首页 > 最新文献

Thermal Engineering最新文献

英文 中文
A One-Dimensional Model of Hydrodynamics and Heat Transfer in a Film Flow on a Permeable Surface 渗透表面薄膜流的流体力学和传热的一维模型
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524040062
A. P. Solodov

The problem of friction and heat transfer in a laminar, transition, or turbulent flow along solid permeable surfaces has been solved using a numerical simulation technique. To derive a compact mathematical description intended for engineering applications in the power industry and other thermal processes, a modern version of the Kolmogorov–Prandtl model with one differential equation (namely, the turbulent kinetic energy conservation equation) was employed. The mathematical model is represented by a system of first-order nonlinear ordinary differential equations for the distributions of flow velocity, friction stress, temperature, turbulent energy, and turbulent energy flux density across the film thickness. The problem of singularity of the mathematical description on a solid wall is discussed. The integral hydrodynamic and thermal characteristics of film flows currently receiving a lot of interest, such as the film Reynolds number and the Stanton number, were obtained. Functional correlations among dimensionless parameters that are relevant for engineering applications, including those for special regimes of film flows with recirculation and mass crossflow on permeable surfaces of structural materials, have been established. The film Reynolds and Stanton numbers are defined as functions of dimensionless parameters at which the relative values of the film thickness, acting forces, and mass crossflow are specified. The obtained correlations can be used in the design and optimization of condensation and steam-generating facilities in the power industry, for elaboration of evaporative coolers for high-stress structural elements in gas turbine and rocket equipment, simulation of hydraulic roughness, and in thin-film materials technologies.

摘要 采用数值模拟技术解决了沿固体渗透表面的层流、过渡流或湍流中的摩擦和传热问题。为了得出一个紧凑的数学描述,以用于电力工业和其他热过程的工程应用,我们采用了带有一个微分方程(即湍流动能守恒方程)的现代版 Kolmogorov-Prandtl 模型。该数学模型由一个一阶非线性常微分方程系统表示,该系统涉及整个薄膜厚度上的流速、摩擦应力、温度、湍流能量和湍流能量通量密度的分布。讨论了数学描述在固体壁上的奇异性问题。获得了目前备受关注的薄膜流的整体流体力学和热学特性,如薄膜雷诺数和斯坦顿数。建立了与工程应用相关的无量纲参数之间的函数关系,包括结构材料渗透表面上具有再循环和质量交叉流的薄膜流的特殊状态。薄膜雷诺数和斯坦顿数被定义为无量纲参数的函数,其中指定了薄膜厚度、作用力和质量横流的相对值。所获得的相关关系可用于设计和优化电力工业中的冷凝和蒸汽发生设备、为燃气轮机和火箭设备中的高应力结构元件设计蒸发冷却器、模拟水力粗糙度以及薄膜材料技术。
{"title":"A One-Dimensional Model of Hydrodynamics and Heat Transfer in a Film Flow on a Permeable Surface","authors":"A. P. Solodov","doi":"10.1134/S0040601524040062","DOIUrl":"10.1134/S0040601524040062","url":null,"abstract":"<p>The problem of friction and heat transfer in a laminar, transition, or turbulent flow along solid permeable surfaces has been solved using a numerical simulation technique. To derive a compact mathematical description intended for engineering applications in the power industry and other thermal processes, a modern version of the Kolmogorov–Prandtl model with one differential equation (namely, the turbulent kinetic energy conservation equation) was employed. The mathematical model is represented by a system of first-order nonlinear ordinary differential equations for the distributions of flow velocity, friction stress, temperature, turbulent energy, and turbulent energy flux density across the film thickness. The problem of singularity of the mathematical description on a solid wall is discussed. The integral hydrodynamic and thermal characteristics of film flows currently receiving a lot of interest, such as the film Reynolds number and the Stanton number, were obtained. Functional correlations among dimensionless parameters that are relevant for engineering applications, including those for special regimes of film flows with recirculation and mass crossflow on permeable surfaces of structural materials, have been established. The film Reynolds and Stanton numbers are defined as functions of dimensionless parameters at which the relative values of the film thickness, acting forces, and mass crossflow are specified. The obtained correlations can be used in the design and optimization of condensation and steam-generating facilities in the power industry, for elaboration of evaporative coolers for high-stress structural elements in gas turbine and rocket equipment, simulation of hydraulic roughness, and in thin-film materials technologies.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"348 - 357"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Smoke-Stack Performance with Boiler Unit Flue Gases Cooled below the Dew Point 评估锅炉机组烟气冷却至露点以下时的烟囱性能
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524040049
A. A. Kudinov, S. K. Ziganshina

The use of condensing heat exchangers (CHEs) in gas-fired boiler units helps cool the flue gases below the dew point. One of the issues that has to be settled in the case of CHEs installed downstream of boilers is to ensure that the flue gas removal stacks will operate without steam condensation on their inner surfaces. To protect smoke stacks against hydrate corrosion, bypassing of part of combustion products not cooled in the CHE is mainly used in practice. The article presents the results obtained from computations of the heat-transfer processes in the combustion products cooled in a CHE as they move in a reinforced concrete smoke stack fitted with clamped lining, which is protected against hydrate corrosion by bypassing. The computations are carried out for three operation modes of the 180-m high smoke stack, through which flue gases are removed from three power-generating boilers of the BKZ-420-140 NGM type installed at the Samara combined heat and power plant (CHPP), a branch of Samara PAO T Plus. The peculiarity and complexity of the computations are connected with the fact that that the flue gas’s thermophysical parameters and motion velocity in the smoke stack vary during the flue gas cooling process. The parameters’ variation pattern depends essentially on the fraction of gases directed in bypass of the CHE. A mathematical model and computer program are developed for computing the heat-transfer processes in flue gases moving in the smoke stack with CHEs installed downstream of the boilers and with the smoke stack protected against hydrate corrosion by the bypassing method. It has been determined that, for a 180-m high three-layer reinforced concrete smoke stack operating at an outdoor air temperature of –30°С and boilers operating at the nominal load, the fraction of bypassed gases makes 30–35%. With the boilers operating at partial loads equal to 75 and 60% of the nominal value, the fraction of bypassed gases makes 35–40 and 40–45%, respectively. The use of condensing heat exchangers in boiler units results in that the levels of temperature difference, free temperature deformation, and thermal stresses in the smoke stack’s structural elements are reduced by a factor of 1.33–2.80 depending on the fraction of gases passed through the CHEs, thereby enhancing the flue gas removing smoke stack performance reliability.

摘要--在燃气锅炉机组中使用冷凝式热交换器(CHE)有助于将烟气冷却到露点以下。在锅炉下游安装冷凝式热交换器时,必须解决的一个问题是确保烟气排放烟囱在运行时不会在其内表面产生蒸汽冷凝。为了保护烟囱免受水合物腐蚀,在实践中主要采用了旁通 CHE 中未冷却的部分燃烧产物的方法。文章介绍了通过旁路保护防止水合物腐蚀的钢筋混凝土烟囱中,在 CHE 中冷却的燃烧产物在移动过程中的传热过程的计算结果。计算针对 180 米高烟囱的三种运行模式进行,从萨马拉热电联产厂(CHPP)(萨马拉 PAO T Plus 的分公司)安装的三台 BKZ-420-140 NGM 型发电锅炉排出的烟气通过烟囱排出。计算的特殊性和复杂性与烟气的热物理参数和烟道中的运动速度在烟气冷却过程中的变化有关。参数的变化模式主要取决于进入燃烧器旁路的气体比例。我们开发了一个数学模型和计算机程序,用于计算烟气在烟道中移动时的传热过程,CHE 安装在锅炉下游,烟道采用旁路方法防止水合物腐蚀。据测定,在室外空气温度为 -30°С、锅炉以额定负荷运行的情况下,180 米高的三层钢筋混凝土烟囱的旁路气体比例为 30-35%。当锅炉的部分负荷为额定值的 75% 和 60% 时,旁路气体的比例分别为 35-40% 和 40-45%。在锅炉机组中使用冷凝式热交换器的结果是,烟囱结构部件中的温差、自由温度变形和热应力水平降低了 1.33-2.80 倍,这取决于通过冷凝式热交换器的气体比例,从而提高了烟气除烟囱性能的可靠性。
{"title":"Assessing the Smoke-Stack Performance with Boiler Unit Flue Gases Cooled below the Dew Point","authors":"A. A. Kudinov,&nbsp;S. K. Ziganshina","doi":"10.1134/S0040601524040049","DOIUrl":"10.1134/S0040601524040049","url":null,"abstract":"<p>The use of condensing heat exchangers (CHEs) in gas-fired boiler units helps cool the flue gases below the dew point. One of the issues that has to be settled in the case of CHEs installed downstream of boilers is to ensure that the flue gas removal stacks will operate without steam condensation on their inner surfaces. To protect smoke stacks against hydrate corrosion, bypassing of part of combustion products not cooled in the CHE is mainly used in practice. The article presents the results obtained from computations of the heat-transfer processes in the combustion products cooled in a CHE as they move in a reinforced concrete smoke stack fitted with clamped lining, which is protected against hydrate corrosion by bypassing. The computations are carried out for three operation modes of the 180-m high smoke stack, through which flue gases are removed from three power-generating boilers of the BKZ-420-140 NGM type installed at the Samara combined heat and power plant (CHPP), a branch of Samara PAO T Plus. The peculiarity and complexity of the computations are connected with the fact that that the flue gas’s thermophysical parameters and motion velocity in the smoke stack vary during the flue gas cooling process. The parameters’ variation pattern depends essentially on the fraction of gases directed in bypass of the CHE. A mathematical model and computer program are developed for computing the heat-transfer processes in flue gases moving in the smoke stack with CHEs installed downstream of the boilers and with the smoke stack protected against hydrate corrosion by the bypassing method. It has been determined that, for a 180-m high three-layer reinforced concrete smoke stack operating at an outdoor air temperature of –30°С and boilers operating at the nominal load, the fraction of bypassed gases makes 30–35%. With the boilers operating at partial loads equal to 75 and 60% of the nominal value, the fraction of bypassed gases makes 35–40 and 40–45%, respectively. The use of condensing heat exchangers in boiler units results in that the levels of temperature difference, free temperature deformation, and thermal stresses in the smoke stack’s structural elements are reduced by a factor of 1.33–2.80 depending on the fraction of gases passed through the CHEs, thereby enhancing the flue gas removing smoke stack performance reliability.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"340 - 347"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small Power Nuclear Plants: Technical Level and Prospects for Commercialization (Review) 小型核电厂:技术水平和商业化前景(综述)
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524040025
V. O. Kindra, I. A. Maksimov, I. I. Komarov, S. K. Osipov, O. V. Zlyvko

The active development of the Arctic and the Northern Sea Route determines the importance of the rapid development of energy-supply systems for remote regions. A key component of isolated power systems are low-power energy sources. The high cost of fossil fuels in remote regions, coupled with tightening environmental regulations, brings to the fore the challenge of implementing carbon-neutral energy generation technologies. Promising power plants, the performance of which is little dependent on weather conditions, and whose operation is not associated with the generation of greenhouse gas emissions, are low-power nuclear power plants. Currently, some countries are developing and implementing new types of reactor plants whose electrical power does not exceed 300 MW: according to the IAEA, there are more than 70 different projects. Modularity, versatility (in addition to power generation, many projects also provide for the production of thermal energy and hydrogen), increased compactness, and lower capital costs for construction compared to traditional high-power power units make it promising to create low-power reactor plants. This review presents an analysis of the current state of the problems in the design and implementation of such power plants. The technical level of domestic and foreign projects of small modular reactors (SMR) was assessed. Promising areas for the use of thermal energy from small modular installations have been identified, taking into account current trends in energy, including low-carbon and nuclear-hydrogen areas. Possible circuit solutions for the production of electricity based on advanced cycles, including the use of nontraditional working fluids, have been studied. The potential for commercialization of low-power nuclear power plant projects has been considered; the question of successful business implementation of power plants of this type remains open.

摘要 北极和北方海路的积极开发决定了为偏远地区快速开发能源供应系统的重要性。孤立电力系统的一个关键组成部分是低功率能源。偏远地区化石燃料成本高昂,加之环保法规不断收紧,实施碳中和能源发电技术的挑战凸显出来。低功率核电厂的性能几乎不受天气条件的影响,其运行也不会产生温室气体排放,因此很有前途。目前,一些国家正在开发和实施电力功率不超过 300 兆瓦的新型反应堆发电厂:根据国际原子能机构的资料,目前有 70 多个不同的项目。与传统的大功率机组相比,模块化、多功能性(除发电外,许多项目还提供热能和氢气的生产)、更紧凑的结构以及更低的建造成本,使得建造低功率反应堆厂房大有可为。本综述分析了目前在设计和实施此类电站方面存在的问题。对国内外小型模块化反应堆(SMR)项目的技术水平进行了评估。考虑到当前的能源发展趋势,包括低碳和核氢领域,确定了小型模块化装置热能利用的前景广阔的领域。研究了基于先进循环(包括使用非传统工作流体)的可能的发电电路解决方案。还考虑了低功率核电厂项目商业化的潜力;此类发电厂成功商业化的问题仍未解决。
{"title":"Small Power Nuclear Plants: Technical Level and Prospects for Commercialization (Review)","authors":"V. O. Kindra,&nbsp;I. A. Maksimov,&nbsp;I. I. Komarov,&nbsp;S. K. Osipov,&nbsp;O. V. Zlyvko","doi":"10.1134/S0040601524040025","DOIUrl":"10.1134/S0040601524040025","url":null,"abstract":"<p>The active development of the Arctic and the Northern Sea Route determines the importance of the rapid development of energy-supply systems for remote regions. A key component of isolated power systems are low-power energy sources. The high cost of fossil fuels in remote regions, coupled with tightening environmental regulations, brings to the fore the challenge of implementing carbon-neutral energy generation technologies. Promising power plants, the performance of which is little dependent on weather conditions, and whose operation is not associated with the generation of greenhouse gas emissions, are low-power nuclear power plants. Currently, some countries are developing and implementing new types of reactor plants whose electrical power does not exceed 300 MW: according to the IAEA, there are more than 70 different projects. Modularity, versatility (in addition to power generation, many projects also provide for the production of thermal energy and hydrogen), increased compactness, and lower capital costs for construction compared to traditional high-power power units make it promising to create low-power reactor plants. This review presents an analysis of the current state of the problems in the design and implementation of such power plants. The technical level of domestic and foreign projects of small modular reactors (SMR) was assessed. Promising areas for the use of thermal energy from small modular installations have been identified, taking into account current trends in energy, including low-carbon and nuclear-hydrogen areas. Possible circuit solutions for the production of electricity based on advanced cycles, including the use of nontraditional working fluids, have been studied. The potential for commercialization of low-power nuclear power plant projects has been considered; the question of successful business implementation of power plants of this type remains open.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"287 - 300"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Distribution of Heat Exchange Station in District Heating System based on Load Forecasting 基于负荷预测的区域供热系统换热站热量分配
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524040086
Bingwen Zhao,  Hanyu Zheng,  Ruxue Yan

District heating system is the main way of heating in cities and towns in China. The development of district heating system still has the problems of low intelligence and low control accuracy, and there is the imbalance of heat supply and demand in heat distribution. Resulting in the energy consumed by the district heating system can account for more than half of the total energy consumption of the building. In order to alleviate this imbalance, this paper studies the control of heat distribution of each heat exchange station in the primary network. The heat model of primary network is established by recurrent neural network (RNN), and the data set used for modeling is the operation data of heat exchange station in reality. Combined with the heat load prediction model, a heat distribution strategy was proposed to optimize the primary flow of the heat exchange station. According to the predicted value, chaotic particle swarm optimization (CPSO) algorithm is used to optimize the primary flow sequence of each heat exchange station, and then the primary flow is adjusted to control the heat distribution of the secondary network. Finally, Simulink simulation model is used to simulate the water supply temperature of the secondary side of the heat exchange station. And analyze the operation status of the secondary side, the results verify the effectiveness of the strategy. The model simulation results show that the heat distribution scheme proposed in this paper can effectively distribute the heat of the heat exchange station according to the heat demand.

AbstractDistrict heating system is the main way of heating in cities and towns in China.区域供热系统的发展仍存在智能化程度低、控制精度低、供热供需不平衡等问题。导致区域供热系统的能耗占建筑总能耗的一半以上。为了缓解这种不平衡,本文研究了一次网中各换热站的热量分配控制。采用递归神经网络(RNN)建立一次网热量模型,建模数据集为现实中换热站的运行数据。结合热负荷预测模型,提出了优化换热站一次流量的热分配策略。根据预测值,采用混沌粒子群优化算法(CPSO)优化各换热站的一次流量顺序,然后通过调整一次流量来控制二次网的热量分配。最后,利用 Simulink 仿真模型模拟换热站二次侧的供水温度。并分析二次侧的运行状态,结果验证了该策略的有效性。模型仿真结果表明,本文提出的热量分配方案能根据热量需求有效分配换热站的热量。
{"title":"Heat Distribution of Heat Exchange Station in District Heating System based on Load Forecasting","authors":"Bingwen Zhao,&nbsp; Hanyu Zheng,&nbsp; Ruxue Yan","doi":"10.1134/S0040601524040086","DOIUrl":"10.1134/S0040601524040086","url":null,"abstract":"<p>District heating system is the main way of heating in cities and towns in China. The development of district heating system still has the problems of low intelligence and low control accuracy, and there is the imbalance of heat supply and demand in heat distribution. Resulting in the energy consumed by the district heating system can account for more than half of the total energy consumption of the building. In order to alleviate this imbalance, this paper studies the control of heat distribution of each heat exchange station in the primary network. The heat model of primary network is established by recurrent neural network (RNN), and the data set used for modeling is the operation data of heat exchange station in reality. Combined with the heat load prediction model, a heat distribution strategy was proposed to optimize the primary flow of the heat exchange station. According to the predicted value, chaotic particle swarm optimization (CPSO) algorithm is used to optimize the primary flow sequence of each heat exchange station, and then the primary flow is adjusted to control the heat distribution of the secondary network. Finally, Simulink simulation model is used to simulate the water supply temperature of the secondary side of the heat exchange station. And analyze the operation status of the secondary side, the results verify the effectiveness of the strategy. The model simulation results show that the heat distribution scheme proposed in this paper can effectively distribute the heat of the heat exchange station according to the heat demand.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"364 - 373"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension of the Control Range of Power Units: Problems and Their Solution 扩展动力装置的控制范围:问题及其解决方案
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524030108
E. V. Somova

The modern structure of energy consumption enhances the nonuniformity of electrical load curves. With the more pronounced nonuniformity of daily and weekly electrical energy consumption, the requirements for the maneuverable characteristics of power units, which include the control range of the power unit load (technological minimum) and the minimum safe load of the power unit (technical minimum), become more demanding. Due to the problem of maintenance and adequate passing of the minimum of electrical loads during nighttime periods and nonworking days, large supercritical pressure (SCP) condensing power units had to be engaged in controlling the loads. This situation is topical for the Russian power industry in the absence of semipeak power units. For SCP power units, it is advisable to perform unloading under sliding pressure conditions throughout the entire steam-water path. The depth of unloading depends mainly on the reliability of the boilers, the hydraulic design of whose heating surfaces had been performed without considering operation at subcritical pressure. The possibility of application of sliding pressure unloading for SCP units was determined by ensuring reliable temperature and hydraulic conditions of the boiler heating surfaces, in which the state of the working fluid changed from subcooled water to slightly superheated steam. Unloading of drum boilers requires maintenance of reliable circulation in the furnace waterwalls and safe temperature conditions of the steam superheating surfaces. The results of the tests of various types of gas-and-oil fired once-through and drum boilers with unloading at sliding or rated subcritical pressures are presented. The reliability indicators of the hydraulic paths of the boilers and the factors limiting deep unloading of power units have been analyzed. The minimum safe loads were determined. Technical solutions for deep unloading were proposed for the hydraulic circuits of the steam-generating part of the flow path of SCP boilers.

摘要 现代能源消费结构加剧了电力负荷曲线的不均匀性。随着每天和每周电能消耗的不均匀性越来越明显,对动力装置可操控性的要求也越来越高,其中包括动力装置负荷的控制范围(技术最小值)和动力装置的最小安全负荷(技术最小值)。由于夜间和非工作日最低电力负荷的维护和充分通过问题,大型超临界压力(SCP)冷凝机组必须参与负荷控制。在没有半泄压机组的情况下,这种情况是俄罗斯电力行业的热点问题。对于 SCP 发电设备,最好在整个蒸汽-水路径的滑动压力条件下进行卸载。卸载深度主要取决于锅炉的可靠性,因为锅炉受热面的水力设计并未考虑在亚临界压力下运行。在锅炉受热面的温度和水力条件可靠的情况下,工作流体的状态从过冷水变为微过热蒸汽,这就决定了 SCP 机组采用滑压卸载的可能性。汽包锅炉的卸载要求保持炉内水墙的可靠循环和蒸汽过热面的安全温度条件。本文介绍了在滑动压力或额定亚临界压力下卸载的各种类型燃气-燃油直燃锅炉和汽包锅炉的试验结果。分析了锅炉液压路径的可靠性指标和限制动力装置深度卸载的因素。确定了最小安全负荷。针对 SCP 锅炉流路中蒸汽产生部分的液压回路,提出了深度卸载的技术解决方案。
{"title":"Extension of the Control Range of Power Units: Problems and Their Solution","authors":"E. V. Somova","doi":"10.1134/S0040601524030108","DOIUrl":"10.1134/S0040601524030108","url":null,"abstract":"<p>The modern structure of energy consumption enhances the nonuniformity of electrical load curves. With the more pronounced nonuniformity of daily and weekly electrical energy consumption, the requirements for the maneuverable characteristics of power units, which include the control range of the power unit load (technological minimum) and the minimum safe load of the power unit (technical minimum), become more demanding. Due to the problem of maintenance and adequate passing of the minimum of electrical loads during nighttime periods and nonworking days, large supercritical pressure (SCP) condensing power units had to be engaged in controlling the loads. This situation is topical for the Russian power industry in the absence of semipeak power units. For SCP power units, it is advisable to perform unloading under sliding pressure conditions throughout the entire steam-water path. The depth of unloading depends mainly on the reliability of the boilers, the hydraulic design of whose heating surfaces had been performed without considering operation at subcritical pressure. The possibility of application of sliding pressure unloading for SCP units was determined by ensuring reliable temperature and hydraulic conditions of the boiler heating surfaces, in which the state of the working fluid changed from subcooled water to slightly superheated steam. Unloading of drum boilers requires maintenance of reliable circulation in the furnace waterwalls and safe temperature conditions of the steam superheating surfaces. The results of the tests of various types of gas-and-oil fired once-through and drum boilers with unloading at sliding or rated subcritical pressures are presented. The reliability indicators of the hydraulic paths of the boilers and the factors limiting deep unloading of power units have been analyzed. The minimum safe loads were determined. Technical solutions for deep unloading were proposed for the hydraulic circuits of the steam-generating part of the flow path of SCP boilers.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"319 - 329"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the Effect of Fireball Position in the Furnace on the Coal Fired Boiler’s Operation Mode 研究炉内火球位置对燃煤锅炉运行模式的影响
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-05-04 DOI: 10.1134/S0040601524040050
I. A. Ryzhii, A. V. Shtegman, D. V. Sosin, A. S. Natal’in

Automating the operation of equipment at modern thermal power plants to the maximal possible extent is becoming an increasingly more urgent problem. For coal-fired boilers, the development of furnace operation mode control systems is of special importance. A significant scatter in the characteristics of the coal delivered for combustion have a strong influence on the boiler’s operation mode and its technical and economic indicators. Essential changes in the combustion mode frequently give rise to problems connected with gas temperature fluctuations at the furnace outlet, with maintaining a stable superheated steam temperature, slagging of heating surfaces, degraded combustion efficiency, etc. For estimating the influence of coal properties on the operation mode of the E-210-13.8KT boiler (the factory designation is BKZ-210-140) at the Tomsk GRES-2 thermal power plant, computational studies of gas temperature at the furnace outlet were carried out using the Boiler Designer software package. With an essential variation in the coal characteristics, the calculated values of temperature varied from 1103 to 1150°С at 100% load and from 910 to 948°С at 50% load. The adjustment of fireball direction at the burner outlet by ±15° made it possible to change the gas temperature at the furnace outlet by approximately 90°С. In the case of introducing a fireball direction adjustment system, it would be possible to solve, to a significant extent, the boiler-operation problems mentioned above. An algorithm for automatically adjusting the combustion mode has been developed, which, in case of having been implemented, would make it possible to achieve more reliable operation of boiler unit components, decrease the risk of the heating surfaces becoming intensely fouled with slag, and maintain a stable superheated steam temperature in different boiler-operation modes. A swirl movable burner able to vary the fireball direction at the burner outlet by ±15° should become the combustion system’s key component.

摘要-在现代火力发电厂中,最大限度地实现设备运行自动化正成为一个日益紧迫的问题。对于燃煤锅炉而言,炉膛运行模式控制系统的开发尤为重要。供燃烧的煤的特性有很大差异,对锅炉的运行模式及其技术和经济指标有很大影响。燃烧模式的基本变化经常会引起炉膛出口煤气温度波动、过热蒸汽温度保持稳定、受热面结渣、燃烧效率降低等问题。为了估算煤炭特性对托木斯克 GRES-2 热电厂 E-210-13.8KT 锅炉(出厂编号为 BKZ-210-140)运行模式的影响,我们使用锅炉设计软件包对炉出口气体温度进行了计算研究。在煤炭特性发生重大变化的情况下,计算得出的温度值在 100%负荷时为 1103 至 1150°С,在 50%负荷时为 910 至 948°С。将燃烧器出口的火球方向调整 ±15° 可以将炉子出口的气体温度改变约 90°С。如果采用火球方向调节系统,就可以在很大程度上解决上述锅炉运行问题。我们还开发了一种自动调节燃烧模式的算法,该算法一旦实施,将使锅炉机组部件的运行更加可靠,降低受热面被炉渣严重污染的风险,并在不同的锅炉运行模式下保持稳定的过热蒸汽温度。漩涡式可移动燃烧器应成为燃烧系统的关键部件,它能使燃烧器出口处的火球方向发生 ±15° 的变化。
{"title":"Studying the Effect of Fireball Position in the Furnace on the Coal Fired Boiler’s Operation Mode","authors":"I. A. Ryzhii,&nbsp;A. V. Shtegman,&nbsp;D. V. Sosin,&nbsp;A. S. Natal’in","doi":"10.1134/S0040601524040050","DOIUrl":"10.1134/S0040601524040050","url":null,"abstract":"<p>Automating the operation of equipment at modern thermal power plants to the maximal possible extent is becoming an increasingly more urgent problem. For coal-fired boilers, the development of furnace operation mode control systems is of special importance. A significant scatter in the characteristics of the coal delivered for combustion have a strong influence on the boiler’s operation mode and its technical and economic indicators. Essential changes in the combustion mode frequently give rise to problems connected with gas temperature fluctuations at the furnace outlet, with maintaining a stable superheated steam temperature, slagging of heating surfaces, degraded combustion efficiency, etc. For estimating the influence of coal properties on the operation mode of the E-210-13.8KT boiler (the factory designation is BKZ-210-140) at the Tomsk GRES-2 thermal power plant, computational studies of gas temperature at the furnace outlet were carried out using the Boiler Designer software package. With an essential variation in the coal characteristics, the calculated values of temperature varied from 1103 to 1150°С at 100% load and from 910 to 948°С at 50% load. The adjustment of fireball direction at the burner outlet by ±15° made it possible to change the gas temperature at the furnace outlet by approximately 90°С. In the case of introducing a fireball direction adjustment system, it would be possible to solve, to a significant extent, the boiler-operation problems mentioned above. An algorithm for automatically adjusting the combustion mode has been developed, which, in case of having been implemented, would make it possible to achieve more reliable operation of boiler unit components, decrease the risk of the heating surfaces becoming intensely fouled with slag, and maintain a stable superheated steam temperature in different boiler-operation modes. A swirl movable burner able to vary the fireball direction at the burner outlet by ±15° should become the combustion system’s key component.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 4","pages":"330 - 339"},"PeriodicalIF":0.9,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects for Obtaining Carbon Sorbents from D and DG Grade Coals 从 D 级和 DG 级煤炭中获取碳吸附剂的前景
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-04-09 DOI: 10.1134/S004060152403008X
S. A. Shevyrev, S. S. Azikhanov, A. R. Bogomolov, A. B. Kuznetsov

The industrial production of carbon sorbents from coal is a promising and relevant direction. The starting material is mainly brown coal, which is characterized by a high yield of volatile substances and low ash content. Of particular interest to the coal industry is the development of technology for producing sorbents from low-grade coals with a large specific surface area, high adsorption activity, and low cost. Existing methods for producing sorbents from coals that meet such criteria should be based on various thermophysical principles of influence on the source material. The work investigated one-stage and two-stage methods for producing sorbents from coal grades D and DG mined in Kuzbass. The one-stage technique consisted of steam gasification of the starting material in a fluidized bed. The two-stage technique was based on preliminary decarbonization in a muffle furnace followed by activation with superheated water vapor in a fluidized bed. As a result of experimental studies, samples of carbon sorbents were obtained from coals of low metamorphism. Analysis of textural characteristics showed that the specific surface area of the sorbents is up to 250 m2/g and adsorption activity up to 100 mg/g. It has been established that the composition of the mineral mass of the original coals significantly affects the adsorption activity of the resulting sorbents. Estimates show that the higher the ash basicity index, the higher the adsorption activity of the resulting carbon sorbent. With a one-stage method for producing sorbents from coal grades D and DG in a fluidized bed, a fairly high specific surface area is achieved with a relatively low adsorption activity in comparison with a two-stage method.

摘要 从煤炭中工业化生产碳吸附剂是一个前景广阔的相关方向。起始原料主要是褐煤,其特点是挥发性物质产量高、灰分低。煤炭工业特别感兴趣的是从低品位煤炭中生产比表面积大、吸附活性高、成本低的吸附剂的技术开发。从煤炭中生产符合上述标准的吸附剂的现有方法应基于对源材料产生影响的各种热物理原理。这项工作研究了从库兹巴斯开采的 D 级和 DG 级煤炭中生产吸附剂的一步法和两步法。一段式技术包括在流化床中对原料进行蒸汽气化。两阶段技术的基础是在马弗炉中进行初步脱碳,然后在流化床中用过热水蒸气进行活化。通过实验研究,从变质程度较低的煤炭中获得了碳吸附剂样品。纹理特征分析表明,吸附剂的比表面积高达 250 平方米/克,吸附活性高达 100 毫克/克。已经证实,原始煤炭的矿物成分对所产生的吸附剂的吸附活性有很大影响。估计结果表明,灰分碱性指数越高,所得碳吸附剂的吸附活性就越高。在流化床中用一级法生产 D 级和 DG 级煤炭吸附剂,可以获得相当高的比表面积,但与二级法相比,吸附活性相对较低。
{"title":"Prospects for Obtaining Carbon Sorbents from D and DG Grade Coals","authors":"S. A. Shevyrev,&nbsp;S. S. Azikhanov,&nbsp;A. R. Bogomolov,&nbsp;A. B. Kuznetsov","doi":"10.1134/S004060152403008X","DOIUrl":"10.1134/S004060152403008X","url":null,"abstract":"<p>The industrial production of carbon sorbents from coal is a promising and relevant direction. The starting material is mainly brown coal, which is characterized by a high yield of volatile substances and low ash content. Of particular interest to the coal industry is the development of technology for producing sorbents from low-grade coals with a large specific surface area, high adsorption activity, and low cost. Existing methods for producing sorbents from coals that meet such criteria should be based on various thermophysical principles of influence on the source material. The work investigated one-stage and two-stage methods for producing sorbents from coal grades D and DG mined in Kuzbass. The one-stage technique consisted of steam gasification of the starting material in a fluidized bed. The two-stage technique was based on preliminary decarbonization in a muffle furnace followed by activation with superheated water vapor in a fluidized bed. As a result of experimental studies, samples of carbon sorbents were obtained from coals of low metamorphism. Analysis of textural characteristics showed that the specific surface area of the sorbents is up to 250 m<sup>2</sup>/g and adsorption activity up to 100 mg/g. It has been established that the composition of the mineral mass of the original coals significantly affects the adsorption activity of the resulting sorbents. Estimates show that the higher the ash basicity index, the higher the adsorption activity of the resulting carbon sorbent. With a one-stage method for producing sorbents from coal grades D and DG in a fluidized bed, a fairly high specific surface area is achieved with a relatively low adsorption activity in comparison with a two-stage method.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 3","pages":"243 - 250"},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen-Accumulating Materials Based on Titanium and Iron Alloys (Review) 基于钛和铁合金的增氢材料(综述)
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-04-09 DOI: 10.1134/S0040601524030030
M. V. Lototsky, M. W. Davids, V. N. Fokin, E. E. Fokina, B. P. Tarasov

The development of compact, safe, and efficient methods for storing hydrogen is one of the key problems of hydrogen energy. Currently used technologies for storing hydrogen in the form of compressed gas or cryogenic liquid require significant capital investments and maintenance costs for compressor and cryogenic equipment, are characterized by high energy costs, and their implementation requires special safety measures as well as the use of hydrogen-neutral structural materials. A promising way to solve these problems for medium-scale storage systems is the use of metal hydrides, which provide the simplest, most compact, and safe hydrogen storage compared to traditional methods. However, the high cost of hydride-forming materials hinders the implementation of this approach. The use of alloys based on the TiFe intermetallic compound would reduce the costs of metal hydride hydrogen storage by more than five times. This circumstance is the reason for the growing interest of specialists in the field of hydrogen energy technologies in hydrogen-storage materials based on titanium-iron alloys. Although hydrogen systems with the TiFe intermetallic compound and its derivatives have been studied for more than 50 years, the search for ways to increase the resistance of their hydrogen sorption characteristics to poisoning by oxygen-containing impurities in the gas and solid phases has become particularly relevant in recent years. This article provides an overview of research and development aimed at obtaining, studying the properties, and using titanium-iron alloys with improved hydrogen sorption characteristics. An analysis of the data presented in the scientific literature is presented, and approaches to the development of highly efficient hydride-forming materials based on the TiFe intermetallic compound and hydrogen-storage systems based on them are formulated.

摘要 开发紧凑、安全和高效的氢气储存方法是氢能领域的关键问题之一。目前使用的以压缩气体或低温液体形式储存氢气的技术需要大量的资本投资和压缩机及低温设备的维护费用,其特点是能源成本高,并且其实施需要特殊的安全措施以及使用氢中性结构材料。在中型储氢系统中,解决这些问题的一个可行方法是使用金属氢化物,与传统方法相比,金属氢化物储氢最简单、最紧凑、最安全。然而,氢化物形成材料的高成本阻碍了这种方法的实施。使用基于 TiFe 金属间化合物的合金可将金属氢化物储氢的成本降低五倍以上。正因为如此,氢能技术领域的专家们对基于钛铁合金的储氢材料越来越感兴趣。尽管人们对钛铁合金金属间化合物及其衍生物的氢系统已经研究了 50 多年,但近年来,如何提高其氢吸附特性对气相和固相含氧杂质毒害的抵抗力变得尤为重要。本文概述了为获得、研究和使用具有更佳吸氢特性的钛铁合金而进行的研发工作。文章对科学文献中提供的数据进行了分析,并提出了基于钛铁金属间化合物的高效氢化物形成材料及其储氢系统的开发方法。
{"title":"Hydrogen-Accumulating Materials Based on Titanium and Iron Alloys (Review)","authors":"M. V. Lototsky,&nbsp;M. W. Davids,&nbsp;V. N. Fokin,&nbsp;E. E. Fokina,&nbsp;B. P. Tarasov","doi":"10.1134/S0040601524030030","DOIUrl":"10.1134/S0040601524030030","url":null,"abstract":"<p>The development of compact, safe, and efficient methods for storing hydrogen is one of the key problems of hydrogen energy. Currently used technologies for storing hydrogen in the form of compressed gas or cryogenic liquid require significant capital investments and maintenance costs for compressor and cryogenic equipment, are characterized by high energy costs, and their implementation requires special safety measures as well as the use of hydrogen-neutral structural materials. A promising way to solve these problems for medium-scale storage systems is the use of metal hydrides, which provide the simplest, most compact, and safe hydrogen storage compared to traditional methods. However, the high cost of hydride-forming materials hinders the implementation of this approach. The use of alloys based on the TiFe intermetallic compound would reduce the costs of metal hydride hydrogen storage by more than five times. This circumstance is the reason for the growing interest of specialists in the field of hydrogen energy technologies in hydrogen-storage materials based on titanium-iron alloys. Although hydrogen systems with the TiFe intermetallic compound and its derivatives have been studied for more than 50 years, the search for ways to increase the resistance of their hydrogen sorption characteristics to poisoning by oxygen-containing impurities in the gas and solid phases has become particularly relevant in recent years. This article provides an overview of research and development aimed at obtaining, studying the properties, and using titanium-iron alloys with improved hydrogen sorption characteristics. An analysis of the data presented in the scientific literature is presented, and approaches to the development of highly efficient hydride-forming materials based on the TiFe intermetallic compound and hydrogen-storage systems based on them are formulated.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 3","pages":"264 - 279"},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the Possibility of Applying Barium-Strontium Cobaltite in Hydrogen Energy 研究在氢能源中应用钡锶钴铁的可能性
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-04-09 DOI: 10.1134/S0040601524030054
M. S. Paizullakhanov, N. Kh. Karshieva, F. N. Ernazarov, S. M. Abduraimov, S. S. Sabirov

Anion-deficient structures based on ({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{1 - x}}}{text{F}}{{{text{e}}}_{x}}{{{text{O}}}_{{3 - delta }}}) synthesized from a melt in a stream of concentrated solar radiation with a density of 100–200 W/cm2 created in a large solar furnace (LSF) were studied. Briquettes in the form of tablets made on the basis of a stoichiometric mixture of carbonates and metal oxides (({text{SrC}}{{{text{O}}}_{3}}) + ({text{BaC}}{{{text{O}}}_{3}}) + ({text{C}}{{{text{o}}}_{2}}{{{text{O}}}_{3}}) + ({text{F}}{{{text{e}}}_{2}}{{{text{O}}}_{3}})) were melted in a water-cooled melting unit in the LSF focal zone. Drops of the melt flowed into the water in a container located 40 cm below the melting unit. Such conditions contributed to the cooling of the melt at a rate of 103 K/s. The castings were ground to a grinding fineness of 63 microns, dried at 673 K, and samples were molded from the resulting powder using semidry pressing (at a pressure of 100 MPa) in the form of tablets with a diameter of 20 mm and a height of 10 mm. The tablets were sintered in air at a temperature of 1050–1250°C. The structure, water absorption, and electrical properties of the finished samples were studied. The crystal lattice of the material had a perovskite structure with a unit cell parameter A = 4.04 × ({{10}^{{ - 10}}}) m of space group Рm3m. The area of homogeneity of compositions ({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{1 - x}}}{text{F}}{{{text{e}}}_{x}}{{{text{O}}}_{{3 - delta }}}) corresponded to the interval x = [0; 0.7], where x is the amount of element introduced instead of the main one. The most optimal composition in terms of stability of structure and properties was ({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{0.8}}}{text{F}}{{{text{e}}}_{{0.2}}}{{{text{O}}}_{{2.78}}}). The average crystallite size of the obtained materials is 30–40 μm. The grains are predominantly in the form of spherulites and curved cylinders. Samples of the material showed high resistance to water vapor. The values of structural parameters indicate that the material made from ({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{0.8}}}{text{F}}{{{text{e}}}_{{0.2}}}{{{text{O}}}_{{2.78}}}) can be used as a catalyst in the generation of hydrogen and synthesis gas through reforming and oxidation of methane.

Abstract 阴离子缺陷结构 based on ({text{S}}{{text{r}}}_{{0.5}}}{text{B}}{{text{a}}}_{0.5}}{{text{C}}{{{text{o}}_{{1 - x}}}{{text{F}}}{{{{text{e}}}_{x}}}{{{{text{O}}}_{{3 - delta }}}} (在大型太阳炉(LSF)中产生的密度为 100-200 W/cm2 的太阳集中辐射流中由熔体合成)进行了研究。根据碳酸盐和金属氧化物的化学计量混合物(({{SrC}}{{text{O}}}_{3}})+({text{BrC}}{{text{O}}}_{3}}})制成的片状煤砖({{text{BaC}}{{text{O}}}_{3}}) + ({{C}}{{text{o}}}_{2}}}{{{text{O}}}_{3}})在 LS 聚光器的水冷熔化单元中熔化。在 LSF 焦点区的水冷熔化装置中熔化。熔液滴入熔化装置下方 40 厘米处容器中的水中。这种条件有助于熔体以 103 K/s 的速度冷却。将铸件研磨至 63 微米的细度,在 673 K 下烘干,然后使用半干压(压力为 100 兆帕)将所得粉末制成直径为 20 毫米、高度为 10 毫米的片状样品。片剂在温度为 1050-1250°C 的空气中烧结。对成品样品的结构、吸水性和电性能进行了研究。该材料的晶格为包晶结构,单位晶胞参数为 A = 4.04 × ({{10}^{ - 10}}) m,空间群为 Рm3m。组成的均匀性面积为 ({text{S}}{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}{{text{C}}{{{text{o}}}_{{1-x}}}{text{F}}{{{text{e}}}_{x}}{{{text{O}}}_{{3-delta }}}})对应的区间 x = [0; 0.7],其中 x 是引入元素的数量,而不是主要元素的数量。就结构和性能的稳定性而言,最理想的组成是({text{S}}{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{0.8}}}{text{F}}{{{text{e}}}_{{0.2}}}{{{text{O}}}_{{2.78}}}).所得材料的平均晶粒大小为 30-40 μm。晶粒主要呈球状和弯曲圆柱状。材料样品显示出很强的抗水蒸气能力。结构参数值表明,由 ({text{S}}{{{text{r}}}_{{0.5}}}{{text{B}}{{{{text{a}}}_{{0.5}}}{{text{C}}}{{{text{o}}}_{{0.8}}}{text{F}}{{text{e}}}_{{0.2}}}{{text{O}}}_{{2.78}}})可用作催化剂,通过甲烷的重整和氧化反应生成氢气和合成气。
{"title":"Studying the Possibility of Applying Barium-Strontium Cobaltite in Hydrogen Energy","authors":"M. S. Paizullakhanov,&nbsp;N. Kh. Karshieva,&nbsp;F. N. Ernazarov,&nbsp;S. M. Abduraimov,&nbsp;S. S. Sabirov","doi":"10.1134/S0040601524030054","DOIUrl":"10.1134/S0040601524030054","url":null,"abstract":"<p>Anion-deficient structures based on <span>({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{1 - x}}}{text{F}}{{{text{e}}}_{x}}{{{text{O}}}_{{3 - delta }}})</span> synthesized from a melt in a stream of concentrated solar radiation with a density of 100–200 W/cm<sup>2</sup> created in a large solar furnace (LSF) were studied. Briquettes in the form of tablets made on the basis of a stoichiometric mixture of carbonates and metal oxides (<span>({text{SrC}}{{{text{O}}}_{3}})</span> + <span>({text{BaC}}{{{text{O}}}_{3}})</span> + <span>({text{C}}{{{text{o}}}_{2}}{{{text{O}}}_{3}})</span> + <span>({text{F}}{{{text{e}}}_{2}}{{{text{O}}}_{3}})</span>) were melted in a water-cooled melting unit in the LSF focal zone. Drops of the melt flowed into the water in a container located 40 cm below the melting unit. Such conditions contributed to the cooling of the melt at a rate of 10<sup>3</sup> K/s. The castings were ground to a grinding fineness of 63 microns, dried at 673 K, and samples were molded from the resulting powder using semidry pressing (at a pressure of 100 MPa) in the form of tablets with a diameter of 20 mm and a height of 10 mm. The tablets were sintered in air at a temperature of 1050–1250°C. The structure, water absorption, and electrical properties of the finished samples were studied. The crystal lattice of the material had a perovskite structure with a unit cell parameter <i>A</i> = 4.04 × <span>({{10}^{{ - 10}}})</span> m of space group Рm3m. The area of homogeneity of compositions <span>({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{1 - x}}}{text{F}}{{{text{e}}}_{x}}{{{text{O}}}_{{3 - delta }}})</span> corresponded to the interval <i>x</i> = [0; 0.7], where <i>x</i> is the amount of element introduced instead of the main one. The most optimal composition in terms of stability of structure and properties was <span>({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{0.8}}}{text{F}}{{{text{e}}}_{{0.2}}}{{{text{O}}}_{{2.78}}})</span>. The average crystallite size of the obtained materials is 30–40 μm. The grains are predominantly in the form of spherulites and curved cylinders. Samples of the material showed high resistance to water vapor. The values of structural parameters indicate that the material made from <span>({text{S}}{{{text{r}}}_{{0.5}}}{text{B}}{{{text{a}}}_{{0.5}}}{text{C}}{{{text{o}}}_{{0.8}}}{text{F}}{{{text{e}}}_{{0.2}}}{{{text{O}}}_{{2.78}}})</span> can be used as a catalyst in the generation of hydrogen and synthesis gas through reforming and oxidation of methane.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 3","pages":"280 - 284"},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of a Heat-Recovery Turbine Unit for a Self-Contained Power Supply of Compressor Stations in Gas Mains 为天然气主管道中的压缩机站自备电源选择热回收涡轮机组
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2024-04-09 DOI: 10.1134/S0040601524030042
V. E. Mikhailov, M. A. Vertkin, S. B. Esin, P. A. Kruglikov, D. A. Sobolev, Yu. G. Sukhorukov, L. A. Khomenok

Two design options for a heat-recovery turbine unit (HRTU), which generates electricity for self-contained power supply of gas mains’ compressor stations (GMCSs) using the heat of exhaust gases from gas-turbine engines (GTEs) driving gas-pumping units (GPUs), are examined. The working fluid of the recovery circuit is octafluorocyclobutane (c-C4F8, engineering name is RC318) in one of the two HRTUs and the exhaust gases of GPU GTE in the other HRTU. The HRTU operating on RC318 has a three-circuit cycle, including three turbines, three recuperative heat exchangers, three RC318 heaters, and one common condenser. An alternative design of HRTU is a vacuum-type GTU consisting of an overexpansion gas turbine, whose inlet is connected with the exhaust of GPU GTE, exhaust gas coolers, a cooled gas compressor, and an induced-draft fan. The excess power of this HRTU above the current power demand at the GMCS is used to create a vacuum at the exhaust of the gas turbine of the GPU GTE. The results are presented of the comparative balance calculations of parameters and characteristics of both HRTUs as applied to a 16-MW Ural GPU GTE. They were performed using the updated initial data and the software library RefProp (in the CoolProp high-level interface) for the calculation of thermodynamic parameters of working fluids. It has been demonstrated that a more compact and easier to implement gas-type HRTU (with an overexpansion gas turbine), although having a lower power than the RC318-type HRTU, can still fully cover the demand of the GMCS for high-quality power and also to solve the problem of substituting imported gas piston and diesel generators at the GMCS within the shortest possible time and with the lowest capital and operating expenditures.

摘要 研究了热回收涡轮机组(HRTU)的两种设计方案,该热回收涡轮机组利用燃气涡轮发动机(GTE)驱动燃气泵组(GPU)产生的废气热量发电,为燃气总管压缩机站(GMCS)提供独立电源。两个 HRTU 中的一个回收回路的工作流体为八氟环丁烷(c-C4F8,工程名称为 RC318),另一个 HRTU 的工作流体为 GPU GTE 的废气。使用 RC318 的 HRTU 采用三回路循环,包括三个涡轮机、三个换热器、三个 RC318 加热器和一个普通冷凝器。HRTU 的另一种设计是真空型 GTU,由一台过膨胀燃气轮机(其进气口与 GPU GTE 的排气口相连)、废气冷却器、一台冷却气体压缩机和一台引风机组成。该 HRTU 超过 GMCS 当前功率需求的多余功率用于在 GPU GTE 燃气轮机排气口形成真空。本文介绍了应用于 16-MW Ural GPU GTE 的两种 HRTU 的参数和特性的比较平衡计算结果。计算使用了最新的初始数据和用于计算工作流体热力学参数的软件库 RefProp(CoolProp 高级界面)。结果表明,更紧凑、更易于实施的燃气型 HRTU(采用过膨胀燃气轮机)虽然功率低于 RC318 型 HRTU,但仍能完全满足 GMCS 对高质量电力的需求,并能在最短时间内以最低的资本和运营成本解决 GMCS 替代进口燃气活塞和柴油发电机的问题。
{"title":"Selection of a Heat-Recovery Turbine Unit for a Self-Contained Power Supply of Compressor Stations in Gas Mains","authors":"V. E. Mikhailov,&nbsp;M. A. Vertkin,&nbsp;S. B. Esin,&nbsp;P. A. Kruglikov,&nbsp;D. A. Sobolev,&nbsp;Yu. G. Sukhorukov,&nbsp;L. A. Khomenok","doi":"10.1134/S0040601524030042","DOIUrl":"10.1134/S0040601524030042","url":null,"abstract":"<p>Two design options for a heat-recovery turbine unit (HRTU), which generates electricity for self-contained power supply of gas mains’ compressor stations (GMCSs) using the heat of exhaust gases from gas-turbine engines (GTEs) driving gas-pumping units (GPUs), are examined. The working fluid of the recovery circuit is octafluorocyclobutane (c-C<sub>4</sub>F<sub>8</sub>, engineering name is RC318) in one of the two HRTUs and the exhaust gases of GPU GTE in the other HRTU. The HRTU operating on RC318 has a three-circuit cycle, including three turbines, three recuperative heat exchangers, three RC318 heaters, and one common condenser. An alternative design of HRTU is a vacuum-type GTU consisting of an overexpansion gas turbine, whose inlet is connected with the exhaust of GPU GTE, exhaust gas coolers, a cooled gas compressor, and an induced-draft fan. The excess power of this HRTU above the current power demand at the GMCS is used to create a vacuum at the exhaust of the gas turbine of the GPU GTE. The results are presented of the comparative balance calculations of parameters and characteristics of both HRTUs as applied to a 16-MW Ural GPU GTE. They were performed using the updated initial data and the software library RefProp (in the CoolProp high-level interface) for the calculation of thermodynamic parameters of working fluids. It has been demonstrated that a more compact and easier to implement gas-type HRTU (with an overexpansion gas turbine), although having a lower power than the RC318-type HRTU, can still fully cover the demand of the GMCS for high-quality power and also to solve the problem of substituting imported gas piston and diesel generators at the GMCS within the shortest possible time and with the lowest capital and operating expenditures.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 3","pages":"223 - 235"},"PeriodicalIF":0.9,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Thermal Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1