The development of molecular photocatalytic systems for CO2 reduction is a continuous challenge for chemists. Herein, the photocatalytic reductions of CO2 by [CoII(L1)(η1-ONO2)2] (1) (L1 = 6,6'-(pyridine-2,6-diyl)bis(1,3,5-triazine-2,4-diamine)) and [CoII(L2)(H2O)2]2+ (2) (L2 = 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(1,3,5-triazine-2,4-diamine)) have been investigated. With Ir(ppy)3 as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant in DMF/triethylamine solution under irradiation by white light-emitting diode (λ > 420 nm), CO was selectively produced with a turnover number (TON) of 36 and 89 for 1 and 2, respectively. Based on the electrochemical studies, the triply reduced [Co0(L2•)]ˉ species from 2 is found to be responsible for the activation of CO2 with a large rate constant of k = 506 M−1 s−1. However, the strong CO binding constant of CoI(L2)-CO adduct (K = 5.01 × 106) and the slow CO release from Co0(L2)-CO adduct limit the catalytic efficiency.
{"title":"Photocatalytic CO2 reduction to CO by Cobalt(II) Pyridinyl-1,3,5-Triazine-Diamine complexes","authors":"Leiyu Wang, Jing Chen, Tingting Yang, Yingying Liu, Zhenguo Guo, Jianhui Xie","doi":"10.1007/s11243-023-00557-4","DOIUrl":"10.1007/s11243-023-00557-4","url":null,"abstract":"<div><p>The development of molecular photocatalytic systems for CO<sub>2</sub> reduction is a continuous challenge for chemists. Herein, the photocatalytic reductions of CO<sub>2</sub> by [Co<sup>II(</sup>L1)(<i>η</i><sup>1</sup>-ONO<sub>2</sub>)<sub>2</sub>] (<b>1</b>) (<b>L1</b> = 6,6'-(pyridine-2,6-diyl)bis(1,3,5-triazine-2,4-diamine)) and [Co<sup>II</sup>(L2)(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup> (<b>2</b>) (<b>L2</b> = 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(1,3,5-triazine-2,4-diamine)) have been investigated. With Ir(ppy)<sub>3</sub> as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1<i>H</i>-benzo[<i>d</i>]imidazole as the sacrificial reductant in DMF/triethylamine solution under irradiation by white light-emitting diode (λ > 420 nm), CO was selectively produced with a turnover number (TON) of 36 and 89 for <b>1</b> and<b> 2</b>, respectively. Based on the electrochemical studies, the triply reduced [Co<sup>0</sup>(L2•)]ˉ species from <b>2</b> is found to be responsible for the activation of CO<sub>2</sub> with a large rate constant of <i>k</i> = 506 M<sup>−1</sup> s<sup>−1</sup>. However, the strong CO binding constant of Co<sup>I</sup>(L2)-CO adduct (<i>K</i> = 5.01 × 10<sup>6</sup>) and the slow CO release from Co<sup>0</sup>(L2)-CO adduct limit the catalytic efficiency.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 1","pages":"11 - 16"},"PeriodicalIF":1.6,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.1007/s11243-023-00540-z
Saad Tariq, A. A. Mubarak, Ayash O. Alrashdi, Farida Hamioud, Bushra Kanwal
This is an investigation on the properties of PrMnO3 using density functional theory under varying pressure conditions ranging from 0 to 50 GPa. The study includes an analysis of the material's structural, electronic, mechanical, and thermal properties, utilizing the computational power of density functional theory. The Goldschmidt tolerance factor, enthalpy, and elastic stability criteria are used to evaluate the material's stability. The results suggest that the material is stable under these criteria. Furthermore, the optimization of the material is discussed based on the computed properties. The results show that the material exhibits good ferromagnetic and spintronic properties, making it a promising candidate for use in optoelectronic and spintronic devices. Overall, the findings highlight the potential of PrMnO3 to be a valuable material for these applications, as revealed through the use of density functional theory.
{"title":"Deciphering the impact of pressure on the electronic, mechanical, and structural properties of PrMnO3 through density functional theory analysis","authors":"Saad Tariq, A. A. Mubarak, Ayash O. Alrashdi, Farida Hamioud, Bushra Kanwal","doi":"10.1007/s11243-023-00540-z","DOIUrl":"10.1007/s11243-023-00540-z","url":null,"abstract":"<div><p>This is an investigation on the properties of PrMnO<sub>3</sub> using density functional theory under varying pressure conditions ranging from 0 to 50 GPa. The study includes an analysis of the material's structural, electronic, mechanical, and thermal properties, utilizing the computational power of density functional theory. The Goldschmidt tolerance factor, enthalpy, and elastic stability criteria are used to evaluate the material's stability. The results suggest that the material is stable under these criteria. Furthermore, the optimization of the material is discussed based on the computed properties. The results show that the material exhibits good ferromagnetic and spintronic properties, making it a promising candidate for use in optoelectronic and spintronic devices. Overall, the findings highlight the potential of PrMnO<sub>3</sub> to be a valuable material for these applications, as revealed through the use of density functional theory.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 1","pages":"1 - 10"},"PeriodicalIF":1.6,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135397032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13DOI: 10.1007/s11243-023-00555-6
Estelle Lebègue
{"title":"Allen J. Bard, Larry. R. Faulkner, Henry S. White: Electrochemical Methods: Fundamentals and Applications, 3rd edition, Wiley","authors":"Estelle Lebègue","doi":"10.1007/s11243-023-00555-6","DOIUrl":"10.1007/s11243-023-00555-6","url":null,"abstract":"","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 6","pages":"433 - 436"},"PeriodicalIF":1.7,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-13DOI: 10.1007/s11243-023-00553-8
Susana Dianey Gallegos Cerda, Carlos Alberto Huerta Aguilar, Jashanpreet Singh, Miguel Morales Rodríguez, José Antonio Juanico Loran, Jayanthi Narayanan
Understanding the asymmetric catalytic mechanism involving organometallic species provides exceptional insight into the strategies for the degradation of emerging organic contaminants. The present work demonstrates such insights on the oxidation of commonly used non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, paracetamol, ibuprofen, and aspirin using optically active novel Schiff base Co(II) complexes derived from salicylaldehyde containing five different amino acids (L-methionine, L-leucine, L-asparagine, L-tryptophan, and L-glutamic acid). Among the studied chiral catalysts, asymmetric degradation in the presence of a Co(II) complex containing glutamic acid mixed ligand showed an elevated rate of oxidation of non-amine NSAIDs such as ibuprofen (3.86 × 10–2 s−1) and aspirin (3.70 × 10–3 s−1) using H2O2 oxidant under visible light conditions at neutral pH. The formation of chiral intermediate species in both drugs has been detected and characterized by FTIR and Raman analysis. On the other hand, NSAIDs containing secondary amine groups (–NH–), such as diclofenac and paracetamol, generate effective coordination between the complex catalyst and the nitrogen atom. This explains the high activity of the Co(II) complex with glutamic acid mixed salicylaldehyde with 100% selectivity in the degradation of ibuprofen and aspirin. The thermodynamical feasibility of the proposed degradation route for ibuprofen and aspirin was analyzed with theoretically calculated total energy values of all the intermediates formed in each step of the proposed mechanism.