Gng4, Itga3, Grin2d, Hgf, Fgf11, Htr3a, and Col6a2), along with a significant downregulation of two hub genes (Itga11 and Plp1), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.
{"title":"Identifying candidate genes associated with hippocampal dysfunction in a hemiparkinsonian rat model by transcriptomic profiling.","authors":"Bohye Kim, Sungmoo Hong, Jeongmin Lee, Sohi Kang, Joong-Sun Kim, Chaeyong Jung, Taekyun Shin, BuHyun Youn, Changjong Moon","doi":"10.1080/19768354.2024.2348671","DOIUrl":"https://doi.org/10.1080/19768354.2024.2348671","url":null,"abstract":"<p><p>Parkinson's disease (PD) often results in hippocampal dysfunction, which leads to cognitive and emotional challenges and synaptic irregularities. This study attempted to assess behavioral anomalies and identify differentially expressed genes (DEGs) within the hippocampus of a hemiparkinsonian rat model to potentially uncover novel genetic candidates linked to hippocampal dysfunction. Striatal 6-hydroxydopamine (6-OHDA) infusions were performed unilaterally in the brains of adult SD rats, while dopaminergic impairments were verified in rats with 6-OHDA-lesioned striata. RNA sequencing and gene expression analysis unveiled 1018 DEGs in the ipsilateral rat hippocampus following 6-OHDA infusion: 631 genes exhibited upregulation, while 387 genes were downregulated (with FDR-adjusted <i>p</i>-value < 0.05 and absolute fold-change > 1.5). Gene ontology analysis of DEGs indicated that alterations in the hippocampi of 6-OHDA-lesioned rats were primarily associated with synaptic signaling, axon development, behavior, postsynaptic membrane, synaptic membrane, neurotransmitter receptor activity, and peptide receptor activity. The Kyoto Encyclopedia of Genes and Genomes analysis of DEGs demonstrated significant enrichment of the neuroactive ligand-receptor interaction, calcium signaling pathway, cAMP signaling pathway, axon guidance, and notch signaling pathway in rat hippocampi that had been subjected to striatal 6-OHDA infusion. STRING analysis confirmed a notable upregulation of eight hub genes (<i>Notch3</i>, <i>Gng4</i>, <i>Itga3</i>, <i>Grin2d</i>, <i>Hgf</i>, <i>Fgf11</i>, <i>Htr3a</i>, and <i>Col6a2</i>), along with a significant downregulation of two hub genes (<i>Itga11</i> and <i>Plp1</i>), as validated by reverse transcription-quantitative polymerase chain reaction. This study provides a comprehensive transcriptomic profile of the hippocampi in a hemiparkinsonian rat model, thereby offering insights into the signaling pathways underlying hippocampal dysfunction.</p>","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"28 1","pages":"198-215"},"PeriodicalIF":2.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1080/19768354.2024.2345644
Suyeon Kim, Ki Wook Lee, Yongjin Yoo, Sang Hee Park, Ji Won Lee, Suhyun Jeon, Shaginyan Illia, Pooja Joshi, Hyun Woo Park, Han-En Lo, Jimin Seo, Yeonwoo Kim, Min Chang, Tae Jin Lee, Jong Bae Seo, Sung-Hak Kim, Carlo M. Croce, Inki Kim, Sung-Suk Suh, Young-Jun Jeon
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acq...
{"title":"MiR-29 and MiR-140 regulate TRAIL-induced drug tolerance in lung cancer","authors":"Suyeon Kim, Ki Wook Lee, Yongjin Yoo, Sang Hee Park, Ji Won Lee, Suhyun Jeon, Shaginyan Illia, Pooja Joshi, Hyun Woo Park, Han-En Lo, Jimin Seo, Yeonwoo Kim, Min Chang, Tae Jin Lee, Jong Bae Seo, Sung-Hak Kim, Carlo M. Croce, Inki Kim, Sung-Suk Suh, Young-Jun Jeon","doi":"10.1080/19768354.2024.2345644","DOIUrl":"https://doi.org/10.1080/19768354.2024.2345644","url":null,"abstract":"Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acq...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-28DOI: 10.1080/19768354.2024.2345647
Kyung-Ha Lee, Jae Yeon Hwang
Ca2+ is a key secondary messenger that determines sperm motility patterns. Mammalian sperm undergo capacitation, a process to acquire fertilizing ability, in the female reproductive tract. Capacita...
{"title":"Ca2+ homeostasis and male fertility: a target for a new male contraceptive system","authors":"Kyung-Ha Lee, Jae Yeon Hwang","doi":"10.1080/19768354.2024.2345647","DOIUrl":"https://doi.org/10.1080/19768354.2024.2345647","url":null,"abstract":"Ca2+ is a key secondary messenger that determines sperm motility patterns. Mammalian sperm undergo capacitation, a process to acquire fertilizing ability, in the female reproductive tract. Capacita...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"36 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonic vibration (SV), or vibroacoustic therapy, is applied to enhance local and systemic blood circulation and alleviate pain using low-frequency sine wave vibrations. However, there is limited sci...
{"title":"Sonic vibration ameliorates inflammatory diseases via the up-regulation of IL-10","authors":"Huijeong Ahn, Eui-Man Jung, Min-Woo Cho, Meoung-Geun Shin, Jae-Yeong Choi, Geun-Shik Lee","doi":"10.1080/19768354.2024.2346598","DOIUrl":"https://doi.org/10.1080/19768354.2024.2346598","url":null,"abstract":"Sonic vibration (SV), or vibroacoustic therapy, is applied to enhance local and systemic blood circulation and alleviate pain using low-frequency sine wave vibrations. However, there is limited sci...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"26 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1080/19768354.2024.2337761
Beomgu Lee, Jong Seong Roh, Hoim Jeong, Yerin Kim, Jihyeon Lee, Changun Yun, Jiyoung Park, Da-sol Kim, Jungsoo Lee, Min Wook So, Aran Kim, Dong Hyun Sohn, Seung-Geun Lee
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by skin and internal organ fibrosis and obliterative vasculopathy. Few effective treatments are currently available for fibros...
{"title":"Ginkgo biloba extract ameliorates skin fibrosis in a bleomycin-induced mouse model of systemic sclerosis","authors":"Beomgu Lee, Jong Seong Roh, Hoim Jeong, Yerin Kim, Jihyeon Lee, Changun Yun, Jiyoung Park, Da-sol Kim, Jungsoo Lee, Min Wook So, Aran Kim, Dong Hyun Sohn, Seung-Geun Lee","doi":"10.1080/19768354.2024.2337761","DOIUrl":"https://doi.org/10.1080/19768354.2024.2337761","url":null,"abstract":"Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by skin and internal organ fibrosis and obliterative vasculopathy. Few effective treatments are currently available for fibros...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1080/19768354.2024.2338855
Saba Imdad, Jin-Hee Kim, Byunghun So, Junho Jang, Jinhan Park, Wonchung Lim, Yoon-Kwang Lee, Woo Shik Shin, Trae Hillyer, Chounghun Kang
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed...
{"title":"Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota","authors":"Saba Imdad, Jin-Hee Kim, Byunghun So, Junho Jang, Jinhan Park, Wonchung Lim, Yoon-Kwang Lee, Woo Shik Shin, Trae Hillyer, Chounghun Kang","doi":"10.1080/19768354.2024.2338855","DOIUrl":"https://doi.org/10.1080/19768354.2024.2338855","url":null,"abstract":"Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed...","PeriodicalId":7804,"journal":{"name":"Animal Cells and Systems","volume":"93 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}