首页 > 最新文献

Applied Mechanics Reviews最新文献

英文 中文
An Optimized Dynamic Tensile Impact Test for Characterizing the Behavior of Materials 表征材料性能的优化动态拉伸冲击试验
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-09-11 DOI: 10.3390/applmech3030063
O. Pantalé, L. Ming
This paper presents a new dynamic tensile test based on the Taylor impact technique for application on metallic materials. The Taylor impact test is a well-known technique to characterize the behavior of metallic materials in compression because it allows us to reach very high strain rates (105s−1). In this dynamic tensile test, we launch a projectile with an initial velocity into a specially designed target in order to generate tensile deformation in its central area. In this paper, the geometry of a tensile target previously published in our laboratory was modified and optimized to achieve higher plastic strains and strain rates without reaching the critical state of target failure. Numerical simulations and experimental tests validate the new geometry. Experimental tests have been performed with this new geometry to show the gains allowed. Numerical simulations by finite elements on Abaqus show the equivalent plastic deformations and elongation of the two versions of the targets and the correlation of these results with the tests.
提出了一种基于泰勒冲击技术的金属材料动态拉伸试验方法。泰勒冲击试验是一种众所周知的技术,用于表征金属材料在压缩中的行为,因为它允许我们达到非常高的应变率(105s−1)。在这个动态拉伸试验中,我们将弹丸以一定的初速度发射到一个特殊设计的目标中,目的是在目标的中心区域产生拉伸变形。在本文中,我们对实验室先前发表的拉伸目标的几何形状进行了修改和优化,以实现更高的塑性应变和应变率,而不会达到目标失效的临界状态。数值模拟和实验验证了新的几何结构。用这种新几何结构进行了实验测试,以显示所允许的增益。利用有限元软件Abaqus进行了数值模拟,得到了两种形式的等效塑性变形和延伸率,并与试验结果进行了比较。
{"title":"An Optimized Dynamic Tensile Impact Test for Characterizing the Behavior of Materials","authors":"O. Pantalé, L. Ming","doi":"10.3390/applmech3030063","DOIUrl":"https://doi.org/10.3390/applmech3030063","url":null,"abstract":"This paper presents a new dynamic tensile test based on the Taylor impact technique for application on metallic materials. The Taylor impact test is a well-known technique to characterize the behavior of metallic materials in compression because it allows us to reach very high strain rates (105s−1). In this dynamic tensile test, we launch a projectile with an initial velocity into a specially designed target in order to generate tensile deformation in its central area. In this paper, the geometry of a tensile target previously published in our laboratory was modified and optimized to achieve higher plastic strains and strain rates without reaching the critical state of target failure. Numerical simulations and experimental tests validate the new geometry. Experimental tests have been performed with this new geometry to show the gains allowed. Numerical simulations by finite elements on Abaqus show the equivalent plastic deformations and elongation of the two versions of the targets and the correlation of these results with the tests.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"50 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80328766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On Computational Asymptotic Analysis of General Sensitive Shells of Revolution 一般旋转敏感壳的计算渐近分析
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-29 DOI: 10.3390/applmech3030062
H. Hakula
Recent advances in drug delivery technology have led to renewed interest in shell structures with mixed kinematical constraints, one end clamped, another one free, the so-called sensitive shells. It is known that elliptic sensitive shell problems may not always satisfy the Shapiro–Lopatinsky conditions and hence are not necessarily well-posed. The new observation is that for shells of revolution if the profile function has regions of elliptic Gaussian curvature, that region will dictate the overall response of the structure under concentrated loading. Despite the monotonically increasing total energy as the thickness tends asymptotically to zero, these shells are not in a pure bending state. The numerical results have been verified using equivalent lower-dimensional solutions.
药物输送技术的最新进展重新引起了人们对具有混合运动学约束的壳结构的兴趣,一端夹住,另一端自由,即所谓的敏感壳。众所周知,椭圆型敏感壳问题可能并不总是满足Shapiro-Lopatinsky条件,因此不一定是适定的。新的观察结果是,对于旋转壳,如果剖面函数具有椭圆高斯曲率区域,该区域将决定结构在集中载荷下的整体响应。尽管总能量随厚度渐近趋于零而单调增加,但这些壳层并非处于纯弯曲状态。用等效低维解对数值结果进行了验证。
{"title":"On Computational Asymptotic Analysis of General Sensitive Shells of Revolution","authors":"H. Hakula","doi":"10.3390/applmech3030062","DOIUrl":"https://doi.org/10.3390/applmech3030062","url":null,"abstract":"Recent advances in drug delivery technology have led to renewed interest in shell structures with mixed kinematical constraints, one end clamped, another one free, the so-called sensitive shells. It is known that elliptic sensitive shell problems may not always satisfy the Shapiro–Lopatinsky conditions and hence are not necessarily well-posed. The new observation is that for shells of revolution if the profile function has regions of elliptic Gaussian curvature, that region will dictate the overall response of the structure under concentrated loading. Despite the monotonically increasing total energy as the thickness tends asymptotically to zero, these shells are not in a pure bending state. The numerical results have been verified using equivalent lower-dimensional solutions.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"55 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76608392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Towards Ab-Initio Simulations of Crystalline Defects at the Exascale Using Spectral Quadrature Density Functional Theory 基于谱正交密度泛函理论的百亿亿次晶体缺陷Ab-Initio模拟
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-24 DOI: 10.3390/applmech3030061
Swarnava Ghosh
Defects in crystalline solids play a crucial role in determining properties of materials at the nano, meso- and macroscales, such as the coalescence of vacancies at the nanoscale to form voids and prismatic dislocation loops or diffusion and segregation of solutes to nucleate precipitates, phase transitions in magnetic materials via disorder and doping. First principles Density Functional Theory (DFT) simulations can provide a detailed understanding of these phenomena. However, the number of atoms needed to correctly simulate these systems is often beyond the reach of many widely used DFT codes. The aim of this article is to discuss recent advances in first principles modeling of crystal defects using the spectral quadrature method. The spectral quadrature method is linear scaling with respect to the number of atoms, permits spatial coarse-graining, and is capable of simulating non-periodic systems embedded in a bulk environment, which allows the application of appropriate boundary conditions for simulations of crystalline defects. In this article, we discuss the state-of-the-art in ab-initio modeling of large metallic systems of the order of several thousand atoms that are suitable for utilizing exascale computing resourses.
晶体固体中的缺陷在决定材料在纳米、中观和宏观尺度上的性能方面起着至关重要的作用,如纳米尺度上空位的聚并形成孔洞和棱柱位错环,或溶质的扩散和偏析形成成核沉淀,磁性材料中通过无序和掺杂发生的相变。第一性原理密度泛函理论(DFT)模拟可以提供对这些现象的详细理解。然而,正确模拟这些系统所需的原子数量通常超出了许多广泛使用的DFT代码的范围。本文的目的是讨论利用光谱正交法对晶体缺陷进行第一性原理建模的最新进展。光谱正交法是相对于原子数量的线性缩放,允许空间粗粒化,并且能够模拟嵌入在体环境中的非周期系统,这允许应用适当的边界条件来模拟晶体缺陷。在本文中,我们讨论了适用于利用百亿亿级计算资源的数千原子级大型金属系统的最先进的从头算模型。
{"title":"Towards Ab-Initio Simulations of Crystalline Defects at the Exascale Using Spectral Quadrature Density Functional Theory","authors":"Swarnava Ghosh","doi":"10.3390/applmech3030061","DOIUrl":"https://doi.org/10.3390/applmech3030061","url":null,"abstract":"Defects in crystalline solids play a crucial role in determining properties of materials at the nano, meso- and macroscales, such as the coalescence of vacancies at the nanoscale to form voids and prismatic dislocation loops or diffusion and segregation of solutes to nucleate precipitates, phase transitions in magnetic materials via disorder and doping. First principles Density Functional Theory (DFT) simulations can provide a detailed understanding of these phenomena. However, the number of atoms needed to correctly simulate these systems is often beyond the reach of many widely used DFT codes. The aim of this article is to discuss recent advances in first principles modeling of crystal defects using the spectral quadrature method. The spectral quadrature method is linear scaling with respect to the number of atoms, permits spatial coarse-graining, and is capable of simulating non-periodic systems embedded in a bulk environment, which allows the application of appropriate boundary conditions for simulations of crystalline defects. In this article, we discuss the state-of-the-art in ab-initio modeling of large metallic systems of the order of several thousand atoms that are suitable for utilizing exascale computing resourses.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"64 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72753842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bending Stresses and Deformations in Prismatic Profiled Shafts with Noncircular Contours Based on Higher Hybrid Trochoids 基于高混合曲面的非圆轮廓棱柱形轴的弯曲应力和变形
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-23 DOI: 10.3390/applmech3030060
M. Ziaei
This paper presents an analytical method for determining the bending stresses and deformations in prismatic, noncircular profile shafts with trochoidal cross sections. The so-called higher trochoids can be used as form-fit shaft-hub connections. Hybrid (mixed) higher trochoids (M-profiles) were developed for the special application as a profile contour for the form-fit shaft and hub connections in an earlier work by the author. M-profiles combine the advantages of the two standardised polygonal and spline contours, which are used as shaft-hub connections for the transmission of high torques. In this study, the geometric and mechanical properties of the higher hybrid trochoids were investigated using complex functions to simplify the calculations. The pure bending stress and shaft deflection were determined for M-profiles using bending theory based on the theory of mathematical elasticity. The loading cases consisted of static and rotating bends. Analytical, numerical, and experimental results agreed well. The calculation formulas developed in this work enable reliable and low-cost dimensioning with regard to the stresses and elastic deformations of profile shafts subjected to bending loads.
本文提出了一种确定棱柱形、非圆轮廓轴的弯曲应力和变形的解析方法。所谓的高齿槽面可以用作形式配合轴-轮毂连接。在作者早期的工作中,针对特殊应用,开发了混合高齿形(m型)作为轴与轮毂配合连接的齿形轮廓。m型轮廓结合了两种标准化多边形和花键轮廓的优点,用作高扭矩传输的轴-毂连接。为了简化计算,本文采用复变函数法研究了高杂化矫形体的几何和力学性能。利用基于数学弹性理论的弯曲理论,确定了m型型材的纯弯曲应力和轴挠度。装载箱包括静弯和旋转弯。分析、数值和实验结果吻合良好。在这项工作中开发的计算公式能够可靠和低成本地确定受弯曲载荷影响的型材轴的应力和弹性变形。
{"title":"Bending Stresses and Deformations in Prismatic Profiled Shafts with Noncircular Contours Based on Higher Hybrid Trochoids","authors":"M. Ziaei","doi":"10.3390/applmech3030060","DOIUrl":"https://doi.org/10.3390/applmech3030060","url":null,"abstract":"This paper presents an analytical method for determining the bending stresses and deformations in prismatic, noncircular profile shafts with trochoidal cross sections. The so-called higher trochoids can be used as form-fit shaft-hub connections. Hybrid (mixed) higher trochoids (M-profiles) were developed for the special application as a profile contour for the form-fit shaft and hub connections in an earlier work by the author. M-profiles combine the advantages of the two standardised polygonal and spline contours, which are used as shaft-hub connections for the transmission of high torques. In this study, the geometric and mechanical properties of the higher hybrid trochoids were investigated using complex functions to simplify the calculations. The pure bending stress and shaft deflection were determined for M-profiles using bending theory based on the theory of mathematical elasticity. The loading cases consisted of static and rotating bends. Analytical, numerical, and experimental results agreed well. The calculation formulas developed in this work enable reliable and low-cost dimensioning with regard to the stresses and elastic deformations of profile shafts subjected to bending loads.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"9 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76348016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vibrations Affecting Stability and Edge Control of Snowboards 振动对滑雪板稳定性和边缘控制的影响
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-17 DOI: 10.3390/applmech3030059
F. Fuss
Background: During a carving turn, vibrations are induced at the heel of the snowboard through edge friction when the heel slips sideways and subsequently travel through and along the board to the shovel, which vibrates and affects the edge control. The purpose of this study was to find a method for assessing the edge grip with a laser vibrometer. Method: Two boards, loaded and tilted at four different angles, were placed on a soft surface, with a shaker connected to the heel at the hindmost edge point. The shovel and particularly the frontmost edge point were scanned with a Polytec laser vibrometer. The frequency response functions of coherence, average shovel displacement, and displacement of the foremost edge point were recorded, and the latter was integrated for obtaining an edge mobility measure (EMM) to quantify the edge control. Results: Of the two boards compared, the shovel of board A was stiffer in the 1st and in the 3rd torsional mode, and the one of board B was stiffer in bending modes. The 2nd torsional mode was responsible for large edge vibrations and therefore for a diminished edge control. Shovel B had a smaller EMM at greater tilt angles, that is, less amplitude of the vibrations at the frontmost edge point, and therefore a better edge control. Shovel A, however, had a smaller EMM at smaller tilt angles. Conclusion: The method developed in this study provides a reliable test for assessment of edge control of a snowboard under standardized test conditions.
背景:在雕刻转弯过程中,当脚后跟向侧面滑动时,通过边缘摩擦在滑雪板的脚跟处引起振动,并随后沿着板和铲移动,从而振动并影响边缘控制。本研究的目的是找到一种方法来评估边缘抓地力与激光振动计。方法:两个板,加载和倾斜在四个不同的角度,被放置在一个柔软的表面,与一个振动筛连接到脚跟在最后面的边缘点。用Polytec激光振动计扫描铁铲,特别是最前端边缘点。记录相干性、平均铲移和最前端边缘点位移的频响函数,并对后者进行积分,得到边缘迁移度度量(EMM),以量化边缘控制。结果:在两种板的对比中,A板的铲在第1和第3扭转模式下更硬,B板的铲在弯曲模式下更硬。第二种扭转模式是负责大的边缘振动,因此减少边缘控制。铲B在较大的倾斜角下具有较小的EMM,即最前端边缘点的振动幅度较小,因此具有较好的边缘控制。然而,铲A在较小的倾斜角度下具有较小的EMM。结论:本研究的方法为在标准化测试条件下评估滑雪板的刃控提供了可靠的测试方法。
{"title":"Vibrations Affecting Stability and Edge Control of Snowboards","authors":"F. Fuss","doi":"10.3390/applmech3030059","DOIUrl":"https://doi.org/10.3390/applmech3030059","url":null,"abstract":"Background: During a carving turn, vibrations are induced at the heel of the snowboard through edge friction when the heel slips sideways and subsequently travel through and along the board to the shovel, which vibrates and affects the edge control. The purpose of this study was to find a method for assessing the edge grip with a laser vibrometer. Method: Two boards, loaded and tilted at four different angles, were placed on a soft surface, with a shaker connected to the heel at the hindmost edge point. The shovel and particularly the frontmost edge point were scanned with a Polytec laser vibrometer. The frequency response functions of coherence, average shovel displacement, and displacement of the foremost edge point were recorded, and the latter was integrated for obtaining an edge mobility measure (EMM) to quantify the edge control. Results: Of the two boards compared, the shovel of board A was stiffer in the 1st and in the 3rd torsional mode, and the one of board B was stiffer in bending modes. The 2nd torsional mode was responsible for large edge vibrations and therefore for a diminished edge control. Shovel B had a smaller EMM at greater tilt angles, that is, less amplitude of the vibrations at the frontmost edge point, and therefore a better edge control. Shovel A, however, had a smaller EMM at smaller tilt angles. Conclusion: The method developed in this study provides a reliable test for assessment of edge control of a snowboard under standardized test conditions.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"50 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75820450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of a Torsion Spring Used in a Flexible Delta Tricycle 弹性三角三轮车用扭力弹簧的效果
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-09 DOI: 10.3390/applmech3030058
J. D’hondt, P. Slaets, E. Demeester, M. Juwet
A new tilting delta tricycle is developed as a last-mile vehicle. This vehicle has a hinge between the front driver module and the rear cargo module to allow the driver to tilt while maneuvering. The driver module resembles a conventional bicycle without a rear wheel and the cargo module consists of a cargo area between two propelled rear wheels. The concept vehicle ensures proper handling qualities independent of the cargo. However, the driver module can still tip over when parked. Multiple solutions are being considered to improve the ergonomics of this vehicle. A metal-elastomer torsion spring with an integrated angle limit has the most advantages as this prevents the driver module from tipping over without requiring it to enable a mechanism while stepping off. Furthermore, the torsion system dampens vibrations while cycling and influences tilting while turning. These improvements are tested using the concept vehicle. The influence of this torsion system is calculated and validated with measurements. The influences of different torsion curves aimed to improve the low-speed stability are calculated.
一种新的倾斜三角三轮车被开发作为最后一英里的车辆。这种车辆在前驾驶员模块和后货物模块之间有一个铰链,允许驾驶员在操纵时倾斜。驾驶员模块类似于没有后轮的传统自行车,货物模块由两个推进后轮之间的货物区域组成。概念车确保适当的处理质量独立于货物。然而,驾驶员模块在停车时仍然会翻倒。目前正在考虑多种解决方案来改善这款车的人体工程学。具有集成角度限制的金属弹性体扭转弹簧具有最大的优势,因为它可以防止驱动模块翻倒,而无需在踩下时启用机制。此外,扭转系统在循环时抑制振动,并在转弯时影响倾斜。这些改进正在使用概念车进行测试。计算了该扭转系统的影响,并通过测量进行了验证。计算了不同扭转曲线对提高低速稳定性的影响。
{"title":"Effects of a Torsion Spring Used in a Flexible Delta Tricycle","authors":"J. D’hondt, P. Slaets, E. Demeester, M. Juwet","doi":"10.3390/applmech3030058","DOIUrl":"https://doi.org/10.3390/applmech3030058","url":null,"abstract":"A new tilting delta tricycle is developed as a last-mile vehicle. This vehicle has a hinge between the front driver module and the rear cargo module to allow the driver to tilt while maneuvering. The driver module resembles a conventional bicycle without a rear wheel and the cargo module consists of a cargo area between two propelled rear wheels. The concept vehicle ensures proper handling qualities independent of the cargo. However, the driver module can still tip over when parked. Multiple solutions are being considered to improve the ergonomics of this vehicle. A metal-elastomer torsion spring with an integrated angle limit has the most advantages as this prevents the driver module from tipping over without requiring it to enable a mechanism while stepping off. Furthermore, the torsion system dampens vibrations while cycling and influences tilting while turning. These improvements are tested using the concept vehicle. The influence of this torsion system is calculated and validated with measurements. The influences of different torsion curves aimed to improve the low-speed stability are calculated.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"60 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90887414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue of Shape Memory Alloys with Emphasis On Additively-Manufactured NiTi Components 形状记忆合金的疲劳,重点是增材制造的NiTi部件
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-04 DOI: 10.1115/1.4055175
Adriano Cebrian Carcavilla, W. Zaki
Shape memory alloys (SMAs) are often used in applications involving time-varying loads. Under such conditions, fatigue leading to possible fracture is a paramount cause of failure, which has been extensively investigated since the 1960s. The present work reviews developments in this field with emphasis on recent results related to additively-manufactured SMAs. Multiple factors influencing structural and functional degradation in presence of cyclic loading are considered, including microstructural and surface features, thermal loading history and heat treatment. For completeness, select modelling approaches proposed in the literature to predict SMA fatigue are briefly overviewed and a discussion is provided on the statistical relevance and uncertainty of published data. Conclusions are then formulated to guide subsequent research.
形状记忆合金(sma)通常用于涉及时变载荷的应用中。在这种情况下,疲劳导致可能的断裂是导致失效的主要原因,自20世纪60年代以来,这一问题得到了广泛的研究。本工作审查了这一领域的发展,重点是与增材制造sma有关的最新成果。考虑了在循环加载下影响结构和功能退化的多种因素,包括微观结构和表面特征、热加载历史和热处理。为了完整起见,本文简要概述了文献中提出的预测SMA疲劳的建模方法,并对已发表数据的统计相关性和不确定性进行了讨论。然后得出结论,指导后续的研究。
{"title":"Fatigue of Shape Memory Alloys with Emphasis On Additively-Manufactured NiTi Components","authors":"Adriano Cebrian Carcavilla, W. Zaki","doi":"10.1115/1.4055175","DOIUrl":"https://doi.org/10.1115/1.4055175","url":null,"abstract":"\u0000 Shape memory alloys (SMAs) are often used in applications involving time-varying loads. Under such conditions, fatigue leading to possible fracture is a paramount cause of failure, which has been extensively investigated since the 1960s. The present work reviews developments in this field with emphasis on recent results related to additively-manufactured SMAs. Multiple factors influencing structural and functional degradation in presence of cyclic loading are considered, including microstructural and surface features, thermal loading history and heat treatment. For completeness, select modelling approaches proposed in the literature to predict SMA fatigue are briefly overviewed and a discussion is provided on the statistical relevance and uncertainty of published data. Conclusions are then formulated to guide subsequent research.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"23 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89556569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Experimental and Numerical Investigation of a Multifunctional CFRP towards Heat Convection under Aircraft Icing Conditions 飞机结冰条件下多功能CFRP对热对流性能的实验与数值研究
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-03 DOI: 10.3390/applmech3030056
M. O. H. Schutzeichel, Thorben Strübing, O. Tamer, T. Kletschkowski, H. Monner, M. Sinapius
A combined experimental and numerical approach for the analysis of convective heat transfer from a multifunctional flat plate specimen under aircraft icing conditions is presented. The experimental setup including a heat control and measurement system that is installed in a de-icing test bed. The ambient temperature (θa=[253,283]K), air velocity (va={0,15,30}ms), and angle of attack (α={10,30}∘) are varied, and their influence on heat transfer during local Joule heating is discussed. The numerical approach utilises the results to compute the convective heat transfer coefficients (HTC) based on Newton’s convective heat transfer condition. Results indicate that the numerical model represents the heat transfer behaviour with high accuracy. The HTC for free convection was found to hold h¯≈2.5Wm2K and h¯≈[10,40]Wm2K for forced convection conditions with minor scattering. The increase in HTC under forced convection conditions has a significant effect on the overall heat transfer behaviour, resulting in high temperature gradients within the material. The functional optimisation of multifunctional structures will benefit from including application related convection conditions, dealing with resulting temperature fields by structural design. It is expected that multifunctional structures for de-icing as well as for structural energy storage, morphing structures, or stiffness adaptive structures with similar material constituents will benefit from this recognition.
提出了一种结合实验和数值的方法来分析飞机结冰条件下多功能平板的对流换热。实验装置包括安装在除冰试验台上的热控制和测量系统。环境温度(θa=[253,283]K)、气流速度(va={0,15,30}ms)和迎角(α={10,30}°)是不同的,并讨论了它们对局部焦耳加热时传热的影响。数值方法利用计算结果,根据牛顿对流换热条件计算对流换热系数。结果表明,该数值模型能较好地反映传热特性。自由对流条件下的HTC为h¯≈2.5Wm2K,强迫对流条件下的h¯≈[10,40]Wm2K,散射较小。在强制对流条件下,HTC的增加对整体传热行为有显著影响,导致材料内部的高温梯度。多功能结构的功能优化将受益于包括应用相关的对流条件,通过结构设计处理产生的温度场。预计用于除冰的多功能结构以及具有类似材料成分的结构储能、变形结构或刚度自适应结构将受益于这一认识。
{"title":"Experimental and Numerical Investigation of a Multifunctional CFRP towards Heat Convection under Aircraft Icing Conditions","authors":"M. O. H. Schutzeichel, Thorben Strübing, O. Tamer, T. Kletschkowski, H. Monner, M. Sinapius","doi":"10.3390/applmech3030056","DOIUrl":"https://doi.org/10.3390/applmech3030056","url":null,"abstract":"A combined experimental and numerical approach for the analysis of convective heat transfer from a multifunctional flat plate specimen under aircraft icing conditions is presented. The experimental setup including a heat control and measurement system that is installed in a de-icing test bed. The ambient temperature (θa=[253,283]K), air velocity (va={0,15,30}ms), and angle of attack (α={10,30}∘) are varied, and their influence on heat transfer during local Joule heating is discussed. The numerical approach utilises the results to compute the convective heat transfer coefficients (HTC) based on Newton’s convective heat transfer condition. Results indicate that the numerical model represents the heat transfer behaviour with high accuracy. The HTC for free convection was found to hold h¯≈2.5Wm2K and h¯≈[10,40]Wm2K for forced convection conditions with minor scattering. The increase in HTC under forced convection conditions has a significant effect on the overall heat transfer behaviour, resulting in high temperature gradients within the material. The functional optimisation of multifunctional structures will benefit from including application related convection conditions, dealing with resulting temperature fields by structural design. It is expected that multifunctional structures for de-icing as well as for structural energy storage, morphing structures, or stiffness adaptive structures with similar material constituents will benefit from this recognition.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"98 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74768620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Static Analysis of Planar Elastic Structures with Multiple Spatially Uncertain Material Parameters 具有多个空间不确定材料参数的平面弹性结构的随机静力分析
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-02 DOI: 10.3390/applmech3030055
H. Hakula
Engineering structures are often assembled from parts with different materials. When uncertainty quantification techniques are applied, the curse of dimensionality increases the computational complexity. Here, a stochastic Galerkin method for planar elasticity allowing for multiple regions with independent uncertain materials is introduced. The method allows for efficient solution of linear systems both in fully assembled and matrix-free formulations. The selection of the stochastic basis polynomials is performed using a priori knowledge of the decay of the random fields. The statistical quantities of interest are the expected solution and variance, both of which can be computed efficiently after the Galerkin system has been solved. Analysis of the results indicates that the proposed method is highly efficient in terms of both computational resource requirements and discretization of the stochastic dimensions. The results were verified with Monte Carlo and quasi-Monte Carlo methods.
工程结构通常由不同材料的部件组装而成。在应用不确定性量化技术时,维数的限制增加了计算复杂度。本文介绍了一种考虑具有独立不确定材料的多区域平面弹性的随机伽辽金方法。该方法允许在完全组装和无矩阵的公式线性系统的有效解决。随机基多项式的选择是使用随机场衰减的先验知识进行的。感兴趣的统计量是期望解和方差,在求解伽辽金系统后,两者都可以有效地计算出来。分析结果表明,该方法在计算资源要求和随机维离散化方面具有较高的效率。用蒙特卡罗和拟蒙特卡罗方法对结果进行了验证。
{"title":"Stochastic Static Analysis of Planar Elastic Structures with Multiple Spatially Uncertain Material Parameters","authors":"H. Hakula","doi":"10.3390/applmech3030055","DOIUrl":"https://doi.org/10.3390/applmech3030055","url":null,"abstract":"Engineering structures are often assembled from parts with different materials. When uncertainty quantification techniques are applied, the curse of dimensionality increases the computational complexity. Here, a stochastic Galerkin method for planar elasticity allowing for multiple regions with independent uncertain materials is introduced. The method allows for efficient solution of linear systems both in fully assembled and matrix-free formulations. The selection of the stochastic basis polynomials is performed using a priori knowledge of the decay of the random fields. The statistical quantities of interest are the expected solution and variance, both of which can be computed efficiently after the Galerkin system has been solved. Analysis of the results indicates that the proposed method is highly efficient in terms of both computational resource requirements and discretization of the stochastic dimensions. The results were verified with Monte Carlo and quasi-Monte Carlo methods.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"13 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84137713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Discussion of “Ghaednia, H., Wang, X., Saha, S., Xu, Y., Sharma, A., & Jackson, R. L. (2017). A Review Of Elastic-Plastic Contact Mechanics. Applied Mechanics Reviews, 69(6).” 关于“Ghaednia, H., Wang, X., Saha, S., Xu, Y., Sharma, A., & Jackson, R. L.(2017)”的讨论。弹塑性接触力学研究进展。应用力学评论,69(6)。
IF 14.3 1区 工程技术 Q1 MECHANICS Pub Date : 2022-08-02 DOI: 10.1115/1.4055137
R. Jackson
It has been five years since this review of elastic-plastic contact mechanics was published. The area still remains very active and many advancements have been made since then. This discussion summarizes these advances and points out what might be considered the most significant ones. In some cases experimental measurements have confirmed previous theoretical predictions. In most cases the models of contact mechanics have increased in complexity in order to improve predictions for real applications. As a fundamental area, contact mechanics will undoubtedly remain active as its implementation is often required for new applications of technology to succeed.
这篇关于弹塑性接触力学的综述已经发表五年了。该领域仍然非常活跃,自那时以来取得了许多进展。本文总结了这些进展,并指出了可能被认为是最重要的进展。在某些情况下,实验测量证实了先前的理论预测。在大多数情况下,接触力学模型增加了复杂性,以改进实际应用的预测。作为一个基础领域,接触力学无疑将保持活跃,因为新技术的成功应用往往需要它的实施。
{"title":"Discussion of “Ghaednia, H., Wang, X., Saha, S., Xu, Y., Sharma, A., & Jackson, R. L. (2017). A Review Of Elastic-Plastic Contact Mechanics. Applied Mechanics Reviews, 69(6).”","authors":"R. Jackson","doi":"10.1115/1.4055137","DOIUrl":"https://doi.org/10.1115/1.4055137","url":null,"abstract":"\u0000 It has been five years since this review of elastic-plastic contact mechanics was published. The area still remains very active and many advancements have been made since then. This discussion summarizes these advances and points out what might be considered the most significant ones. In some cases experimental measurements have confirmed previous theoretical predictions. In most cases the models of contact mechanics have increased in complexity in order to improve predictions for real applications. As a fundamental area, contact mechanics will undoubtedly remain active as its implementation is often required for new applications of technology to succeed.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"46 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77905408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Applied Mechanics Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1