首页 > 最新文献

Thermal Engineering最新文献

英文 中文
Environmental Consequences of Using Ammonia-Ethanolamine Water Chemistry in the Secondary Circuit of VVER-1200 Nuclear Power Plants
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-02-21 DOI: 10.1134/S004060152470054X
V. G. Kritsky, A. V. Gavrilov, N. A. Prokhorov, E. A. Motkova, N. A. Pelageecheva, M. S. Shvaleva, A. V. Karpov

The ammonia-ethanolamine water chemistry used at NPPs with VVER-1200 ensures low rates of corrosion, mass transfer, and growth of corrosion product deposits. The content of corrosion products in the feedwater of the steam generator is less than 1 μg/dm3. This significantly increases the period between flushing the steam generator to remove deposits. However, ethanolamine and ammonia are absorbed by the cation exchange resin in the ion-exchange filters of the secondary circuit purification systems, which leads to the need to regenerate the cation exchange resin and continuously dose reagents to maintain the required pH value in the feedwater. Waste solutions from regeneration containing ethanolamine and large amounts of ammonia must be treated to ensure that the concentrations of these substances do not exceed maximum permissible values when discharged into the environment. To remove ethanolamine and ammonia from regeneration solutions, special installations are created, the operation of which is based on various principles. A pilot plant for cleaning regeneration solutions was manufactured and installed at the Belarusian NPP with VVER-1200. An analysis of the pilot plant’s operation showed that it successfully fulfills its function of protecting the aquatic environment but, at the same time, it is forced to release a significant amount of ammonia into the surrounding air. Removing ammonia is energy-consuming, environmentally unsafe, and requires the additional use of chemical reagents. In this regard, the water-chemical regime of the secondary circuit without ammonia is very promising. Possible options could be either switching from ammonia to dimethylamine or using ethanolamine as the only corrective reagent with the replacement of some of the structural materials of the secondary circuit with steels with a high chromium content, which have higher corrosion resistance compared to those currently used. Both options will simplify the wastewater treatment technology and reduce the environmental impact while maintaining the low corrosion rates achieved by using the ammonia–ethanolamine water chemistry.

{"title":"Environmental Consequences of Using Ammonia-Ethanolamine Water Chemistry in the Secondary Circuit of VVER-1200 Nuclear Power Plants","authors":"V. G. Kritsky,&nbsp;A. V. Gavrilov,&nbsp;N. A. Prokhorov,&nbsp;E. A. Motkova,&nbsp;N. A. Pelageecheva,&nbsp;M. S. Shvaleva,&nbsp;A. V. Karpov","doi":"10.1134/S004060152470054X","DOIUrl":"10.1134/S004060152470054X","url":null,"abstract":"<p>The ammonia-ethanolamine water chemistry used at NPPs with VVER-1200 ensures low rates of corrosion, mass transfer, and growth of corrosion product deposits. The content of corrosion products in the feedwater of the steam generator is less than 1 μg/dm<sup>3</sup>. This significantly increases the period between flushing the steam generator to remove deposits. However, ethanolamine and ammonia are absorbed by the cation exchange resin in the ion-exchange filters of the secondary circuit purification systems, which leads to the need to regenerate the cation exchange resin and continuously dose reagents to maintain the required pH value in the feedwater. Waste solutions from regeneration containing ethanolamine and large amounts of ammonia must be treated to ensure that the concentrations of these substances do not exceed maximum permissible values when discharged into the environment. To remove ethanolamine and ammonia from regeneration solutions, special installations are created, the operation of which is based on various principles. A pilot plant for cleaning regeneration solutions was manufactured and installed at the Belarusian NPP with VVER-1200. An analysis of the pilot plant’s operation showed that it successfully fulfills its function of protecting the aquatic environment but, at the same time, it is forced to release a significant amount of ammonia into the surrounding air. Removing ammonia is energy-consuming, environmentally unsafe, and requires the additional use of chemical reagents. In this regard, the water-chemical regime of the secondary circuit without ammonia is very promising. Possible options could be either switching from ammonia to dimethylamine or using ethanolamine as the only corrective reagent with the replacement of some of the structural materials of the secondary circuit with steels with a high chromium content, which have higher corrosion resistance compared to those currently used. Both options will simplify the wastewater treatment technology and reduce the environmental impact while maintaining the low corrosion rates achieved by using the ammonia–ethanolamine water chemistry.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"78 - 84"},"PeriodicalIF":0.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ammonia as a Fuel for Gas-Turbine Units with Thermochemical Recuperation of Exhaust Gas Heat
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-02-21 DOI: 10.1134/S0040601524700691
D. I. Pashchenko

The prospects are examined for application of ammonia-fired gas turbine units (GTUs) with thermochemical recuperation of the exhaust gas heat. Examples of operating ammonia-fired gas turbine units are given, and the main operating restrictions for the use of existing gas turbine units are specified. A thermodynamic analysis of a simple gas turbine unit with thermochemical heat recuperation (TCR) was performed in a wide range of operating conditions: the gas temperature at the turbine inlet varied from 700 to 1300°C and the compressor pressure ratio from 5 to 20. It has been established that the thermochemical heat recuperation can increase the GTU efficiency by as much as 9%. The effectiveness of TCR application has been demonstrated to depend on such operating parameters as pressure and temperature. At a temperature above 500°C, the enthalpy of the ammonia decomposition reaction reaches a value close to the maximum of approximately 3.0 MJ/kg NH3. Thermochemical recuperation leads to the decomposition of ammonia with production of a hydrogen-rich gas (up to 75% (by volume)), which is burned in the combustion chamber, thereby changing the combustion process characteristics. The flame propagation velocity in a gas mixture consisting of hydrogen, nitrogen, and ammonia in different proportions was calculated on the basis of the GRI-Mech 3.0 list of elementary reactions in the Chemkin-Pro module. It has been found that the products of complete thermochemical decomposition of ammonia have a flame propagation velocity that is approximately two times higher than that for methane and more than ten times higher than that for ammonia. Thus, the implementation of the thermochemical heat recuperation in ammonia-fired gas turbine units is expected to increase the energy efficiency and improve the combustion process stability.

{"title":"Ammonia as a Fuel for Gas-Turbine Units with Thermochemical Recuperation of Exhaust Gas Heat","authors":"D. I. Pashchenko","doi":"10.1134/S0040601524700691","DOIUrl":"10.1134/S0040601524700691","url":null,"abstract":"<p>The prospects are examined for application of ammonia-fired gas turbine units (GTUs) with thermochemical recuperation of the exhaust gas heat. Examples of operating ammonia-fired gas turbine units are given, and the main operating restrictions for the use of existing gas turbine units are specified. A thermodynamic analysis of a simple gas turbine unit with thermochemical heat recuperation (TCR) was performed in a wide range of operating conditions: the gas temperature at the turbine inlet varied from 700 to 1300°C and the compressor pressure ratio from 5 to 20. It has been established that the thermochemical heat recuperation can increase the GTU efficiency by as much as 9%. The effectiveness of TCR application has been demonstrated to depend on such operating parameters as pressure and temperature. At a temperature above 500°C, the enthalpy of the ammonia decomposition reaction reaches a value close to the maximum of approximately 3.0 MJ/kg NH<sub>3</sub>. Thermochemical recuperation leads to the decomposition of ammonia with production of a hydrogen-rich gas (up to 75% (by volume)), which is burned in the combustion chamber, thereby changing the combustion process characteristics. The flame propagation velocity in a gas mixture consisting of hydrogen, nitrogen, and ammonia in different proportions was calculated on the basis of the GRI-Mech 3.0 list of elementary reactions in the Chemkin-Pro module. It has been found that the products of complete thermochemical decomposition of ammonia have a flame propagation velocity that is approximately two times higher than that for methane and more than ten times higher than that for ammonia. Thus, the implementation of the thermochemical heat recuperation in ammonia-fired gas turbine units is expected to increase the energy efficiency and improve the combustion process stability.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"1 - 7"},"PeriodicalIF":0.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-02-21 DOI: 10.1134/S0040601524700526
Saeed Akbarnejad,  Masoud Ziabasharhagh

Ejectors are devices designed to suck fluid, steam or gas (primary fluid) from a closed space using a powerful jet of steam (secondary fluid), usually operated under specified boundary conditions using specific working fluids. If ejectors are to be used under new boundary conditions, predicting their performance requires either numerical or experimental studies. This paper presents a simple theoretical model capable of accurately predicting the performance of an ejector, given its geometry and boundary conditions, under different operating conditions. The model can predict the entrainment ratio, critical back pressure, and break-up back pressure using a given simple performance curve. The accuracy of the model is validated using computational fluid dynamics (CFD) simulations. Two ejectors with different geometries, dimensions, and boundary conditions are studied using ANSYS Fluent 19.2, and the results are compared with those from two other studies. The model successfully predicts the performance of all four ejectors across a wide range of operating conditions. Finally, the model is extended to any working fluid and temperature and validated numerically using air as the working fluid instead of water vapor. The results show that the model has an entrainment ratio error of less than 2%. It’s worth noting that this model’s applicability is contingent upon simultaneous changes to both the primary and suction streams by the same factor. Under these conditions, the model aligns closely with CFD-simulations.

{"title":"Development of a Theoretical Model for Predicting Performance of a Gas Ejector in Different Boundary Conditions and Working Fluids","authors":"Saeed Akbarnejad,&nbsp; Masoud Ziabasharhagh","doi":"10.1134/S0040601524700526","DOIUrl":"10.1134/S0040601524700526","url":null,"abstract":"<p>Ejectors are devices designed to suck fluid, steam or gas (primary fluid) from a closed space using a powerful jet of steam (secondary fluid), usually operated under specified boundary conditions using specific working fluids. If ejectors are to be used under new boundary conditions, predicting their performance requires either numerical or experimental studies. This paper presents a simple theoretical model capable of accurately predicting the performance of an ejector, given its geometry and boundary conditions, under different operating conditions. The model can predict the entrainment ratio, critical back pressure, and break-up back pressure using a given simple performance curve. The accuracy of the model is validated using computational fluid dynamics (CFD) simulations. Two ejectors with different geometries, dimensions, and boundary conditions are studied using ANSYS Fluent 19.2, and the results are compared with those from two other studies. The model successfully predicts the performance of all four ejectors across a wide range of operating conditions. Finally, the model is extended to any working fluid and temperature and validated numerically using air as the working fluid instead of water vapor. The results show that the model has an entrainment ratio error of less than 2%. It’s worth noting that this model’s applicability is contingent upon simultaneous changes to both the primary and suction streams by the same factor. Under these conditions, the model aligns closely with CFD-simulations.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"8 - 16"},"PeriodicalIF":0.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Transfer and Pressure Drop in Main Heat Exchangers of a Thermal Oil ORC-Unit (Review)
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-02-21 DOI: 10.1134/S0040601524700629
I. S. Antanenkova, Yu. A. Geller, M. M. Vinogradov, E. A. Gorbunova, V. I. Kuznetsov

The purpose of the review is to find the best currently available correlations for calculating heat transfer and pressure drop in the main heat-transfer equipment items in organic Rankine cycle (ORC) units. The search is limited to the designs of apparatuses, which are the best ones in the opinion of the authors of this paper, for a conventional two-circuit ORC-unit, where thermal oil cools a heat source in the first circuit and transfers heat to refrigerant in the vapor generator (hereinafter referred to as the evaporator). Besides the evaporator, the second circuit of the unit includes a “refrigerant–water” or “refrigerant–air” condenser and a regenerative heat exchanger which heats up liquid refrigerant upstream of the evaporator with the exhaust vapor of the turbine (or expander). The criteria are presented for selecting working fluids for such units depending on the heat source temperature. The working fluids that have found the widest application at each temperature level (such as cyclopentane, benzene, toluene, MM, MDM, R1233zd, R245fa, R601, R601a, RC318, R134a) are listed, and their characteristics and thermodynamic properties are presented at specified condensation (25°C) and boiling (200, 120, and 70°C) points. The analysis of these data, including information on the proposed working fluids, has yielded nominal parameters of ORC-units. Thousands of fundamental and engineering works are devoted to the study of boiling and condensation processes, the interest in which has been growing over the past 10–15 years. The development of new energy conversion technologies and the appearance of new working fluids, materials, and methods of surface treatment has given a second wind. This paper reviews correlations for heat-transfer coefficients and hydraulic resistance factors in apparatuses with refrigerant boiling in round tubes, condensation in tubes and channels and in the shell side (on tube bundles), and heating and cooling of single-phase refrigerant in tubes and channels. The correlations for engineering calculation of the main heat-transfer equipment of ORC-units, which are the most convenient ones in the authors’ opinion, are presented.

{"title":"Heat Transfer and Pressure Drop in Main Heat Exchangers of a Thermal Oil ORC-Unit (Review)","authors":"I. S. Antanenkova,&nbsp;Yu. A. Geller,&nbsp;M. M. Vinogradov,&nbsp;E. A. Gorbunova,&nbsp;V. I. Kuznetsov","doi":"10.1134/S0040601524700629","DOIUrl":"10.1134/S0040601524700629","url":null,"abstract":"<p>The purpose of the review is to find the best currently available correlations for calculating heat transfer and pressure drop in the main heat-transfer equipment items in organic Rankine cycle (ORC) units. The search is limited to the designs of apparatuses, which are the best ones in the opinion of the authors of this paper, for a conventional two-circuit ORC-unit, where thermal oil cools a heat source in the first circuit and transfers heat to refrigerant in the vapor generator (hereinafter referred to as the evaporator). Besides the evaporator, the second circuit of the unit includes a “refrigerant–water” or “refrigerant–air” condenser and a regenerative heat exchanger which heats up liquid refrigerant upstream of the evaporator with the exhaust vapor of the turbine (or expander). The criteria are presented for selecting working fluids for such units depending on the heat source temperature. The working fluids that have found the widest application at each temperature level (such as cyclopentane, benzene, toluene, MM, MDM, R1233zd, R245fa, R601, R601a, RC318, R134a) are listed, and their characteristics and thermodynamic properties are presented at specified condensation (25°C) and boiling (200, 120, and 70°C) points. The analysis of these data, including information on the proposed working fluids, has yielded nominal parameters of ORC-units. Thousands of fundamental and engineering works are devoted to the study of boiling and condensation processes, the interest in which has been growing over the past 10–15 years. The development of new energy conversion technologies and the appearance of new working fluids, materials, and methods of surface treatment has given a second wind. This paper reviews correlations for heat-transfer coefficients and hydraulic resistance factors in apparatuses with refrigerant boiling in round tubes, condensation in tubes and channels and in the shell side (on tube bundles), and heating and cooling of single-phase refrigerant in tubes and channels. The correlations for engineering calculation of the main heat-transfer equipment of ORC-units, which are the most convenient ones in the authors’ opinion, are presented.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 1","pages":"44 - 64"},"PeriodicalIF":0.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Model of a Heterogeneous Pyrolysis Reactor of Methane 甲烷非均相热解反应器的数值模型
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700630
L. B. Direktor, V. A. Sinelshchikov

A mathematical model of a high-temperature cylindrical reactor for heterogeneous pyrolysis of methane during its filtration through a moving layer formed by granules of carbonized wood is presented. The carbon matrix was modeled by spheres of the same diameter with a simple cubic packing. The carbon matrix was heated through the reactor wall. Preheated methane was fed into the lower part of the reactor. The process of pyrocarbon formation as a result of heterogeneous pyrolysis of methane was described by one gross reaction taking into account hydrogen inhibition and changes in the reaction surface. It was assumed that the rate of pyrocarbon deposition is directly proportional to the partial pressure of methane. The system of two-dimensional, nonstationary differential equations describing the operation of the reactor in a cyclic mode with periodic unloading of a portion of carbon–carbon composite and synchronous loading of carbonized wood granules was solved numerically using the DIFSUB algorithm. The reactor radius and operating parameters (specific mass flow rate of methane, carbon composite unloading frequency) were varied in calculations. Based on the obtained results, the dependences of the quality of the carbon–carbon composite (average density and maximum density spread), the composition of the hydrogen-containing gas mixture at the reactor outlet, the degree of methane conversion, the reactor productivity for carbon composite and hydrogen on the operating parameters, and the reactor radius were analyzed. Data are provided on energy consumption for heating methane and carbonized granules loaded into the reactor as well as for compensation of the endothermic effect accompanying methane pyrolysis.

建立了甲烷在炭化木材颗粒形成的移动层中过滤过程的高温圆柱形反应器的数学模型。碳基体是由相同直径的球体和简单的立方填充来模拟的。碳基体通过反应器壁加热。预热过的甲烷被送入反应器的下部。考虑氢的抑制作用和反应表面的变化,用一个总反应来描述甲烷非均相热解生成焦碳的过程。假设热炭沉积速率与甲烷的分压成正比。采用DIFSUB算法对描述反应器周期性卸载部分碳-碳复合材料和同步加载炭化木粒的二维非平稳微分方程组进行了数值求解。反应器半径和运行参数(甲烷比质量流量、碳复合材料卸载频率)在计算中有所不同。在此基础上,分析了碳-碳复合材料的质量(平均密度和最大密度分布)、反应器出口含氢气体混合物的组成、甲烷转化率、碳-碳复合材料和氢的反应器生产率对操作参数的依赖关系以及反应器半径。提供了装载在反应器内的甲烷和碳化颗粒的加热能耗以及甲烷热解的吸热效应补偿的数据。
{"title":"Numerical Model of a Heterogeneous Pyrolysis Reactor of Methane","authors":"L. B. Direktor,&nbsp;V. A. Sinelshchikov","doi":"10.1134/S0040601524700630","DOIUrl":"10.1134/S0040601524700630","url":null,"abstract":"<p>A mathematical model of a high-temperature cylindrical reactor for heterogeneous pyrolysis of methane during its filtration through a moving layer formed by granules of carbonized wood is presented. The carbon matrix was modeled by spheres of the same diameter with a simple cubic packing. The carbon matrix was heated through the reactor wall. Preheated methane was fed into the lower part of the reactor. The process of pyrocarbon formation as a result of heterogeneous pyrolysis of methane was described by one gross reaction taking into account hydrogen inhibition and changes in the reaction surface. It was assumed that the rate of pyrocarbon deposition is directly proportional to the partial pressure of methane. The system of two-dimensional, nonstationary differential equations describing the operation of the reactor in a cyclic mode with periodic unloading of a portion of carbon–carbon composite and synchronous loading of carbonized wood granules was solved numerically using the DIFSUB algorithm. The reactor radius and operating parameters (specific mass flow rate of methane, carbon composite unloading frequency) were varied in calculations. Based on the obtained results, the dependences of the quality of the carbon–carbon composite (average density and maximum density spread), the composition of the hydrogen-containing gas mixture at the reactor outlet, the degree of methane conversion, the reactor productivity for carbon composite and hydrogen on the operating parameters, and the reactor radius were analyzed. Data are provided on energy consumption for heating methane and carbonized granules loaded into the reactor as well as for compensation of the endothermic effect accompanying methane pyrolysis.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1067 - 1075"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero Carbon World: Is It Possible to Achieve Global Climate Neutrality? 零碳世界:有可能实现全球气候中和吗?
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700605
V. V. Klimenko, A. V. Klimenko, A. G. Tereshin, O. B. Mikushina

The prospects for achieving carbon neutrality in economically developed countries that are members of the Organization for Economic Cooperation and Development (OECD) and other countries are examined. An analysis of the energy and land use structure in these countries was carried out. Scenario assessments of the dynamics of changes in carbon indicators of the study economies have been developed, and a comparison has been made with forecasts from leading global energy agencies. It has been shown that, at the current rate of decarbonization and development of the carbon capture and storage (CCS) industry, it is impossible for countries in both groups to fulfill their commitments to achieve climate neutrality in 2050–2070; this goal cannot be achieved before the end of this century. The central challenge in achieving climate neutrality is the rapid and large-scale implementation of CCS technologies in all their possible manifestations. Using a set of global climate system models, calculations of the global average temperature (GAT) were performed for the proposed scenarios, and their results were compared with other works. Despite the fact that climate change occupies almost a leading place on the global agenda, the actual results of efforts in this area are far from those declared, and it is now impossible to cap warming to within 1.5°C. The key task is to minimize the time the global climate system remains in the dangerous extreme zone (above 1.5°C), which will require the emergence of a global economy with negative greenhouse gas (GHG) emissions.

研究了经济合作与发展组织(经合组织)成员国和其他国家的经济发达国家实现碳中和的前景。对这些国家的能源和土地利用结构进行了分析。对研究经济体的碳指标变化动态进行了情景评估,并与全球主要能源机构的预测进行了比较。研究表明,以目前的脱碳速度和碳捕集与封存(CCS)行业的发展速度,这两个集团的国家都不可能在2050-2070年实现气候中和的承诺;这一目标在本世纪末之前不可能实现。实现气候中和的核心挑战是迅速和大规模地实施各种可能的CCS技术。利用一套全球气候系统模式,对所提出的情景进行了全球平均温度(GAT)的计算,并将其结果与其他工作进行了比较。尽管气候变化在全球议程上几乎占据了主导地位,但这一领域努力的实际结果与宣布的相差甚远,现在不可能将升温控制在1.5°C以内。关键任务是尽量缩短全球气候系统处于危险极端区域(高于1.5°C)的时间,这将需要出现负温室气体(GHG)排放的全球经济。
{"title":"Zero Carbon World: Is It Possible to Achieve Global Climate Neutrality?","authors":"V. V. Klimenko,&nbsp;A. V. Klimenko,&nbsp;A. G. Tereshin,&nbsp;O. B. Mikushina","doi":"10.1134/S0040601524700605","DOIUrl":"10.1134/S0040601524700605","url":null,"abstract":"<p>The prospects for achieving carbon neutrality in economically developed countries that are members of the Organization for Economic Cooperation and Development (OECD) and other countries are examined. An analysis of the energy and land use structure in these countries was carried out. Scenario assessments of the dynamics of changes in carbon indicators of the study economies have been developed, and a comparison has been made with forecasts from leading global energy agencies. It has been shown that, at the current rate of decarbonization and development of the carbon capture and storage (CCS) industry, it is impossible for countries in both groups to fulfill their commitments to achieve climate neutrality in 2050–2070; this goal cannot be achieved before the end of this century. The central challenge in achieving climate neutrality is the rapid and large-scale implementation of CCS technologies in all their possible manifestations. Using a set of global climate system models, calculations of the global average temperature (GAT) were performed for the proposed scenarios, and their results were compared with other works. Despite the fact that climate change occupies almost a leading place on the global agenda, the actual results of efforts in this area are far from those declared, and it is now impossible to cap warming to within 1.5°C. The key task is to minimize the time the global climate system remains in the dangerous extreme zone (above 1.5°C), which will require the emergence of a global economy with negative greenhouse gas (GHG) emissions.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1025 - 1037"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat Exchange Inside a Horizontal Pipe at the Initial Section with Complete Condensation of R142b Freon Vapor R142b氟利昂蒸汽完全冷凝时水平管内初始段的热交换
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700563
O. O. Milman, G. G. Yankov, A. V. Kondratiev, A. V. Ptakhin, V. S. Krylov, V. B. Perov, A. A. Zhinov, A. Yu. Kartuesova

Heat exchange during condensation of freons has been studied quite well; however, various flow regimes of the steam-condensate mixture may arise during condensation inside heat-exchange pipes. There is a large amount of experimental data on the condensation of freons inside pipes with different internal diameters. However, the results obtained by different authors are contradictory, and experimental dependencies can give a high error in the event of a discrepancy between the calculated and actual flow regimes of the steam-condensate mixture. Due to the difficulty of identifying these modes for each such case, reliable recommendations for the calculation and design of heat exchangers must be based on experimental data. In order to obtain such materials, an experimental stand was developed and manufactured, allowing the study of condensation processes of various working fluids in a horizontal cooled tube. The working section of the stand was a copper pipe with an external diameter of 32 mm and a wall thickness of 2 mm, built into an external steel pipe with a diameter of 45 × 3 mm with an annular gap of 3.5 mm. Five chromel-copel thermocouples were installed in the gap to measure the water temperature; they were led to the measuring instruments through the wall of the outer pipe. Thermocouples were also installed in the copper pipe wall. The stand’s thermocouples were precalibrated, and the freon and cooling water consumption was determined by the differences on the flow diaphragms with an error not exceeding 1.5%. The temperatures of cooling water and condensing freon R142b along the length of the heat-exchange pipe were obtained for some flow regimes with different parameters of the working fluid at the pipe inlet. A sharp decrease in the local heat-transfer coefficient along the length of the heat-exchange pipe during complete condensation is shown and is especially significant at its inlet section. The obtained data will be used in the design of heat exchangers with condensation of R142b freon in horizontal pipes.

氟利昂冷凝过程中的热交换问题已经得到了很好的研究;然而,在热交换管内冷凝过程中,蒸汽-冷凝水混合物可能出现不同的流动形式。在不同内径的管道内,有大量的氟利昂冷凝的实验数据。然而,不同作者得到的结果是相互矛盾的,并且实验依赖关系在计算和实际流动状态之间存在差异的情况下可能会产生很高的误差。由于很难确定每种情况下的这些模式,因此必须以实验数据为基础,对换热器的计算和设计提出可靠的建议。为了获得这种材料,开发和制造了一个实验台,可以研究各种工质在水平冷却管中的冷凝过程。支架的工作部分为外径32毫米、壁厚2毫米的铜管,内置于外径45 × 3毫米、环形间隙3.5毫米的钢管内。在间隙中安装了5个铬钴热电偶来测量水温;他们穿过外管的壁,被引到测量仪器跟前。热电偶也安装在铜管壁上。对支架热电偶进行预校准,根据流量隔膜的差异确定氟利昂和冷却水消耗量,误差不超过1.5%。在不同工质参数下,得到了不同流态下的冷却水和冷凝氟利昂R142b沿换热管长度的温度。在完全冷凝过程中,局部传热系数沿换热管长度的急剧下降,在其进口段尤为显著。所得数据将用于水平管内R142b氟利昂冷凝换热器的设计。
{"title":"Heat Exchange Inside a Horizontal Pipe at the Initial Section with Complete Condensation of R142b Freon Vapor","authors":"O. O. Milman,&nbsp;G. G. Yankov,&nbsp;A. V. Kondratiev,&nbsp;A. V. Ptakhin,&nbsp;V. S. Krylov,&nbsp;V. B. Perov,&nbsp;A. A. Zhinov,&nbsp;A. Yu. Kartuesova","doi":"10.1134/S0040601524700563","DOIUrl":"10.1134/S0040601524700563","url":null,"abstract":"<p>Heat exchange during condensation of freons has been studied quite well; however, various flow regimes of the steam-condensate mixture may arise during condensation inside heat-exchange pipes. There is a large amount of experimental data on the condensation of freons inside pipes with different internal diameters. However, the results obtained by different authors are contradictory, and experimental dependencies can give a high error in the event of a discrepancy between the calculated and actual flow regimes of the steam-condensate mixture. Due to the difficulty of identifying these modes for each such case, reliable recommendations for the calculation and design of heat exchangers must be based on experimental data. In order to obtain such materials, an experimental stand was developed and manufactured, allowing the study of condensation processes of various working fluids in a horizontal cooled tube. The working section of the stand was a copper pipe with an external diameter of 32 mm and a wall thickness of 2 mm, built into an external steel pipe with a diameter of 45 × 3 mm with an annular gap of 3.5 mm. Five chromel-copel thermocouples were installed in the gap to measure the water temperature; they were led to the measuring instruments through the wall of the outer pipe. Thermocouples were also installed in the copper pipe wall. The stand’s thermocouples were precalibrated, and the freon and cooling water consumption was determined by the differences on the flow diaphragms with an error not exceeding 1.5%. The temperatures of cooling water and condensing freon R142b along the length of the heat-exchange pipe were obtained for some flow regimes with different parameters of the working fluid at the pipe inlet. A sharp decrease in the local heat-transfer coefficient along the length of the heat-exchange pipe during complete condensation is shown and is especially significant at its inlet section. The obtained data will be used in the design of heat exchangers with condensation of R142b freon in horizontal pipes.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1061 - 1066"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation Results for the Technology of Comprehensive Purification of Fire-Resistant Oils 耐火油综合净化技术的实施效果
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700599
R. V. Akulich, N. V. Arzhinovskaya

Currently, power facilities that operate turbine lubrication and control systems using fire-resistant oil only use fire-resistant fluids from foreign manufacturers (Reolube-OMTI, Reolube 46RS, and Fyrquel-L). The impossibility of domestic production of fire-resistant oil is connected with the loss of a special industrial raw material base in Russia in the 1990s. Restoring the entire technological cycle is not a matter for the immediate future. To maintain the operational readiness of oils used in process equipment, extend their service life, and reduce the volume of replacement, it is necessary to organize a high-quality cleaning process. For this purpose, the All-Russia Thermal Engineering Research Institute developed technology for the comprehensive cleaning of fire-resistant liquids and created equipment for its implementation at energy facilities. The results are presented of the analysis of complex cleaning and restoration of oils with their draining from the oil system and “on the go.” The quality indicators of the oils in both variants have been significantly improved—the acid number, deaeration and demulsification time, moisture content, and corrosive aggressiveness of the oil have been reduced, the industrial purity class has been lowered, etc.—and values for individual indicators have been achieved that meet the requirements for fresh oils. It has been shown that it is advisable to carry out complex oil cleaning “on the go,” which helps to clean the oil system from accumulated deposits due to the simultaneously occurring process of sludge dissolution and also allows to significantly reduce the rate of degradation of the restored oil under operating conditions.

目前,使用耐火油的汽轮机润滑和控制系统的电力设施只使用外国制造商(Reolube- omti、Reolube 46RS和Fyrquel-L)生产的耐火油。国内无法生产耐火油与上世纪90年代俄罗斯失去了一个特殊的工业原料基地有关。恢复整个技术周期并不是近期的事情。为了保持工艺设备中使用的油的运行状态,延长其使用寿命,减少更换量,有必要组织高质量的清洗过程。为此,全俄热能工程研究所开发了防火液体的全面清洁技术,并创造了在能源设施中实施的设备。结果提出了复杂的清洗和恢复油的分析,他们从油系统排水和“在旅途中”。两种变体的油的质量指标都有了明显的改善,如酸数、脱氧破乳时间、含水率、腐蚀性降低、工业纯度等级降低等,而且各项指标都达到了新鲜油的要求。研究表明,“在旅途中”进行复杂的油清洗是可取的,这有助于清除由于同时发生的污泥溶解过程而积聚的沉积物,并且还可以显着降低在操作条件下恢复的油的降解率。
{"title":"Implementation Results for the Technology of Comprehensive Purification of Fire-Resistant Oils","authors":"R. V. Akulich,&nbsp;N. V. Arzhinovskaya","doi":"10.1134/S0040601524700599","DOIUrl":"10.1134/S0040601524700599","url":null,"abstract":"<p>Currently, power facilities that operate turbine lubrication and control systems using fire-resistant oil only use fire-resistant fluids from foreign manufacturers (Reolube-OMTI, Reolube 46RS, and Fyrquel-L). The impossibility of domestic production of fire-resistant oil is connected with the loss of a special industrial raw material base in Russia in the 1990s. Restoring the entire technological cycle is not a matter for the immediate future. To maintain the operational readiness of oils used in process equipment, extend their service life, and reduce the volume of replacement, it is necessary to organize a high-quality cleaning process. For this purpose, the All-Russia Thermal Engineering Research Institute developed technology for the comprehensive cleaning of fire-resistant liquids and created equipment for its implementation at energy facilities. The results are presented of the analysis of complex cleaning and restoration of oils with their draining from the oil system and “on the go.” The quality indicators of the oils in both variants have been significantly improved—the acid number, deaeration and demulsification time, moisture content, and corrosive aggressiveness of the oil have been reduced, the industrial purity class has been lowered, etc.—and values for individual indicators have been achieved that meet the requirements for fresh oils. It has been shown that it is advisable to carry out complex oil cleaning “on the go,” which helps to clean the oil system from accumulated deposits due to the simultaneously occurring process of sludge dissolution and also allows to significantly reduce the rate of degradation of the restored oil under operating conditions.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1094 - 1100"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Dioxide Absorption by Microalgae: Analysis of Technologies and Energy Costs 微藻吸收二氧化碳:技术和能源成本分析
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700587
S. V. Kiseleva, N. I. Chernova, M. S. Vlaskin, A. V. Grigorenko, E. A. Chunzhuk, S. Ya. Malaniy, E. A. Bakumenko, T. V. Rositskaya

Reducing greenhouse gas emissions remains a topical issue in fundamental and applied scientific research, including in terms of analyzing developed and applied CO2 capture technologies. The main focus is on methods of carbon dioxide burial in stable geological formations, absorption, filtration, etc. The absorption of carbon dioxide during photosynthesis is usually associated with terrestrial biota, although aquatic organisms have a higher productivity of photosynthesis. The use of microalgae as photosynthetic agents is determined mainly by their value for obtaining high-quality food and feed additives, pharmaceutical products, and biofuels, but it is important to consider their effectiveness in the associated absorption of CO2. When producing products with a long carbon sequestration period, this method can be included in the list of effective carbon capture technologies. To estimate the specific energy costs for CO2 absorption, proven cultivation methods were considered: open-plane cultivators (microalgae Arthrospira platensis, growth rate from 20 to 40 g/m2 per day on dry matter) and cylindrical closed photobioreactors (microalgae Chlorella vulgaris, growth rate 0.7 g/dm3 per day in dry matter). Based on experimental results of microalgae cultivation under conditions of elevated CO2 concentrations, it is shown that specific energy consumption is in the range from 27 to 768 GJ/t when cultivating A. platensis microalgae and from 59 to 373 GJ/t in microalgae cultivation of C. vulgaris. The greatest energy costs are required for heating and lighting microalgae plantations as well as for separating biomass from the culture liquid for microalgae with small cell sizes. Specific energy consumption can be reduced by maximizing the use of natural light and waste heat from industrial facilities and optimizing biomass collection systems.

减少温室气体排放仍然是基础和应用科学研究中的一个热门问题,包括分析已开发和应用的二氧化碳捕集技术。重点研究了稳定地质构造中二氧化碳埋藏、吸收、过滤等方法。光合作用过程中二氧化碳的吸收通常与陆地生物群有关,尽管水生生物具有更高的光合作用生产力。微藻作为光合作用剂的使用主要取决于它们在获得高质量食品和饲料添加剂、制药产品和生物燃料方面的价值,但重要的是要考虑它们在相关二氧化碳吸收方面的有效性。当生产出固碳周期较长的产品时,该方法可列入有效的碳捕获技术清单。估计二氧化碳吸收特定的能源成本,证明培养方法被认为是:开机耕种者(微藻Arthrospira platensis,增长率从20到40 g / m2每天干物质)和圆柱形封闭生物反应器(微藻小球藻寻常的,增长率0.7克/ dm3每天在干物质)。根据CO2浓度升高条件下的微藻培养实验结果表明,培养平顶扁豆微藻的比能量消耗在27 ~ 768 GJ/t之间,培养普通扁豆微藻的比能量消耗在59 ~ 373 GJ/t之间。微藻人工林的加热和照明以及从小细胞微藻的培养液中分离生物质所需的能源成本最大。通过最大限度地利用工业设施的自然光和废热,以及优化生物质收集系统,可以降低比能耗。
{"title":"Carbon Dioxide Absorption by Microalgae: Analysis of Technologies and Energy Costs","authors":"S. V. Kiseleva,&nbsp;N. I. Chernova,&nbsp;M. S. Vlaskin,&nbsp;A. V. Grigorenko,&nbsp;E. A. Chunzhuk,&nbsp;S. Ya. Malaniy,&nbsp;E. A. Bakumenko,&nbsp;T. V. Rositskaya","doi":"10.1134/S0040601524700587","DOIUrl":"10.1134/S0040601524700587","url":null,"abstract":"<p>Reducing greenhouse gas emissions remains a topical issue in fundamental and applied scientific research, including in terms of analyzing developed and applied CO<sub>2</sub> capture technologies. The main focus is on methods of carbon dioxide burial in stable geological formations, absorption, filtration, etc. The absorption of carbon dioxide during photosynthesis is usually associated with terrestrial biota, although aquatic organisms have a higher productivity of photosynthesis. The use of microalgae as photosynthetic agents is determined mainly by their value for obtaining high-quality food and feed additives, pharmaceutical products, and biofuels, but it is important to consider their effectiveness in the associated absorption of CO<sub>2</sub>. When producing products with a long carbon sequestration period, this method can be included in the list of effective carbon capture technologies. To estimate the specific energy costs for CO<sub>2</sub> absorption, proven cultivation methods were considered: open-plane cultivators (microalgae <i>Arthrospira platensis,</i> growth rate from 20 to 40 g/m<sup>2</sup> per day on dry matter) and cylindrical closed photobioreactors (microalgae <i>Chlorella vulgaris</i>, growth rate 0.7 g/dm<sup>3</sup> per day in dry matter). Based on experimental results of microalgae cultivation under conditions of elevated CO<sub>2</sub> concentrations, it is shown that specific energy consumption is in the range from 27 to 768 GJ/t when cultivating <i>A. platensis</i> microalgae and from 59 to 373 GJ/t in microalgae cultivation of <i>C. vulgaris</i>. The greatest energy costs are required for heating and lighting microalgae plantations as well as for separating biomass from the culture liquid for microalgae with small cell sizes. Specific energy consumption can be reduced by maximizing the use of natural light and waste heat from industrial facilities and optimizing biomass collection systems.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1038 - 1048"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Investigation into the Effect of Prandtl Number on Heat Transfer in a Liquid Metal Flow in a Round Tube at a Constant Peclet Number 恒定小波数下普朗特数对圆管内金属液流动传热影响的研究
IF 0.9 Q4 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1134/S0040601524700575
D. A. Ognerubov, Ya. I. Listratov

The effect of dimensionless operating parameters (Reynolds (Re) and Prandtl (Pr) numbers) on the dimensionless heat-transfer coefficient (Nusselt (Nu) number) is examined in a liquid metal flow in a round tube. The Nu number dependences at Pr ( ll ) 1 (liquid metals) are often presented as Nu = f (Pe), where Pe = Re Pr is the Peclet number. The simplified dependence for Nu relies very much on the fact that determination of the dependence Nu = f (Re, Pr) from the experiments with liquid metal coolants is a challenging matter since such experiments involve great difficulties. Moreover, the measurement error in in such experiments is 10–20% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.

研究了圆管内液态金属流动中无量纲运行参数(雷诺数和普朗特尔数)对无量纲换热系数(努塞尔数)的影响。在Pr ( ll ) 1(液态金属)中的Nu数依赖关系通常表示为Nu = f (Pe),其中Pe = Re Pr是佩雷数。Nu的简化依赖关系很大程度上依赖于这样一个事实,即从液态金属冷却剂实验中确定Nu = f (Re, Pr)的依赖关系是一件具有挑战性的事情,因为这种实验涉及很大的困难。实验测量误差在10-20之间% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.
{"title":"An Investigation into the Effect of Prandtl Number on Heat Transfer in a Liquid Metal Flow in a Round Tube at a Constant Peclet Number","authors":"D. A. Ognerubov,&nbsp;Ya. I. Listratov","doi":"10.1134/S0040601524700575","DOIUrl":"10.1134/S0040601524700575","url":null,"abstract":"<p>The effect of dimensionless operating parameters (Reynolds (Re) and Prandtl (Pr) numbers) on the dimensionless heat-transfer coefficient (Nusselt (Nu) number) is examined in a liquid metal flow in a round tube. The Nu number dependences at Pr <span>( ll )</span> 1 (liquid metals) are often presented as Nu = <i>f</i> (Pe), where Pe = Re Pr is the Peclet number. The simplified dependence for Nu relies very much on the fact that determination of the dependence Nu = <i>f</i> (Re, Pr) from the experiments with liquid metal coolants is a challenging matter since such experiments involve great difficulties. Moreover, the measurement error in in such experiments is 10–20% or higher, which is comparable with the deviation of the Nusselt number under the effect of the Prandtl number. In addition, when making experiments under earthly environment conditions, the effect of natural convection on the experimental results cannot be eliminated. In this work, to study the dependence of the Nusselt number on the Prandtl number, a series of calculations of a liquid metal flow in a round tube at a constant Peclet number was performed using the direct numerical simulation (DNS) technique. The predictions demonstrate an increase in the Nusselt number by approximately 10% as the Prandtl number drops from Pr = 0.025 (mercury) to Pr = 0.005 (liquid sodium) at Pe = 125. The influence of the Pr number on the Nu number decreases (in percentage terms) as the Pe number increases.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1076 - 1082"},"PeriodicalIF":0.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Thermal Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1