首页 > 最新文献

Topics in Current Chemistry最新文献

英文 中文
Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview 含两性咪唑基序的小分子染料敏化太阳能电池的敏化剂:综述
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-09-20 DOI: 10.1007/s41061-022-00404-7
Govardhana Babu Bodedla, Xunjin Zhu, Zhi Zhou, Wai-Yeung Wong

Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (DA), linker/branch (π), or acceptors (A) in D–π–A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D–π–A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature. Similarly, in the case of inorganic complexes, the presence of IM motifs as ligands can improve the light-harvesting ability, give facilely tuned HOMO and LUMO energy levels, increase the charge recombination resistance and photostability. This results in enhanced photocurrent (JSC) and photovoltage (VOC) and consequently solar-to-power conversion efficiency (η) of DSSC devices based on Ru(II) and Ir(III) complexes. Considering the interesting DSSC applications of IM-derived molecules, in this review, we therefore comprehensively discuss their photophysical, electrochemical and photovoltaic properties reported so far and establish their structure–activity relationship to further advance the η of DSSCs. To the best of our knowledge, there is no such a review interpreting the importance of molecules possessing IM-motifs for DSSC applications to date.

Graphical Abstract

有机染料、卟啉和含咪唑(IM)基元的无机配合物已被证明是染料敏化太阳能电池(DSSCs)中一类新的敏化剂。特别是,im基基的两性性质使得它们可以在D - π基有机染料和卟啉中用作供体(D)、辅助供体(DA)、连接体/分支(π)或受体(A),也可以在DSSCs的Ru(II)和Ir(III)配合物中用作环金属化的杂性配体和辅助配体。值得注意的是,在D -π-A构型的染料中引入IM发色团,可以提高染料的捕光性能,并由于π共轭结构的扩展和疏水性而抑制电荷复合反应。同样,在无机配合物的情况下,IM基序作为配体的存在可以提高光收集能力,提供易于调节的HOMO和LUMO能级,增加电荷重组电阻和光稳定性。这导致基于Ru(II)和Ir(III)配合物的DSSC器件的光电流(JSC)和光电压(VOC)增强,从而提高了太阳能到电力的转换效率(η)。考虑到im衍生分子在DSSC中的应用,本文综合讨论了迄今为止报道的DSSC的光物理、电化学和光伏性质,并建立了它们的构效关系,以进一步推进DSSC的η。据我们所知,到目前为止,还没有这样的综述来解释具有im基序的分子对DSSC应用的重要性。图形抽象
{"title":"Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview","authors":"Govardhana Babu Bodedla,&nbsp;Xunjin Zhu,&nbsp;Zhi Zhou,&nbsp;Wai-Yeung Wong","doi":"10.1007/s41061-022-00404-7","DOIUrl":"10.1007/s41061-022-00404-7","url":null,"abstract":"<div><p>Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (D<sub>A</sub>), linker/branch (π), or acceptors (A) in D–π–A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D–π–A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature. Similarly, in the case of inorganic complexes, the presence of IM motifs as ligands can improve the light-harvesting ability, give facilely tuned HOMO and LUMO energy levels, increase the charge recombination resistance and photostability. This results in enhanced photocurrent (<i>J</i><sub>SC</sub>) and photovoltage (<i>V</i><sub>OC</sub>) and consequently solar-to-power conversion efficiency (<i>η</i>) of DSSC devices based on Ru(II) and Ir(III) complexes. Considering the interesting DSSC applications of IM-derived molecules, in this review, we therefore comprehensively discuss their photophysical, electrochemical and photovoltaic properties reported so far and establish their structure–activity relationship to further advance the <i>η</i> of DSSCs. To the best of our knowledge, there is no such a review interpreting the importance of molecules possessing IM-motifs for DSSC applications to date.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4806720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Correction to: Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration 更正:用于环境修复的共价和非共价功能化纳米材料
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-09-02 DOI: 10.1007/s41061-022-00405-6
Shizhong Zhang, Sumeet Malik, Nisar Ali, Adnan Khan, Muhammad Bilal, Kashif Rasool
{"title":"Correction to: Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration","authors":"Shizhong Zhang,&nbsp;Sumeet Malik,&nbsp;Nisar Ali,&nbsp;Adnan Khan,&nbsp;Muhammad Bilal,&nbsp;Kashif Rasool","doi":"10.1007/s41061-022-00405-6","DOIUrl":"10.1007/s41061-022-00405-6","url":null,"abstract":"","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00405-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4105079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Luminescent Metal Complexes as Emerging Tools for Lipid Imaging 发光金属配合物作为新兴的脂质成像工具
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-08-17 DOI: 10.1007/s41061-022-00400-x
Bradley J. Schwehr, David Hartnell, Massimiliano Massi, Mark J. Hackett

Fluorescence microscopy is a key tool in the biological sciences, which finds use as a routine laboratory technique (e.g., epifluorescence microscope) or more advanced confocal, two-photon, and super-resolution applications. Through continued developments in microscopy, and other analytical methods, the importance of lipids as constituents of subcellular organelles, signalling or regulating molecules continues to emerge. The increasing recognition of the importance of lipids to fundamental cell biology (in health and disease) has prompted the development of protocols and techniques to image the distribution of lipids in cells and tissues. A diverse suite of spectroscopic and microscopy tools are continuously being developed and explored to add to the “toolbox” to study lipid biology. A relatively recent breakthrough in this field has been the development and subsequent application of metal-based luminescent complexes for imaging lipids in biological systems. These metal-based compounds appear to offer advantages with respect to their tunability of the photophysical properties, in addition to capabilities centred around selectively targeting specific lipid structures or classes of lipids. The presence of the metal centre also opens the path to alternative imaging modalities that might not be applicable to traditional organic fluorophores. This review examines the current progress and developments in metal-based luminescent complexes to study lipids, in addition to exploring potential new avenues and challenges for the field to take.

荧光显微镜是生物科学中的一个关键工具,它可以作为常规的实验室技术(例如,荧光显微镜)或更先进的共聚焦、双光子和超分辨率应用。通过显微镜和其他分析方法的不断发展,脂质作为亚细胞细胞器成分、信号或调节分子的重要性不断显现。人们越来越认识到脂质对基础细胞生物学(健康和疾病)的重要性,这促使了脂质在细胞和组织中分布成像的方案和技术的发展。一套多样化的光谱和显微镜工具正在不断地被开发和探索,以添加到研究脂质生物学的“工具箱”中。金属基发光配合物在生物系统中成像脂质是这一领域的一个相对较新的突破。这些金属基化合物除了具有选择性靶向特定脂质结构或脂质类别的能力外,其光物理性质的可调性似乎具有优势。金属中心的存在也为可能不适用于传统有机荧光团的替代成像模式开辟了道路。本文综述了金属基发光配合物在脂类研究中的最新进展和发展,并探讨了该领域可能面临的新途径和挑战。
{"title":"Luminescent Metal Complexes as Emerging Tools for Lipid Imaging","authors":"Bradley J. Schwehr,&nbsp;David Hartnell,&nbsp;Massimiliano Massi,&nbsp;Mark J. Hackett","doi":"10.1007/s41061-022-00400-x","DOIUrl":"10.1007/s41061-022-00400-x","url":null,"abstract":"<div><p>Fluorescence microscopy is a key tool in the biological sciences, which finds use as a routine laboratory technique (e.g., epifluorescence microscope) or more advanced confocal, two-photon, and super-resolution applications. Through continued developments in microscopy, and other analytical methods, the importance of lipids as constituents of subcellular organelles, signalling or regulating molecules continues to emerge. The increasing recognition of the importance of lipids to fundamental cell biology (in health and disease) has prompted the development of protocols and techniques to image the distribution of lipids in cells and tissues. A diverse suite of spectroscopic and microscopy tools are continuously being developed and explored to add to the “toolbox” to study lipid biology. A relatively recent breakthrough in this field has been the development and subsequent application of metal-based luminescent complexes for imaging lipids in biological systems. These metal-based compounds appear to offer advantages with respect to their tunability of the photophysical properties, in addition to capabilities centred around selectively targeting specific lipid structures or classes of lipids. The presence of the metal centre also opens the path to alternative imaging modalities that might not be applicable to traditional organic fluorophores. This review examines the current progress and developments in metal-based luminescent complexes to study lipids, in addition to exploring potential new avenues and challenges for the field to take.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00400-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4672230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region 用于近红外(NIR)区域生物测定的发光金属配合物
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-06-18 DOI: 10.1007/s41061-022-00386-6
Guo-Qing Jin, Li-Jun Guo, Jing Zhang, Song Gao, Jun-Long Zhang

Near-infrared (NIR, 700–1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.

近红外(NIR, 700-1700 nm)发光成像是一种新兴的生物成像技术,具有低光子散射,最小的自身荧光,深层组织穿透和高时空分辨率,在近红外成像引导的治疗中显示出迷人的前景。近年来,近红外发光金属配合物因其具有体积小、抗光漂白、寿命长、金属中心近红外发射等优点而受到越来越多的研究关注。在过去的十年中,科学家们对近红外金属配合物的进步做出了贡献,包括努力改善光物理性质、生物相容性、特异性、药代动力学、体内可视化,并尝试开发新的配体平台。在此,我们总结了近红外金属配合物的最新进展,并展望了未来的发展前景,包括d-嵌段过渡金属和f-嵌段镧系元素(Ln)作为近红外光学分子探针用于生物分析。
{"title":"Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region","authors":"Guo-Qing Jin,&nbsp;Li-Jun Guo,&nbsp;Jing Zhang,&nbsp;Song Gao,&nbsp;Jun-Long Zhang","doi":"10.1007/s41061-022-00386-6","DOIUrl":"10.1007/s41061-022-00386-6","url":null,"abstract":"<div><p>Near-infrared (NIR, 700–1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5018501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Photocatalytic Reforming of Biomass: What Role Will the Technology Play in Future Energy Systems 生物质光催化重整:该技术在未来能源系统中将扮演什么角色
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-06-18 DOI: 10.1007/s41061-022-00391-9
Nathan Skillen, Helen Daly, Lan Lan, Meshal Aljohani, Christopher W. J. Murnaghan, Xiaolei Fan, Christopher Hardacre, Gary N. Sheldrake, Peter K. J. Robertson

Photocatalytic reforming of biomass has emerged as an area of significant interest within the last decade. The number of papers published in the literature has been steadily increasing with keywords such as ‘hydrogen’ and ‘visible’ becoming prominent research topics. There are likely two primary drivers behind this, the first of which is that biomass represents a more sustainable photocatalytic feedstock for reforming to value-added products and energy. The second is the transition towards achieving net zero emission targets, which has increased focus on the development of technologies that could play a role in future energy systems. Therefore, this review provides a perspective on not only the current state of the research but also a future outlook on the potential roadmap for photocatalytic reforming of biomass. Producing energy via photocatalytic biomass reforming is very desirable due to the ambient operating conditions and potential to utilise renewable energy (e.g., solar) with a wide variety of biomass resources. As both interest and development within this field continues to grow, however, there are challenges being identified that are paramount to further advancement. In reviewing both the literature and trajectory of the field, research priorities can be identified and utilised to facilitate fundamental research alongside whole systems evaluation. Moreover, this would underpin the enhancement of photocatalytic technology with a view towards improving the technology readiness level and promoting engagement between academia and industry.

在过去十年中,生物质的光催化重整已成为一个引人注目的领域。随着“氢”和“可见”等关键词成为突出的研究课题,在文献中发表的论文数量稳步增加。这背后可能有两个主要驱动因素,首先是生物质代表了一种更可持续的光催化原料,可以转化为增值产品和能源。第二个是向实现净零排放目标的过渡,这使人们更加注重开发可能在未来能源系统中发挥作用的技术。因此,本文不仅对生物质光催化重整的研究现状进行了展望,而且对生物质光催化重整的潜在路线图进行了展望。由于环境操作条件和利用各种生物质资源的可再生能源(例如太阳能)的潜力,通过光催化生物质重整生产能源是非常可取的。然而,随着人们对这一领域的兴趣和发展不断增长,人们发现了对进一步发展至关重要的挑战。在回顾文献和该领域的发展轨迹时,可以确定研究重点,并利用其促进基础研究和整个系统评估。此外,这将加强光催化技术,以提高技术准备水平,促进学术界和工业界之间的合作。
{"title":"Photocatalytic Reforming of Biomass: What Role Will the Technology Play in Future Energy Systems","authors":"Nathan Skillen,&nbsp;Helen Daly,&nbsp;Lan Lan,&nbsp;Meshal Aljohani,&nbsp;Christopher W. J. Murnaghan,&nbsp;Xiaolei Fan,&nbsp;Christopher Hardacre,&nbsp;Gary N. Sheldrake,&nbsp;Peter K. J. Robertson","doi":"10.1007/s41061-022-00391-9","DOIUrl":"10.1007/s41061-022-00391-9","url":null,"abstract":"<div><p>Photocatalytic reforming of biomass has emerged as an area of significant interest within the last decade. The number of papers published in the literature has been steadily increasing with keywords such as ‘hydrogen’ and ‘visible’ becoming prominent research topics. There are likely two primary drivers behind this, the first of which is that biomass represents a more sustainable photocatalytic feedstock for reforming to value-added products and energy. The second is the transition towards achieving net zero emission targets, which has increased focus on the development of technologies that could play a role in future energy systems. Therefore, this review provides a perspective on not only the current state of the research but also a future outlook on the potential roadmap for photocatalytic reforming of biomass. Producing energy via photocatalytic biomass reforming is very desirable due to the ambient operating conditions and potential to utilise renewable energy (e.g., solar) with a wide variety of biomass resources. As both interest and development within this field continues to grow, however, there are challenges being identified that are paramount to further advancement. In reviewing both the literature and trajectory of the field, research priorities can be identified and utilised to facilitate fundamental research alongside whole systems evaluation. Moreover, this would underpin the enhancement of photocatalytic technology with a view towards improving the technology readiness level and promoting engagement between academia and industry.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00391-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4725843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing 金属肽偶联物在细胞和组织成像和生物传感中的应用
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-06-15 DOI: 10.1007/s41061-022-00384-8
Karmel S. Gkika, David Cullinane, Tia E. Keyes

Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.

在过去的十年中,金属络合发光基团作为成像探针的应用得到了极大的扩展。这是通过对促进其细胞渗透和细胞内靶向的方法的不断了解而实现的。在这方面应用的成功方法之一是肽促进递送。细胞渗透肽或信号肽可以很容易地结合到金属复合发光基团上,并且在携带这些货物通过细胞膜方面表现出优异的反应。在这篇文章中,我们描述了在细胞成像中应用金属配合物作为探针和传感器的基本原理,并概述了将肽作为复杂发光团的载体所获得的优势。我们描述了在金属络合物中应用肽作为过渡金属发光基团渗透和靶向策略的肽驱动偶联物方面取得的一些进展。最后,我们提供了关键的应用实例,并概述了未来的发展方向。
{"title":"Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing","authors":"Karmel S. Gkika,&nbsp;David Cullinane,&nbsp;Tia E. Keyes","doi":"10.1007/s41061-022-00384-8","DOIUrl":"10.1007/s41061-022-00384-8","url":null,"abstract":"<div><p>Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00384-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4618245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors 基于钌(II)配合物的化学传感器对生物小分子和离子的测定和成像
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-06-13 DOI: 10.1007/s41061-022-00392-8
Miaomiao Wu, Zexi Zhang, Jiaxi Yong, Peer M. Schenk, Dihua Tian, Zhi Ping Xu, Run Zhang

Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes’ evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.

发光化学传感器是实时测定和成像生物小分子和离子的最有用的工具之一。基于钌(II) (Ru(II))配合物独特的光物理/化学性质,基于Ru(II)配合物的化学传感器的开发近年来受到越来越多的关注,因此许多Ru(II)配合物被设计和合成用于检测生物和环境样品中的离子和小生物分子。在这项工作中,我们总结了基于Ru(II)配合物的化学传感器的研究进展,用于测定离子和小生物分子,包括阴离子,金属离子,活性生物分子和氨基酸,特别关注基于结合/反应的化学传感器,用于通过发光分析和成像研究细胞内分析物的进化。讨论了Ru(II)配合物化学传感器的研究进展、面临的挑战和未来的研究方向。
{"title":"Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors","authors":"Miaomiao Wu,&nbsp;Zexi Zhang,&nbsp;Jiaxi Yong,&nbsp;Peer M. Schenk,&nbsp;Dihua Tian,&nbsp;Zhi Ping Xu,&nbsp;Run Zhang","doi":"10.1007/s41061-022-00392-8","DOIUrl":"10.1007/s41061-022-00392-8","url":null,"abstract":"<div><p>Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes’ evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00392-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4542184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes 基于半导体光电极的太阳能可充电海水电池研究进展
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-06-04 DOI: 10.1007/s41061-022-00380-y
Samaneh Mozaffari, Mohammad Reza Nateghi

With the ever-increasing demand for energy in the world, the tendency to use renewable energies has been growing rapidly. Sunlight, as an inexhaustible energy source, and the oceans, as one of the most valuable treasures on Earth, are available for free. Simultaneous exploitation of these two sources of energy and matter (sunlight and oceans) in one configuration can provide a sustainable solution for future energy supply. Among the various types of such energy storage and conversion systems, solar rechargeable seawater batteries (SRSBs) can meet this need by storing the chemical energy of seawater by receiving solar energy. SRSBs consist of two compartments: a closed compartment including a sodium metal anode in an organic liquid electrolyte, and an open compartment containing a semiconductor photoelectrode immersed in seawater, which are separated from each other by a ceramic solid electrolyte membrane. In this complex system, the photoelectrode is irradiated by sunlight, whereby electrons are excited and reach the Na metal anode after passing though the external circuit. The ceramic solid electrolyte harvests only sodium ions from seawater and transfers them to the anodic part, where the transferred ions are reduced to sodium metal atoms. At the same time, an oxygen evolution reaction takes place at the cathodic part. In this way, the battery is charged. The use of a photoelectrode in the charging process significantly increases the voltage efficiency of SRSBs to more than 90%, whereas a cell with only the seawater compartment (without a photoelectrode) will not deliver satisfactory performance. Therefore, to achieve very high efficiencies, designing an accurate system with the best components is absolutely necessary. This review focuses on the working principle of SRSBs, at the same time explaining the effect of key components on the performance and stability of SRSBs. The role of the semiconductor photoelectrode in improving the voltage efficiency of SRSBs is also described in detail, and finally strategies proposed to overcome obstacles to the commercialization of SRSBs are introduced.

随着世界能源需求的不断增长,使用可再生能源的趋势迅速增长。阳光作为取之不尽的能源,海洋作为地球上最宝贵的财富之一,都是免费的。同时利用这两种能源和物质(阳光和海洋),可以为未来的能源供应提供可持续的解决方案。在各种类型的储能转换系统中,太阳能可充电海水电池(SRSBs)通过接收太阳能来储存海水的化学能,从而满足了这一需求。SRSBs由两个隔间组成:一个封闭隔间包括有机液体电解质中的金属钠阳极,一个开放隔间包含浸入海水中的半导体光电极,两者之间由陶瓷固体电解质膜隔开。在这个复杂的系统中,光电极被阳光照射,电子被激发并通过外部电路到达Na金属阳极。陶瓷固体电解质只从海水中收集钠离子并将其转移到阳极部分,在阳极部分转移的离子被还原为钠金属原子。同时,阴极部分发生析氧反应。这样,电池就被充电了。在充电过程中使用光电极将SRSBs的电压效率显著提高到90%以上,而只有海水隔间(没有光电极)的电池将无法提供令人满意的性能。因此,为了实现非常高的效率,设计一个精确的系统与最好的组件是绝对必要的。本文综述了SRSBs的工作原理,并阐述了关键组分对SRSBs性能和稳定性的影响。本文还详细介绍了半导体光电极在提高SRSBs电压效率方面的作用,并提出了克服SRSBs商业化障碍的策略。
{"title":"Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes","authors":"Samaneh Mozaffari,&nbsp;Mohammad Reza Nateghi","doi":"10.1007/s41061-022-00380-y","DOIUrl":"10.1007/s41061-022-00380-y","url":null,"abstract":"<div><p>With the ever-increasing demand for energy in the world, the tendency to use renewable energies has been growing rapidly. Sunlight, as an inexhaustible energy source, and the oceans, as one of the most valuable treasures on Earth, are available for free. Simultaneous exploitation of these two sources of energy and matter (sunlight and oceans) in one configuration can provide a sustainable solution for future energy supply. Among the various types of such energy storage and conversion systems, solar rechargeable seawater batteries (SRSBs) can meet this need by storing the chemical energy of seawater by receiving solar energy. SRSBs consist of two compartments: a closed compartment including a sodium metal anode in an organic liquid electrolyte, and an open compartment containing a semiconductor photoelectrode immersed in seawater, which are separated from each other by a ceramic solid electrolyte membrane. In this complex system, the photoelectrode is irradiated by sunlight, whereby electrons are excited and reach the Na metal anode after passing though the external circuit. The ceramic solid electrolyte harvests only sodium ions from seawater and transfers them to the anodic part, where the transferred ions are reduced to sodium metal atoms. At the same time, an oxygen evolution reaction takes place at the cathodic part. In this way, the battery is charged. The use of a photoelectrode in the charging process significantly increases the voltage efficiency of SRSBs to more than 90%, whereas a cell with only the seawater compartment (without a photoelectrode) will not deliver satisfactory performance. Therefore, to achieve very high efficiencies, designing an accurate system with the best components is absolutely necessary. This review focuses on the working principle of SRSBs, at the same time explaining the effect of key components on the performance and stability of SRSBs. The role of the semiconductor photoelectrode in improving the voltage efficiency of SRSBs is also described in detail, and finally strategies proposed to overcome obstacles to the commercialization of SRSBs are introduced.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4173355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Methods for Direct Reductive N-Methylation of Nitro Compounds 硝基化合物直接还原n -甲基化的方法
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-05-24 DOI: 10.1007/s41061-022-00382-w
Zhijie Jiang, Evan Abdulkareem Mahmood, Nazanin Zare Harofteh, Abdol Ghaffar Ebadi, Mohsen Toughani, Esmail Vessally

Direct reductive N-methylation of inexpensive and readily available nitro compounds as raw material feedstocks is more attractive and straightforward compared with conventional N-methylation of amines to prepare biologically and pharmaceutically important N-methylated amine derivatives. This strategy for synthesis of N-methylamines avoids prepreparation of NH-free amines and therefore significantly shortens the separation and purification steps. In recent years, numerous methylating agents and catalytic systems have been reported for this appealing transformation. Thus, it is an appropriate time to summarize such advances. This review elaborates on the most important discoveries and advances in this research arena, with special emphasis on the mechanistic aspect of reactions that may provide new insights into catalyst improvement.

与传统的胺的n -甲基化相比,以廉价和易得的硝基化合物作为原料直接还原n -甲基化制备具有重要生物学和药学意义的n -甲基化胺衍生物更具吸引力和直接性。这种合成n -甲胺的策略避免了无氮胺的预制备,因此大大缩短了分离和纯化步骤。近年来,许多甲基化剂和催化系统已经报道了这种吸引人的转变。因此,现在是总结这些进展的适当时机。这篇综述详细阐述了这一研究领域最重要的发现和进展,特别强调了反应的机理方面,这可能为催化剂的改进提供新的见解。
{"title":"Methods for Direct Reductive N-Methylation of Nitro Compounds","authors":"Zhijie Jiang,&nbsp;Evan Abdulkareem Mahmood,&nbsp;Nazanin Zare Harofteh,&nbsp;Abdol Ghaffar Ebadi,&nbsp;Mohsen Toughani,&nbsp;Esmail Vessally","doi":"10.1007/s41061-022-00382-w","DOIUrl":"10.1007/s41061-022-00382-w","url":null,"abstract":"<div><p>Direct reductive <i>N</i>-methylation of inexpensive and readily available nitro compounds as raw material feedstocks is more attractive and straightforward compared with conventional <i>N</i>-methylation of amines to prepare biologically and pharmaceutically important <i>N</i>-methylated amine derivatives. This strategy for synthesis of <i>N</i>-methylamines avoids prepreparation of NH-free amines and therefore significantly shortens the separation and purification steps. In recent years, numerous methylating agents and catalytic systems have been reported for this appealing transformation. Thus, it is an appropriate time to summarize such advances. This review elaborates on the most important discoveries and advances in this research arena, with special emphasis on the mechanistic aspect of reactions that may provide new insights into catalyst improvement.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42124644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Like Visiting an Old Friend: Fischer Glycosylation in the Twenty-First Century: Modern Methods and Techniques 像拜访老朋友:21世纪的费舍尔糖基化:现代方法和技术
IF 8.6 2区 化学 Q1 Chemistry Pub Date : 2022-05-21 DOI: 10.1007/s41061-022-00383-9
Matteo Haese, Kai Winterhalter, Jessica Jung, Magnus S. Schmidt

Fischer glycosylation is typically the chemical reaction of a monosaccharide and an alcohol in presence of an acidic catalyst to afford glycosides in pyranosidic and furanosidic forms. This reaction is still applied today for the synthesis of specialized glycosides, and optimization and modification of the method have continued since its discovery by Emil Fischer in the 1890s. This review presents advancements in Fischer glycosylation described in literature of the past 15 years and its implementation in modern chemical methods.

费舍尔糖基化是单糖和醇在酸性催化剂作用下产生吡喃苷和呋喃苷形式的典型化学反应。这个反应至今仍用于合成特殊的糖苷,自埃米尔·费舍尔在19世纪90年代发现该方法以来,对该方法的优化和修改一直在继续。本文综述了近15年来Fischer糖基化的研究进展及其在现代化学方法中的应用。
{"title":"Like Visiting an Old Friend: Fischer Glycosylation in the Twenty-First Century: Modern Methods and Techniques","authors":"Matteo Haese,&nbsp;Kai Winterhalter,&nbsp;Jessica Jung,&nbsp;Magnus S. Schmidt","doi":"10.1007/s41061-022-00383-9","DOIUrl":"10.1007/s41061-022-00383-9","url":null,"abstract":"<div><p>Fischer glycosylation is typically the chemical reaction of a monosaccharide and an alcohol in presence of an acidic catalyst to afford glycosides in pyranosidic and furanosidic forms. This reaction is still applied today for the synthesis of specialized glycosides, and optimization and modification of the method have continued since its discovery by Emil Fischer in the 1890s. This review presents advancements in Fischer glycosylation described in literature of the past 15 years and its implementation in modern chemical methods.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"380 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-022-00383-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90731039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Topics in Current Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1