Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.
{"title":"Multiple strategies of HSP antimicrobial peptide optimization to enhance antimicrobial activity","authors":"Xiaozhong Cheng, Yonghuang Zhang, Yan Zhang, Yajun Chen, Jianli Chen, Wei Wang, Guilan Zhu","doi":"10.1007/s00726-024-03428-z","DOIUrl":"10.1007/s00726-024-03428-z","url":null,"abstract":"<div><p>Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03428-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1007/s00726-024-03429-y
Yuwen Zhang, Jiting Qiu, Shouyue Sun, Xuqian Fang
Elevated concentrations of amino acids (AAs) are commonly observed in patients with nonalcoholic fatty liver disease (NAFLD). Individuals with hypopituitarism (HP) are at a heightened risk of developing NAFLD due to factors such as visceral obesity, increased insulin resistance (IR), and disturbances in lipid metabolism. However, the changes in AAs concentrations associated with HP remain poorly understood. Therefore, our study aimed to investigate whether individuals with HP, who were not receiving growth hormone replacement therapy (GHRT), exhibited altered AAs compared to controls (CTs), and whether these AAs were associated with IR, the presence of NAFLD, and the Metabolic Syndrome (MetS) score. The AAs profiles of 133 young males with HP (age: 24.5 ± 5.9; 57 with NAFLD and 76 without NAFLD) and 90 age and BMI-matched CTs were analyzed using untargeted metabolomics. The results revealed that most AAs were found to be elevated in subjects with HPs compared to CTs. Glutamate, glutamine, norleucine, and branched-chain amino acids (BCAAs) (leucine and valine) were correlated with the homeostasis model assessment of insulin resistance (HOMA-IR), with glutamate and norleucine showing independent linkage. Glutamate and proline levels were specifically associated with MetS score, while alanine and proline linked to NAFLD. Given that elevated glutamate and BCAAs levels have higher prevalence of NAFLD, we hypothesized that the changes in AAs observed in HPs may be attributed to the impact of NAFLD and IR.
非酒精性脂肪肝(NAFLD)患者体内通常会出现氨基酸(AAs)浓度升高的现象。由于内脏肥胖、胰岛素抵抗(IR)增加和脂质代谢紊乱等因素,垂体功能减退症(HP)患者罹患非酒精性脂肪肝的风险更高。然而,人们对与 HP 相关的 AAs 浓度变化仍然知之甚少。因此,我们的研究旨在调查与对照组(CTs)相比,未接受生长激素替代疗法(GHRT)的 HP 患者是否表现出 AAs 的变化,以及这些 AAs 是否与 IR、非酒精性脂肪肝的存在和代谢综合征(MetS)评分相关。研究人员采用非靶向代谢组学方法分析了133名患有HP的年轻男性(年龄:24.5 ± 5.9;57名患有非酒精性脂肪肝,76名没有非酒精性脂肪肝)和90名年龄和体重指数相匹配的CT的AAs谱。结果显示,与 CTs 相比,HPs 患者的大多数 AAs 都升高了。谷氨酸、谷氨酰胺、正亮氨酸和支链氨基酸(BCAAs)(亮氨酸和缬氨酸)与胰岛素抵抗稳态模型评估(HOMA-IR)相关,谷氨酸和正亮氨酸显示出独立的联系。谷氨酸和脯氨酸水平与 MetS 评分特别相关,而丙氨酸和脯氨酸则与非酒精性脂肪肝相关。鉴于谷氨酸和 BCAAs 水平升高会导致非酒精性脂肪肝发病率升高,我们假设在 HPs 中观察到的 AAs 变化可能是由于非酒精性脂肪肝和 IR 的影响。
{"title":"Altered amino acid levels in young hypopituitarism: impact of NAFLD and insulin resistance","authors":"Yuwen Zhang, Jiting Qiu, Shouyue Sun, Xuqian Fang","doi":"10.1007/s00726-024-03429-y","DOIUrl":"10.1007/s00726-024-03429-y","url":null,"abstract":"<div><p>Elevated concentrations of amino acids (AAs) are commonly observed in patients with nonalcoholic fatty liver disease (NAFLD). Individuals with hypopituitarism (HP) are at a heightened risk of developing NAFLD due to factors such as visceral obesity, increased insulin resistance (IR), and disturbances in lipid metabolism. However, the changes in AAs concentrations associated with HP remain poorly understood. Therefore, our study aimed to investigate whether individuals with HP, who were not receiving growth hormone replacement therapy (GHRT), exhibited altered AAs compared to controls (CTs), and whether these AAs were associated with IR, the presence of NAFLD, and the Metabolic Syndrome (MetS) score. The AAs profiles of 133 young males with HP (age: 24.5 ± 5.9; 57 with NAFLD and 76 without NAFLD) and 90 age and BMI-matched CTs were analyzed using untargeted metabolomics. The results revealed that most AAs were found to be elevated in subjects with HPs compared to CTs. Glutamate, glutamine, norleucine, and branched-chain amino acids (BCAAs) (leucine and valine) were correlated with the homeostasis model assessment of insulin resistance (HOMA-IR), with glutamate and norleucine showing independent linkage. Glutamate and proline levels were specifically associated with MetS score, while alanine and proline linked to NAFLD. Given that elevated glutamate and BCAAs levels have higher prevalence of NAFLD, we hypothesized that the changes in AAs observed in HPs may be attributed to the impact of NAFLD and IR.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03429-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1007/s00726-024-03423-4
Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson
Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of Cth–/– mice. We observed that clinical and histological parameters are ameliorated in Cth-deficient mice compared to wild-type animals. However, Cth deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene Slc7a11 encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in Cth–/– mice compared to both WT and Slc7a11–/– mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.
{"title":"The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice","authors":"Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson","doi":"10.1007/s00726-024-03423-4","DOIUrl":"10.1007/s00726-024-03423-4","url":null,"abstract":"<div><p>Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen <i>Helicobacter pylori</i>. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of <i>Cth</i><sup>–/–</sup> mice. We observed that clinical and histological parameters are ameliorated in <i>Cth</i>-deficient mice compared to wild-type animals. However, <i>Cth</i> deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene <i>Slc7a11</i> encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in <i>Cth</i><sup>–/–</sup> mice compared to both WT and <i>Slc7a11</i><sup>–/–</sup> mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03423-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1007/s00726-024-03424-3
Sebastian Jakobsen, Maria Pedersen, Carsten Uhd Nielsen
The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated 3H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated 3H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.
{"title":"Structure-activity relationship of amino acid analogs to probe the binding pocket of sodium-coupled neutral amino acid transporter SNAT2","authors":"Sebastian Jakobsen, Maria Pedersen, Carsten Uhd Nielsen","doi":"10.1007/s00726-024-03424-3","DOIUrl":"10.1007/s00726-024-03424-3","url":null,"abstract":"<div><p>The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated <sup>3</sup>H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated <sup>3</sup>H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03424-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s00726-024-03422-5
Sen Yang, Piao Xu
Tumor homing peptides (THPs) have a distinctive capacity to specifically attach to tumor cells, providing a promising approach for targeted cancer treatment and detection. Although THPs have the potential for significant impact, their detection by conventional methods is both time-consuming and expensive. To tackle this issue, we provide LLM4THP, an innovative computational approach that utilizes large language models (LLMs) to quickly and effectively detect THPs. LLM4THP utilizes two protein LLMs, ESM2 and Prot_T5_XL_UniRef50, to encode peptide sequences. This allows for the capture of complex patterns and relationships within the peptide data. In addition, we utilize inherent sequence characteristics such as Amino Acid Composition (AAC), Pseudo Amino Acid Composition (PAAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and Composition, Transition, and Distribution (CTD) to improve the representation of peptides. The RDKitDescriptors feature representation approach transforms peptide sequences into molecular objects and computes chemical characteristics, resulting in enhanced THP identification. The LLM4THP ensemble strategy incorporates various features into a two-layer learning architecture. The first layer consists of LightGBM, XGBoost, Random Forest, and Extremely Randomized Trees, which generate a set of meta results. The second layer utilizes Logistic Regression to further refine the identification of sequences as either THP or non-THP. LLM4THP exhibits exceptional performance compared to the most advanced methods, showcasing enhancements in accuracy, Matthew’s correlation coefficient, F1 score, area under the curve, and average precision. The source code and dataset can be accessed at the following URL: https://github.com/abcair/LLM4THP.
{"title":"LLM4THP: a computing tool to identify tumor homing peptides by molecular and sequence representation of large language model based on two-layer ensemble model strategy","authors":"Sen Yang, Piao Xu","doi":"10.1007/s00726-024-03422-5","DOIUrl":"10.1007/s00726-024-03422-5","url":null,"abstract":"<div><p>Tumor homing peptides (THPs) have a distinctive capacity to specifically attach to tumor cells, providing a promising approach for targeted cancer treatment and detection. Although THPs have the potential for significant impact, their detection by conventional methods is both time-consuming and expensive. To tackle this issue, we provide LLM4THP, an innovative computational approach that utilizes large language models (LLMs) to quickly and effectively detect THPs. LLM4THP utilizes two protein LLMs, ESM2 and Prot_T5_XL_UniRef50, to encode peptide sequences. This allows for the capture of complex patterns and relationships within the peptide data. In addition, we utilize inherent sequence characteristics such as Amino Acid Composition (AAC), Pseudo Amino Acid Composition (PAAC), Amphiphilic Pseudo Amino Acid Composition (APAAC), and Composition, Transition, and Distribution (CTD) to improve the representation of peptides. The RDKitDescriptors feature representation approach transforms peptide sequences into molecular objects and computes chemical characteristics, resulting in enhanced THP identification. The LLM4THP ensemble strategy incorporates various features into a two-layer learning architecture. The first layer consists of LightGBM, XGBoost, Random Forest, and Extremely Randomized Trees, which generate a set of meta results. The second layer utilizes Logistic Regression to further refine the identification of sequences as either THP or non-THP. LLM4THP exhibits exceptional performance compared to the most advanced methods, showcasing enhancements in accuracy, Matthew’s correlation coefficient, F1 score, area under the curve, and average precision. The source code and dataset can be accessed at the following URL: https://github.com/abcair/LLM4THP.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03422-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D-Alanine, a rare enantiomer of alanine, can potentially alleviate the worsening of viral infections and maintain circadian rhythm. This study aimed to analyze the kinetics of D-Alanine upon oral intake. Five healthy volunteers were administered D-Alanine as a single oral dose at 11,236 or 33,708 µmoL (1–3 g). Upon intake of the lower dose, the plasma level of D-Alanine reached its peak concentration of 588.4 ± 40.9 µM with a peak time of 0.60 ± 0.06 h. The compartment model estimated the clearance of D-Alanine at 12.5 ± 0.3 L/h, or 208 ± 5 mL/min, distribution volume of 8.3 ± 0.7 L and half-life of 0.46 ± 0.04 h, suggesting a rapid clearance of D-Alanine. The peak concentration and area under the curve increased proportionally upon intake of the higher dose, while the clearance, distribution volume and half-life did not. The urinary ratio of D-Alanine per sum of D- and L-Alanine reached its peak of nearly 100%, followed by a slow decline. The peak time of the urinary ratio was 1.15 ± 0.15 h, showing a time lag of blood to urine excretion. Fractional excretion, a ratio of the clearance of a substance per a standard molecule in kidney, of D-Alanine increased from 14.0 ± 5.8% to 64.5 ± 10.3%; the latter corresponded to the urinary clearance of D-Alanine as about 77 mL/min for an adult, with a peak time of 1.90 ± 0.56 h. D-Alanine was quickly absorbed and appeared in blood, followed by urinary excretion. This kinetic analysis increases our fundamental knowledge of the oral intake of D-Alanine for the chronic dosing.