Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
随着工业的发展,环境污染不断加剧,已成为人类健康的威胁。大气颗粒物(PM)于2013年被国际癌症研究机构定为1类致癌物,是一种新兴的全球环境风险因素,也是心血管和呼吸系统疾病相关死亡的主要原因。可吸入颗粒物是一种由高活性有机物、化学物质和金属成分组成的复合物,主要导致活性氧(ROS)的过度产生,可导致 DNA 和细胞损伤、内质网应激、炎症反应、动脉粥样硬化和气道重塑,从而导致各种疾病和感染的易感性增加和病情加重。可吸入颗粒物对人体健康的影响因颗粒大小、物理和化学特性、来源和暴露期而异。小于 5 μm 的可吸入颗粒物可以穿透并积聚在肺泡和循环系统中,对呼吸系统、心血管系统、皮肤和大脑造成有害影响。在这篇综述中,我们阐述了可吸入颗粒物介导的 ROS 细胞损伤、氧化应激和炎症反应与主要器官健康影响的关系和机制,并全面讨论了可吸入颗粒物的危害。
{"title":"Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation.","authors":"Eun Yeong Lim, Gun-Dong Kim","doi":"10.3390/antiox13101256","DOIUrl":"10.3390/antiox13101256","url":null,"abstract":"<p><p>Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jackson K Nkoana, Malose J Mphahlele, Garland K More, Yee Siew Choong
The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (2a-f) and the corresponding flavone derivatives (3a-f) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound 3c was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone 2a and flavone derivatives 3a, 3c and 3e exhibited relatively high inhibitory activity against the MCF-7 cells with IC50 values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones 2a and 2c exhibited significant cytotoxicity against the A549 cells with IC50 values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone 3c exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC50 values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC50 = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC50 = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.
{"title":"Exploring the 3,5-Dibromo-4,6-dimethoxychalcones and Their Flavone Derivatives as Dual α-Glucosidase and α-Amylase Inhibitors with Antioxidant and Anticancer Potential.","authors":"Jackson K Nkoana, Malose J Mphahlele, Garland K More, Yee Siew Choong","doi":"10.3390/antiox13101255","DOIUrl":"10.3390/antiox13101255","url":null,"abstract":"<p><p>The rising levels of type 2 diabetes mellitus (T2DM) and the poor medical effects of the commercially available antidiabetic drugs necessitate the development of potent analogs to treat this multifactorial metabolic disorder. It has been demonstrated that targeting two or more biochemical targets associated with the onset and progression of diabetes along with oxidative stress and/or cancer could be a significant strategy for treating complications related to this metabolic disorder. The 3,5-dibromo-4,6-dimethoxychalcones (<b>2a</b>-<b>f</b>) and the corresponding flavone derivatives (<b>3a</b>-<b>f</b>) were synthesized and characterized using spectroscopic (NMR, HR-MS and FT-IR) techniques. The inhibitory effect of both series of compounds against α-glucosidase and α-amylase was evaluated in vitro through enzymatic assays. Selected compounds were also evaluated for potential to activate or inhibit superoxide dismutase. Compound <b>3c</b> was selected as a representative model for the flavone series and evaluated spectrophotometrically for potential to coordinate Cu(II) and/or Zn(II) ions implicated in the metal-catalyzed free radical generation. A plausible mechanism for metal-chelation of the test compounds is presented. Furthermore, the most active compounds from each series against the test carbohydrate-hydrolyzing enzymes were selected and evaluated for their antigrowth effect on the human breast (MCF-7) and lung (A549) cancer cell lines and for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The parent chalcone <b>2a</b> and flavone derivatives <b>3a</b>, <b>3c</b> and <b>3e</b> exhibited relatively high inhibitory activity against the MCF-7 cells with IC<sub>50</sub> values of 4.12 ± 0.55, 8.50 ± 0.82, 5.10 ± 0.61 and 6.96 ± 0.66 μM, respectively. The chalcones <b>2a</b> and <b>2c</b> exhibited significant cytotoxicity against the A549 cells with IC<sub>50</sub> values of 7.40 ± 0.67 and 9.68 ± 0.80 μM, respectively. Only flavone <b>3c</b> exhibited relatively strong and comparable cytotoxicity against the MCF-7 and A549 cell lines with IC<sub>50</sub> values of 6.96 ± 0.66 and 6.42 ± 0.79 μM, respectively. Both series of compounds exhibited strong activity against the MCF-7 and A549 cell lines compared to the analogous quercetin (IC<sub>50</sub> = 35.40 ± 1.78 and 35.38 ± 1.78 μM, respectively) though moderate compared to nintedanib (IC<sub>50</sub> = 0.53 ± 0.11 and 0.74 ± 0.15 μM, respectively). The test compounds generally exhibited reduced cytotoxicity against the Vero cells compared to this anticancer drug. Molecular docking revealed strong alignment of the test compounds with the enzyme backbone to engage in hydrogen bonding interaction/s and hydrophobic contacts with the residues in the active sites of α-glucosidase and α-amylase. The test compounds possess favorable drug-likeness properties, supporting their potential as therapeutic candidates against T2DM.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the effects of solid-state fermentation with Clostridium butyricum on the microstructure of wheat bran, the release of dietary fiber and phenolic compounds, and antioxidant capacity. Compared with unfermented wheat bran, insoluble dietary fiber and phytic acid content decreased, whereas soluble dietary fiber and water-extractable arabinoxylan content increased in C. butyricum culture. Because of the increased release of phenolic compounds, such as ferulic acid and apigenin, and organic acids, such as isobutyric acid, the antioxidant capacity of the culture was considerably improved. Furthermore, the culture of C. butyricum treated with dextran sulfate sodium-induced ulcerative colitis in mice enhanced the expression of intestinal mucus and tight-junction proteins, modulating the gut microbiota structure, increasing the levels of short-chain fatty acids in the intestine, and restoring the essential functions of the gut microbiota. These anti-inflammatory effects stemmed from the combined action of various effective components.
{"title":"Solid-State Fermentation of Wheat Bran with <i>Clostridium butyricum</i>: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice.","authors":"Heng Zhang, Min Zhang, Xin Zheng, Xiaofang Xu, Jiawen Zheng, Yuanliang Hu, Yuxia Mei, Yangyang Liu, Yunxiang Liang","doi":"10.3390/antiox13101259","DOIUrl":"10.3390/antiox13101259","url":null,"abstract":"<p><p>This study investigated the effects of solid-state fermentation with <i>Clostridium butyricum</i> on the microstructure of wheat bran, the release of dietary fiber and phenolic compounds, and antioxidant capacity. Compared with unfermented wheat bran, insoluble dietary fiber and phytic acid content decreased, whereas soluble dietary fiber and water-extractable arabinoxylan content increased in <i>C. butyricum</i> culture. Because of the increased release of phenolic compounds, such as ferulic acid and apigenin, and organic acids, such as isobutyric acid, the antioxidant capacity of the culture was considerably improved. Furthermore, the culture of <i>C. butyricum</i> treated with dextran sulfate sodium-induced ulcerative colitis in mice enhanced the expression of intestinal mucus and tight-junction proteins, modulating the gut microbiota structure, increasing the levels of short-chain fatty acids in the intestine, and restoring the essential functions of the gut microbiota. These anti-inflammatory effects stemmed from the combined action of various effective components.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Sang Ju Lee, Ji-Young Kim, Seung Jun Oh, Hai-Jeon Yoon, Bom Sahn Kim, Byung Seok Moon
Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications. Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers, facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission tomography and single photon emission computed tomography, for diagnostic purposes. This review includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or cystine/glutamate transporter.
活性氧(ROS)是在正常的细胞能量生成过程中产生的,在维持细胞功能方面起着至关重要的作用。然而,过量的 ROS 会损伤细胞和组织,导致心血管、炎症和神经退行性疾病等疾病的发生。这篇综述探讨了核医学成像技术在检测 ROS 方面的潜力,并对这些应用中使用的各种放射性药物进行了评估。放射性药物是用放射性核素标记的药物,可与特定的生物标记物结合,便于使用核医学设备(即正电子发射断层扫描和单光子发射计算机断层扫描)在体内对其进行识别,从而达到诊断目的。这篇综述对 PubMed 进行了全面搜索,内容包括荧光探针和抗氧化维生素 C 类似物等放射性药物,以及针对线粒体复合体 I 或胱氨酸/谷氨酸转运体的生物标记物。
{"title":"Innovations in Nuclear Medicine Imaging for Reactive Oxygen Species: Applications and Radiopharmaceuticals.","authors":"Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Sang Ju Lee, Ji-Young Kim, Seung Jun Oh, Hai-Jeon Yoon, Bom Sahn Kim, Byung Seok Moon","doi":"10.3390/antiox13101254","DOIUrl":"10.3390/antiox13101254","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications. Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers, facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission tomography and single photon emission computed tomography, for diagnostic purposes. This review includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or cystine/glutamate transporter.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coenzyme Q10 (CoQ10) is composed of a benzoquinone ring and an isoprenoid side chain attached to carbon 3 of the ring [...].
辅酶 Q10(CoQ10)由一个苯醌环和连接在该环碳 3 上的异戊二烯侧链组成 [...] 。
{"title":"The Ubiquitous and Multifaceted Coenzyme Q.","authors":"Luca Tiano, Plácido Navas","doi":"10.3390/antiox13101261","DOIUrl":"10.3390/antiox13101261","url":null,"abstract":"<p><p>Coenzyme Q<sub>10</sub> (CoQ<sub>10</sub>) is composed of a benzoquinone ring and an isoprenoid side chain attached to carbon 3 of the ring [...].</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee Jin Jung, Hyeon Seo Park, Hye Jin Kim, Hye Soo Park, Yujin Park, Pusoon Chun, Hae Young Chung, Hyung Ryong Moon
2-Mercaptomethylbenzo[d]imidazole (2-MMBI) derivatives were designed and synthesized as tyrosinase (TYR) chelators using 2-mercaptomethylimidazole scaffolds. Seven of the ten 2-MMBI derivatives exhibited stronger inhibition of mushroom TYR activity than kojic acid. Their ability to chelate copper ions was demonstrated through experiments using the copper chelator pyrocatechol violet and assays measuring TYR activity in the presence or absence of exogenous CuSO4. The inhibition mechanisms of derivatives 1, 3, 8, and 9, which showed excellent TYR inhibitory activity, were elucidated through kinetic studies and supported by the docking simulation results. Derivatives 3, 7, 8, and 10 significantly inhibited cellular TYR activity and melanin production in B16F10 cells in a dose-dependent manner, with stronger potency than kojic acid. Furthermore, in situ, derivatives 7 and 10 showed stronger inhibitory effects on B16F10 cell TYR activity than kojic acid. Six derivatives, including 8, showed highly potent depigmentation in zebrafish larvae, outpacing kojic acid even at 200-670 times lower concentrations. Additionally, all derivatives could scavenge for reactive oxygen species without causing cytotoxicity in epidermal cells. These results suggested that 2-MMBI derivatives are promising anti-melanogenic agents.
{"title":"Design, Synthesis, and Anti-Melanogenic Activity of 2-Mercaptomethylbenzo[<i>d</i>]imidazole Derivatives Serving as Tyrosinase Inhibitors: An In Silico, In Vitro, and In Vivo Exploration.","authors":"Hee Jin Jung, Hyeon Seo Park, Hye Jin Kim, Hye Soo Park, Yujin Park, Pusoon Chun, Hae Young Chung, Hyung Ryong Moon","doi":"10.3390/antiox13101248","DOIUrl":"10.3390/antiox13101248","url":null,"abstract":"<p><p>2-Mercaptomethylbenzo[<i>d</i>]imidazole (2-MMBI) derivatives were designed and synthesized as tyrosinase (TYR) chelators using 2-mercaptomethylimidazole scaffolds. Seven of the ten 2-MMBI derivatives exhibited stronger inhibition of mushroom TYR activity than kojic acid. Their ability to chelate copper ions was demonstrated through experiments using the copper chelator pyrocatechol violet and assays measuring TYR activity in the presence or absence of exogenous CuSO<sub>4</sub>. The inhibition mechanisms of derivatives <b>1</b>, <b>3</b>, <b>8</b>, and <b>9</b>, which showed excellent TYR inhibitory activity, were elucidated through kinetic studies and supported by the docking simulation results. Derivatives <b>3</b>, <b>7</b>, <b>8</b>, and <b>10</b> significantly inhibited cellular TYR activity and melanin production in B16F10 cells in a dose-dependent manner, with stronger potency than kojic acid. Furthermore, in situ, derivatives <b>7</b> and <b>10</b> showed stronger inhibitory effects on B16F10 cell TYR activity than kojic acid. Six derivatives, including <b>8</b>, showed highly potent depigmentation in zebrafish larvae, outpacing kojic acid even at 200-670 times lower concentrations. Additionally, all derivatives could scavenge for reactive oxygen species without causing cytotoxicity in epidermal cells. These results suggested that 2-MMBI derivatives are promising anti-melanogenic agents.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingyan Li, Francesco Buonfiglio, Ying Zeng, Norbert Pfeiffer, Adrian Gericke
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
{"title":"Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon?","authors":"Jingyan Li, Francesco Buonfiglio, Ying Zeng, Norbert Pfeiffer, Adrian Gericke","doi":"10.3390/antiox13101249","DOIUrl":"10.3390/antiox13101249","url":null,"abstract":"<p><p>Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant Scutellaria baicalensis Georgi, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body Glp1r ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca2+/CaMKII-AMPK-GLUT4 signal pathway.
{"title":"Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner.","authors":"Na Liu, Xin Cui, Tingli Guo, Xiaotong Wei, Yuzhuo Sun, Jieyun Liu, Yangyang Zhang, Weina Ma, Wenhui Yan, Lina Chen","doi":"10.3390/antiox13101246","DOIUrl":"10.3390/antiox13101246","url":null,"abstract":"<p><p>Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant <i>Scutellaria baicalensis Georgi</i>, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body <i>Glp1r</i> ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca<sup>2+</sup>/CaMKII-AMPK-GLUT4 signal pathway.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (v/v) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.
{"title":"Physiological and Microstructure Analysis Reveals the Mechanism by Which Formic Acid Delays Postharvest Physiological Deterioration of Cassava.","authors":"Yannian Che, Zhongping Ding, Chen Shen, Alisdair R Fernie, Xiangning Tang, Yuan Yao, Jiao Liu, Yajie Wang, Ruimei Li, Jianchun Guo","doi":"10.3390/antiox13101245","DOIUrl":"10.3390/antiox13101245","url":null,"abstract":"<p><p>Formic acid is reported to act as a food preservative and feed additive, but its effects on controlling postharvest physiological deterioration (PPD) development in cassava are unclear. In this study, we assessed the effectiveness of different concentrations of formic acid in attenuating PPD occurrence in fresh-cut cassava. The results showed that the concentration of 0.1% (<i>v</i>/<i>v</i>) formic acid could significantly delay the occurrence of PPD, and that the higher the concentration of formic acid supplied, the later the occurrence of PPD symptoms. The physiological and biochemical analysis of 0.5%-formic-acid-treated cassava slices revealed that formic acid decreased the degradation of starch, inhibited the accumulation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and water-soluble pectin in cassava slices with PPD development, and increased the activities of the antioxidant enzymes ascorbate peroxidase (APX) and glutathione reductase (GR). A microscopic observation showed that the formic acid treatment inhibited the enlargement of the intercellular space during the cassava PPD process, which suggests that the formation of an intercellular layer of the cell wall was inhibited by formic acid. This study thus revealed the mechanism used by formic acid to extend the cassava shelf life; however, a detailed evaluation of the possible side effects on, for example, the cyanide content will be needed to categorically ensure the safety of this method.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iván Jesús Jiménez-Pulido, Ana Belén Martín-Diana, Daniel de Luis, Daniel Rico
Efficient development of effective functional foods and nutraceuticals requires adequate estimation methods of the bioaccessibility of their bioactive compounds. Specially grain-based nutraceuticals and functional ingredients are often enriched in bound/low bioavailable bioactive phytochemicals. The objective of this work was to evaluate the differences in applying static or dynamic digestion models for the estimation of bioaccessibility of antioxidants present in cereal grain-based/fiber-rich ingredients produced using enzymatic hydrolysis and sprouting processes. Main liberated phenolic compounds, antioxidant activity (ABTS•+ and ORAC) and ferric reducing capacity were evaluated in the samples following three digestion protocols with differences based on their dynamism: static, semi-dynamic and dynamic. The samples digested with the dynamic method showed higher antioxidant and reducing capacities than those digested with the static and semi-dynamic protocols. The results obtained from the digests with the dynamic model showed a total phenol content (TPs) ranging from 1068.22 to 1456.65 μmol GAE 100 g-1 and antioxidant capacity values from 7944.62 to 15,641.90 μmol TE 100 g-1 (ORAC) and from 8454.08 to 11,002.64 μmol TE 100 g-1 (ABTS•+), with a reducing power ranging from 2103.32 to 2679.78 mmol Fe reduced 100 g-1 (FRAP). The dynamic character of the protocols used for developing bioactive cereal-based foods significantly affects the estimation of their bioaccessibility, probably giving a better approach to their potential bioavailability in in vivo systems.
{"title":"Comparative Bioaccesibility Study of Cereal-Based Nutraceutical Ingredients Using INFOGEST Static, Semi-Dynamic and Dynamic In Vitro Gastrointestinal Digestion.","authors":"Iván Jesús Jiménez-Pulido, Ana Belén Martín-Diana, Daniel de Luis, Daniel Rico","doi":"10.3390/antiox13101244","DOIUrl":"10.3390/antiox13101244","url":null,"abstract":"<p><p>Efficient development of effective functional foods and nutraceuticals requires adequate estimation methods of the bioaccessibility of their bioactive compounds. Specially grain-based nutraceuticals and functional ingredients are often enriched in bound/low bioavailable bioactive phytochemicals. The objective of this work was to evaluate the differences in applying static or dynamic digestion models for the estimation of bioaccessibility of antioxidants present in cereal grain-based/fiber-rich ingredients produced using enzymatic hydrolysis and sprouting processes. Main liberated phenolic compounds, antioxidant activity (ABTS<sup>•+</sup> and ORAC) and ferric reducing capacity were evaluated in the samples following three digestion protocols with differences based on their dynamism: static, semi-dynamic and dynamic. The samples digested with the dynamic method showed higher antioxidant and reducing capacities than those digested with the static and semi-dynamic protocols. The results obtained from the digests with the dynamic model showed a total phenol content (TPs) ranging from 1068.22 to 1456.65 μmol GAE 100 g<sup>-1</sup> and antioxidant capacity values from 7944.62 to 15,641.90 μmol TE 100 g<sup>-1</sup> (ORAC) and from 8454.08 to 11,002.64 μmol TE 100 g<sup>-1</sup> (ABTS<sup>•+</sup>), with a reducing power ranging from 2103.32 to 2679.78 mmol Fe reduced 100 g<sup>-1</sup> (FRAP). The dynamic character of the protocols used for developing bioactive cereal-based foods significantly affects the estimation of their bioaccessibility, probably giving a better approach to their potential bioavailability in in vivo systems.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 10","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}