首页 > 最新文献

Transport in Porous Media最新文献

英文 中文
Stochastic Periodic Microstructures for Multiscale Modelling of Heterogeneous Materials 用于多尺度异质材料建模的随机周期微结构
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-19 DOI: 10.1007/s11242-024-02074-z
Evan John Ricketts

Plurigaussian simulation is a method of discrete random field generation that can be used to generate many complex geometries depicting real world structures. Whilst it is commonly applied at larger scales to represent geological phenomena, the highly flexible approach is suitable for generating structures at all scales. Here, an extension of plurigaussian simulation to periodic plurigaussian simulation (P-PGS) is presented, such that the resulting fields are periodic in nature. By using periodic Gaussian random fields as components of the method, periodicity is enforced in the generated structures. To substantiate the use of P-PGS in capturing complex heterogeneities in a physically meaningful way, the pore-scale microstructure of cement paste was represented such that its effective properties can be calculated through a computational homogenisation approach. The finite element method is employed to model the diffusion of heat through the medium under dry and saturated pore conditions, where numerical homogenisation is conducted to calculate the effective thermal conductivity of the medium. Comparison of the calculated values with experimental observations indicated that the generated microstructures are suitable for pore-scale representation, given their close match. A maximal error of 1.38% was observed in relation to the numerically determined effective thermal conductivity of mortar paste with air filled pores, and 0.41% when considering water filled pores. As the assumption of a periodic domain is often an underlying feature of numerical homogenisation, this extension of plurigaussian simulation enables a path for its integration into such computational schemes.

摘要普鲁里高斯模拟是一种离散随机场生成方法,可用于生成许多描绘现实世界结构的复杂几何图形。虽然它通常应用于较大尺度的地质现象,但这种高度灵活的方法适用于生成各种尺度的结构。本文介绍了将多高斯模拟扩展到周期多高斯模拟(P-PGS)的方法,从而使生成的场具有周期性。通过使用周期性高斯随机场作为该方法的组成部分,生成的结构具有周期性。为了证实 P-PGS 能够以一种有物理意义的方式捕捉复杂的异质性,对水泥浆的孔隙尺度微观结构进行了表示,以便通过计算均质化方法计算其有效特性。采用有限元法模拟干燥和饱和孔隙条件下热量在介质中的扩散,并通过数值均质化计算介质的有效热导率。计算值与实验观测值的比较表明,生成的微观结构与孔隙尺度非常接近,因此适合用于表示孔隙尺度。根据数值计算得出的砂浆膏的有效导热率,在充满空气的孔隙中,最大误差为 1.38%,而在充满水的孔隙中,最大误差为 0.41%。文章亮点将 P-PGS 集成到数值均质化框架中可增强复杂异质材料的表示P-PGS 的灵活性可准确表示各种材料的微观结构使用生成的结构可通过数值均质化准确估算材料特性
{"title":"Stochastic Periodic Microstructures for Multiscale Modelling of Heterogeneous Materials","authors":"Evan John Ricketts","doi":"10.1007/s11242-024-02074-z","DOIUrl":"10.1007/s11242-024-02074-z","url":null,"abstract":"<p>Plurigaussian simulation is a method of discrete random field generation that can be used to generate many complex geometries depicting real world structures. Whilst it is commonly applied at larger scales to represent geological phenomena, the highly flexible approach is suitable for generating structures at all scales. Here, an extension of plurigaussian simulation to periodic plurigaussian simulation (P-PGS) is presented, such that the resulting fields are periodic in nature. By using periodic Gaussian random fields as components of the method, periodicity is enforced in the generated structures. To substantiate the use of P-PGS in capturing complex heterogeneities in a physically meaningful way, the pore-scale microstructure of cement paste was represented such that its effective properties can be calculated through a computational homogenisation approach. The finite element method is employed to model the diffusion of heat through the medium under dry and saturated pore conditions, where numerical homogenisation is conducted to calculate the effective thermal conductivity of the medium. Comparison of the calculated values with experimental observations indicated that the generated microstructures are suitable for pore-scale representation, given their close match. A maximal error of 1.38% was observed in relation to the numerically determined effective thermal conductivity of mortar paste with air filled pores, and 0.41% when considering water filled pores. As the assumption of a periodic domain is often an underlying feature of numerical homogenisation, this extension of plurigaussian simulation enables a path for its integration into such computational schemes.</p>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 6","pages":"1313 - 1332"},"PeriodicalIF":2.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02074-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Transition from Darcy to Nonlinear Flow in Heterogeneous Porous Media: I—Single-Phase Flow 异质多孔介质中从达西流到非线性流的过渡:I - 单相流
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-14 DOI: 10.1007/s11242-024-02070-3
Sepehr Arbabi, Muhammad Sahimi

Using extensive numerical simulation of the Navier–Stokes equations, we study the transition from the Darcy’s law for slow flow of fluids through a disordered porous medium to the nonlinear flow regime in which the effect of inertia cannot be neglected. The porous medium is represented by two-dimensional slices of a three-dimensional image of a sandstone. We study the problem over wide ranges of porosity and the Reynolds number, as well as two types of boundary conditions, and compute essential features of fluid flow, namely, the strength of the vorticity, the effective permeability of the pore space, the frictional drag, and the relationship between the macroscopic pressure gradient ({varvec{nabla }}P) and the fluid velocity v. The results indicate that when the Reynolds number Re is low enough that the Darcy’s law holds, the magnitude (omega _z) of the vorticity is nearly zero. As Re increases, however, so also does (omega _z), and its rise from nearly zero begins at the same Re at which the Darcy’s law breaks down. We also show that a nonlinear relation between the macroscopic pressure gradient and the fluid velocity v, given by, (-{varvec{nabla }}P=(mu /K_e)textbf{v}+beta _nrho |textbf{v}|^2textbf{v}), provides accurate representation of the numerical data, where (mu) and (rho) are the fluid’s viscosity and density, (K_e) is the effective Darcy permeability in the linear regime, and (beta _n) is a generalized nonlinear resistance. Theoretical justification for the relation is presented, and its predictions are also compared with those of the Forchheimer’s equation.

通过对纳维-斯托克斯方程进行大量数值模拟,我们研究了流体在无序多孔介质中缓慢流动时从达西定律向非线性流动机制的过渡,在非线性流动机制中,惯性的影响是不可忽略的。多孔介质由砂岩三维图像的二维切片表示。我们研究了孔隙率和雷诺数以及两种边界条件的宽范围问题,并计算了流体流动的基本特征,即涡度强度、孔隙空间的有效渗透率、摩擦阻力以及宏观压力梯度 ({varvec{nabla }}P) 和流体速度 v 之间的关系。结果表明,当雷诺数 Re 低到达西定律成立时,涡度的大小 (omega _z) 几乎为零。然而,随着雷诺数的增大,涡度也会增大,而且涡度从近乎零开始上升的起点与达西定律崩溃的雷诺数相同。我们还证明了宏观压力梯度与流体速度 v 之间的非线性关系,即 (-{varvecnabla }}P=(mu /K_e)textbf{v}+beta _nrho |textbf{v}|^2textbf{v})、其中,(mu) 和(rho) 是流体的粘度和密度,(K_e) 是线性体系中的有效达西渗透率,(beta _n)是广义非线性阻力。本文提出了这一关系的理论依据,并将其预测结果与福克海默方程的预测结果进行了比较。
{"title":"The Transition from Darcy to Nonlinear Flow in Heterogeneous Porous Media: I—Single-Phase Flow","authors":"Sepehr Arbabi,&nbsp;Muhammad Sahimi","doi":"10.1007/s11242-024-02070-3","DOIUrl":"10.1007/s11242-024-02070-3","url":null,"abstract":"<div><p>Using extensive numerical simulation of the Navier–Stokes equations, we study the transition from the Darcy’s law for slow flow of fluids through a disordered porous medium to the nonlinear flow regime in which the effect of inertia cannot be neglected. The porous medium is represented by two-dimensional slices of a three-dimensional image of a sandstone. We study the problem over wide ranges of porosity and the Reynolds number, as well as two types of boundary conditions, and compute essential features of fluid flow, namely, the strength of the vorticity, the effective permeability of the pore space, the frictional drag, and the relationship between the macroscopic pressure gradient <span>({varvec{nabla }}P)</span> and the fluid velocity <b>v</b>. The results indicate that when the Reynolds number Re is low enough that the Darcy’s law holds, the magnitude <span>(omega _z)</span> of the vorticity is nearly zero. As Re increases, however, so also does <span>(omega _z)</span>, and its rise from nearly zero begins at the same Re at which the Darcy’s law breaks down. We also show that a nonlinear relation between the macroscopic pressure gradient and the fluid velocity <b>v</b>, given by, <span>(-{varvec{nabla }}P=(mu /K_e)textbf{v}+beta _nrho |textbf{v}|^2textbf{v})</span>, provides accurate representation of the numerical data, where <span>(mu)</span> and <span>(rho)</span> are the fluid’s viscosity and density, <span>(K_e)</span> is the effective Darcy permeability in the linear regime, and <span>(beta _n)</span> is a generalized nonlinear resistance. Theoretical justification for the relation is presented, and its predictions are also compared with those of the Forchheimer’s equation.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"795 - 812"},"PeriodicalIF":2.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02070-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Pore-Clogging Using a High-Resolution CFD-DEM Colloid Transport Model 利用高分辨率 CFD-DEM 胶体输送模型分析孔隙积水机理
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-13 DOI: 10.1007/s11242-024-02072-1
Shitao Liu, Igor Shikhov, Christoph Arns

Colloidal transport and clogging in porous media is a phenomenon of critical importance in many branches of applied sciences and engineering. It involves multiple types of interactions that span from the sub-colloid scale (electrochemical interactions) up to the pore-scale (bridging), thus challenging the development of representative modelling. So far published simulation results of colloidal or particulate transport are based on either reduced set of forces or spatial dimensions. Here we present an approach enabling to overcome both computational and physical limitations posed by a problem of 3D colloidal transport in porous media. An adaptive octree mesh is introduced to a coupled CFD and DEM method while enabling tracking of individual colloids. Flow fields are calculated at a coarser scale throughout the domain, and at fine-scale around colloids. The approach accounts for all major interactions in such a system: elastic, electrostatic, and hydrodynamic forces acting between colloids, as well as colloids and the collector surface. The method is demonstrated for a single throat model made of four spherical segments, and the impact of clogging is reported in terms of the evolution of the critical path diameter for percolation and permeability. We identified four stages of clogging development depending on position and time of individual colloid entrapment, which in turn correlates to a cluster evolution and local transport.

多孔介质中的胶体迁移和堵塞现象在应用科学和工程学的许多分支中都至关重要。它涉及从亚胶体尺度(电化学相互作用)到孔隙尺度(架桥)的多种类型的相互作用,因此对开发具有代表性的模型提出了挑战。迄今为止,已发表的胶体或微粒传输模拟结果都是基于力或空间维度的缩减集。在此,我们提出一种方法,可以克服多孔介质中三维胶体迁移问题带来的计算和物理限制。我们将自适应八叉网格引入耦合 CFD 和 DEM 方法,同时实现对单个胶体的跟踪。流场在整个域中以较粗的尺度计算,在胶体周围以较细的尺度计算。该方法考虑到了此类系统中的所有主要相互作用:胶体之间的弹性力、静电力和流体动力,以及胶体和收集器表面。该方法在由四个球形部分组成的单喉管模型中进行了演示,并从渗流和渗透性临界路径直径的演变角度报告了堵塞的影响。我们确定了堵塞发展的四个阶段,这取决于单个胶体被截留的位置和时间,进而与集束演变和局部传输相关联。
{"title":"Mechanisms of Pore-Clogging Using a High-Resolution CFD-DEM Colloid Transport Model","authors":"Shitao Liu,&nbsp;Igor Shikhov,&nbsp;Christoph Arns","doi":"10.1007/s11242-024-02072-1","DOIUrl":"10.1007/s11242-024-02072-1","url":null,"abstract":"<div><p>Colloidal transport and clogging in porous media is a phenomenon of critical importance in many branches of applied sciences and engineering. It involves multiple types of interactions that span from the sub-colloid scale (electrochemical interactions) up to the pore-scale (bridging), thus challenging the development of representative modelling. So far published simulation results of colloidal or particulate transport are based on either reduced set of forces or spatial dimensions. Here we present an approach enabling to overcome both computational and physical limitations posed by a problem of 3D colloidal transport in porous media. An adaptive octree mesh is introduced to a coupled CFD and DEM method while enabling tracking of individual colloids. Flow fields are calculated at a coarser scale throughout the domain, and at fine-scale around colloids. The approach accounts for all major interactions in such a system: elastic, electrostatic, and hydrodynamic forces acting between colloids, as well as colloids and the collector surface. The method is demonstrated for a single throat model made of four spherical segments, and the impact of clogging is reported in terms of the evolution of the critical path diameter for percolation and permeability. We identified four stages of clogging development depending on position and time of individual colloid entrapment, which in turn correlates to a cluster evolution and local transport.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"831 - 851"},"PeriodicalIF":2.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02072-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic Localisation of Hydrophilically Oriented Pore Bodies and Throats in Hydrophobised Porous Materials 亲水性多孔材料中亲水方向孔体和孔口的显微定位
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-08 DOI: 10.1007/s11242-024-02069-w
Daan Deckers, Yanshen Zhu, Erin Koos, Hans Janssen

Internal insulation of the building envelope is a prime topic in building physics, due to the risk of moisture problems that this technique entails. As a remedy to these problems, the application of a water-repellent agent, which reduces the amount of absorbed wind-driven rain, has become popular in recent years. When such an agent is applied on a building material, it penetrates the pore network of the material, hereby attaching itself to the pore surfaces and rendering them hydrophobic. It is generally believed that some smaller pores can remain hydrophilic due to the inability of the agent to enter. An in-depth microscopic investigation towards these hydrophilic pores, however, has never been performed. Since direct visualisation of the polymer chains was proven impossible, this paper locates the hydrophilic (parts of) pores in a material, hydrophobised with 3 different water-repellent agents, by imaging the moisture storage at pore level using X-ray computed tomography images at different stages of the desaturation process. While completely hydrophilic pore bodies and throats are not found in the studied material, water storage remains possible in hydrophilic corners of hydrophobised pore bodies and throats. These corner islands are less present than in hydrophilic media and do not form a continuous liquid flow path. Therefore, they provide possible locations for little moisture storage but do not contribute notably to moisture flow.

建筑围护结构的内部隔热是建筑物理学中的一个重要课题,因为这种技术有可能带来潮湿问题。为了解决这些问题,近年来流行使用憎水剂,这种憎水剂可以减少风吹雨淋的吸收量。当在建筑材料上使用这种憎水剂时,它会渗透到材料的孔隙网络中,从而附着在孔隙表面,使其具有憎水性。一般认为,由于药剂无法进入,一些较小的孔隙可以保持亲水性。然而,对这些亲水孔隙的深入微观研究还从未进行过。由于无法对聚合物链进行直接观察,本文使用 X 射线计算机断层扫描图像,在脱饱和过程的不同阶段对孔隙水平的水分储存情况进行成像,从而确定了使用 3 种不同憎水剂进行憎水处理的材料中亲水孔隙(部分)的位置。虽然在所研究的材料中没有发现完全亲水的孔体和孔喉,但在疏水孔体和孔喉的亲水角落仍有可能储水。与亲水介质相比,这些角岛的存在较少,而且不会形成连续的液体流动路径。因此,它们可以提供少量的水分存储位置,但不会对水分流动产生显著影响。
{"title":"Microscopic Localisation of Hydrophilically Oriented Pore Bodies and Throats in Hydrophobised Porous Materials","authors":"Daan Deckers,&nbsp;Yanshen Zhu,&nbsp;Erin Koos,&nbsp;Hans Janssen","doi":"10.1007/s11242-024-02069-w","DOIUrl":"10.1007/s11242-024-02069-w","url":null,"abstract":"<div><p>Internal insulation of the building envelope is a prime topic in building physics, due to the risk of moisture problems that this technique entails. As a remedy to these problems, the application of a water-repellent agent, which reduces the amount of absorbed wind-driven rain, has become popular in recent years. When such an agent is applied on a building material, it penetrates the pore network of the material, hereby attaching itself to the pore surfaces and rendering them hydrophobic. It is generally believed that some smaller pores can remain hydrophilic due to the inability of the agent to enter. An in-depth microscopic investigation towards these hydrophilic pores, however, has never been performed. Since direct visualisation of the polymer chains was proven impossible, this paper locates the hydrophilic (parts of) pores in a material, hydrophobised with 3 different water-repellent agents, by imaging the moisture storage at pore level using X-ray computed tomography images at different stages of the desaturation process. While completely hydrophilic pore bodies and throats are not found in the studied material, water storage remains possible in hydrophilic corners of hydrophobised pore bodies and throats. These corner islands are less present than in hydrophilic media and do not form a continuous liquid flow path. Therefore, they provide possible locations for little moisture storage but do not contribute notably to moisture flow.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"773 - 793"},"PeriodicalIF":2.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-Scale and Upscaled Investigations of Release and Transport of Lithium in Organic-Rich Shales 富有机页岩中锂的释放和迁移的孔隙尺度和放大研究
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-08 DOI: 10.1007/s11242-024-02071-2
Jiahui You, Kyung Jae Lee

To meet the extensive demand for lithium (Li) for rechargeable batteries, it is crucial to enhance Li production by diversifying its resources. Recent studies have found that produced water from shale reservoirs contains various organic and inorganic components, including a significant amount of Li. In this study, findings from hydrothermal reaction experiments were analyzed to fully understand the release of Li from organic-rich shale rock. Subsequently, numerical algorithms were developed for both pore-scale and continuum-scale models to simulate the long-term behavior of Li in shale brines. The experimental conditions considered four different hydrothermal solutions, including the solutions of KCl, MgCl2, CaCl2, and NaCl with various concentrations under the temperature of 130 °C, 165 °C, and 200 °C. The release of Li from shale rock into fluid was regarded as a chemical interaction of cation exchange between rock and fluid. The reactive transport pore-scale and upscaled continuum-scale models were developed by coupling the chemical reaction model of Li interaction between rock and fluid. The model was first implemented to investigate the release and transport of Li in the pore scale. Continuum-scale properties, such as effective diffusivity coefficients and Li release rate, were obtained as the field-averaged pore-scale modeling results. These properties were used as the input data for the upscaled continuum-scale simulation. The findings of this study are expected to provide new insight into the production of Li from shale brines by elucidating the release, fate, and transport of Li in subsurface formations.

为了满足可充电电池对锂(Li)的广泛需求,通过多样化的资源来提高锂的产量至关重要。最近的研究发现,页岩储层的产水含有各种有机和无机成分,其中包括大量的锂。本研究分析了热液反应实验的结果,以全面了解富含有机物的页岩释放锂的情况。随后,开发了孔隙尺度和连续尺度模型的数值算法,以模拟锂在页岩盐水中的长期行为。实验条件考虑了四种不同的热液溶液,包括不同浓度的 KCl、MgCl2、CaCl2 和 NaCl 溶液,温度分别为 130 ℃、165 ℃ 和 200 ℃。锂从页岩释放到流体中被视为岩石与流体之间阳离子交换的化学作用。通过耦合锂在岩石和流体之间相互作用的化学反应模型,建立了反应输运孔隙尺度和放大连续尺度模型。该模型首先用于研究 Li 在孔隙尺度上的释放和迁移。根据现场平均孔隙尺度建模结果,获得了连续尺度属性,如有效扩散系数和锂释放率。这些属性被用作放大连续尺度模拟的输入数据。通过阐明锂在地下地层中的释放、归宿和迁移,这项研究的结果有望为页岩盐水中锂离子的生产提供新的见解。
{"title":"Pore-Scale and Upscaled Investigations of Release and Transport of Lithium in Organic-Rich Shales","authors":"Jiahui You,&nbsp;Kyung Jae Lee","doi":"10.1007/s11242-024-02071-2","DOIUrl":"10.1007/s11242-024-02071-2","url":null,"abstract":"<div><p>To meet the extensive demand for lithium (Li) for rechargeable batteries, it is crucial to enhance Li production by diversifying its resources. Recent studies have found that produced water from shale reservoirs contains various organic and inorganic components, including a significant amount of Li. In this study, findings from hydrothermal reaction experiments were analyzed to fully understand the release of Li from organic-rich shale rock. Subsequently, numerical algorithms were developed for both pore-scale and continuum-scale models to simulate the long-term behavior of Li in shale brines. The experimental conditions considered four different hydrothermal solutions, including the solutions of KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub>, and NaCl with various concentrations under the temperature of 130 °C, 165 °C, and 200 °C. The release of Li from shale rock into fluid was regarded as a chemical interaction of cation exchange between rock and fluid. The reactive transport pore-scale and upscaled continuum-scale models were developed by coupling the chemical reaction model of Li interaction between rock and fluid. The model was first implemented to investigate the release and transport of Li in the pore scale. Continuum-scale properties, such as effective diffusivity coefficients and Li release rate, were obtained as the field-averaged pore-scale modeling results. These properties were used as the input data for the upscaled continuum-scale simulation. The findings of this study are expected to provide new insight into the production of Li from shale brines by elucidating the release, fate, and transport of Li in subsurface formations.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"813 - 830"},"PeriodicalIF":2.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Effects of Intra-REV Pore Distribution Modeling in the Flow of Non-Newtonian Fluids in Porous Media 更正:非牛顿流体在多孔介质中流动时 REV 内孔隙分布模型的影响
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-08 DOI: 10.1007/s11242-024-02063-2
Allan B. G. Motta, Roney L. Thompson, Mateus P. Schwalbert, Luiz F. L. R. Silva, Jovani L. Favero, Rodrigo A. C. Dias, Raphael J. Leitão
{"title":"Correction: Effects of Intra-REV Pore Distribution Modeling in the Flow of Non-Newtonian Fluids in Porous Media","authors":"Allan B. G. Motta,&nbsp;Roney L. Thompson,&nbsp;Mateus P. Schwalbert,&nbsp;Luiz F. L. R. Silva,&nbsp;Jovani L. Favero,&nbsp;Rodrigo A. C. Dias,&nbsp;Raphael J. Leitão","doi":"10.1007/s11242-024-02063-2","DOIUrl":"10.1007/s11242-024-02063-2","url":null,"abstract":"","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"853 - 855"},"PeriodicalIF":2.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Water Upconing in Underground Hydrogen Storage: Sensitivity Analysis to Inform Design of Withdrawal 更正:地下储氢中的水上升:敏感性分析为取水设计提供依据
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-08 DOI: 10.1007/s11242-024-02066-z
Curtis M. Oldenburg, Stefan Finsterle, Robert C. Trautz
{"title":"Correction: Water Upconing in Underground Hydrogen Storage: Sensitivity Analysis to Inform Design of Withdrawal","authors":"Curtis M. Oldenburg,&nbsp;Stefan Finsterle,&nbsp;Robert C. Trautz","doi":"10.1007/s11242-024-02066-z","DOIUrl":"10.1007/s11242-024-02066-z","url":null,"abstract":"","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"857 - 858"},"PeriodicalIF":2.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140258130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids 孔隙水交换和沉降对胶体粒径分布的影响
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-06 DOI: 10.1007/s11242-024-02061-4
Zhongtian Zhang, Guangqiu Jin, Hongwu Tang, Wenhui Shao, Qihao Jiang, Xiaorong Zhou, Haiyu Yuan, David Andrew Barry

Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange via laboratory experiments and numerical simulations with two main factors settlement and hyporheic exchange being considered. The results show that the particle size distribution varies when colloids transport in hyporheic zone, and both settlement and hyporheic exchange are involved in the exchange of colloids between stream and streambed. Large-sized particles are mainly controlled by settlement and advection and thus their concentration in the overlying water decreases more quickly; but small-sized particles are mainly controlled by hyporheic exchange and thus their concentration decreases more slowly, and some particles can be resuspended. The increase of retention coefficient and settling velocity will accelerate the transfer of colloids into the streambed. This study may provide important insights into the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange.

摘要 胶体粒径在底流区污染物吸附和堵塞过程中起着重要作用,但胶体在迁移过程中粒径如何变化仍不清楚。本研究通过实验室实验和数值模拟,研究了上覆水中胶体粒径的变化以及沉降和底流体交换的影响,主要考虑了沉降和底流体交换两个因素。结果表明,胶体在下垫面区迁移时,粒径分布会发生变化,沉降和下垫面交换都参与了溪流与河床之间的胶体交换。大颗粒主要受沉降和平流的控制,因此其在上覆水中的浓度下降较快;而小颗粒主要受微流体交换的控制,因此其浓度下降较慢,部分颗粒还可再悬浮。滞留系数和沉降速度的增加会加速胶体向河床的转移。这项研究可为了解上覆水中胶体粒径的变化以及沉降和流体交换的影响提供重要信息。
{"title":"Effects of Hyporheic Exchange and Settlement on the Particle Size Distribution of Colloids","authors":"Zhongtian Zhang,&nbsp;Guangqiu Jin,&nbsp;Hongwu Tang,&nbsp;Wenhui Shao,&nbsp;Qihao Jiang,&nbsp;Xiaorong Zhou,&nbsp;Haiyu Yuan,&nbsp;David Andrew Barry","doi":"10.1007/s11242-024-02061-4","DOIUrl":"10.1007/s11242-024-02061-4","url":null,"abstract":"<div><p>Colloid particle size plays an important role in contaminant adsorption and clogging in the hyporheic zone, but it remains unclear how the particle size changes during the transport of colloids. This study investigated the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange via laboratory experiments and numerical simulations with two main factors settlement and hyporheic exchange being considered. The results show that the particle size distribution varies when colloids transport in hyporheic zone, and both settlement and hyporheic exchange are involved in the exchange of colloids between stream and streambed. Large-sized particles are mainly controlled by settlement and advection and thus their concentration in the overlying water decreases more quickly; but small-sized particles are mainly controlled by hyporheic exchange and thus their concentration decreases more slowly, and some particles can be resuspended. The increase of retention coefficient and settling velocity will accelerate the transfer of colloids into the streambed. This study may provide important insights into the variation of the particle size of colloids in the overlying water and the effects of settlement and hyporheic exchange.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"719 - 741"},"PeriodicalIF":2.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgement of Reviewers for 2023 鸣谢 2023 年审查员
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-03-04 DOI: 10.1007/s11242-024-02057-0
{"title":"Acknowledgement of Reviewers for 2023","authors":"","doi":"10.1007/s11242-024-02057-0","DOIUrl":"10.1007/s11242-024-02057-0","url":null,"abstract":"","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 3","pages":"399 - 401"},"PeriodicalIF":2.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-Scale Modeling of CO2 Injection Using Density Functional Hydrodynamics 利用密度函数流体力学建立二氧化碳注入的孔隙尺度模型
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-02-27 DOI: 10.1007/s11242-024-02064-1
Oleg Dinariev, Nikolay Evseev, Alexander Sidorenkov, Leonid Dovgilovich, Mikhail Stukan, Maxim Fedorov

The pore-scale numerical modeling of CO2 injection into natural rock saturated with oil–water mixture was performed using the density functional hydrodynamics approach. The detailed 3D digital model of the sandstone core sample contained over 7 billion cells, which allowed us to perform analysis of oil displacement efficiency at different scales. Utilization of large-size detailed numerical models make it possible to characterize, both qualitatively and quantitatively, the processes at pore scale to the level of detail not achievable on smaller models. The obtained results indicate large-scale effects even on relatively heterogeneous core indicating possible need for multiscale hierarchical models even in heterogeneous cases. This fact imposes the demand for scalability performance on both the software and hardware used in such simulations, as well as the need for adequate modeling upscaling methods.

利用密度泛函流体力学方法,对二氧化碳注入饱和油水混合物的天然岩石进行了孔隙尺度数值建模。砂岩岩芯样本的详细三维数字模型包含超过 70 亿个单元,这使我们能够在不同尺度上对石油置换效率进行分析。利用大尺寸的详细数值模型,可以定性和定量地描述孔隙尺度的过程,其详细程度是较小模型无法达到的。所获得的结果表明,即使在相对异质的岩芯上也会产生大规模效应,这表明即使在异质情况下也可能需要多尺度分层模型。这就要求在此类模拟中使用的软件和硬件都具有可扩展性能,并需要适当的建模升级方法。
{"title":"Pore-Scale Modeling of CO2 Injection Using Density Functional Hydrodynamics","authors":"Oleg Dinariev,&nbsp;Nikolay Evseev,&nbsp;Alexander Sidorenkov,&nbsp;Leonid Dovgilovich,&nbsp;Mikhail Stukan,&nbsp;Maxim Fedorov","doi":"10.1007/s11242-024-02064-1","DOIUrl":"10.1007/s11242-024-02064-1","url":null,"abstract":"<div><p>The pore-scale numerical modeling of CO<sub>2</sub> injection into natural rock saturated with oil–water mixture was performed using the density functional hydrodynamics approach. The detailed 3D digital model of the sandstone core sample contained over 7 billion cells, which allowed us to perform analysis of oil displacement efficiency at different scales. Utilization of large-size detailed numerical models make it possible to characterize, both qualitatively and quantitatively, the processes at pore scale to the level of detail not achievable on smaller models. The obtained results indicate large-scale effects even on relatively heterogeneous core indicating possible need for multiscale hierarchical models even in heterogeneous cases. This fact imposes the demand for scalability performance on both the software and hardware used in such simulations, as well as the need for adequate modeling upscaling methods.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 4","pages":"753 - 771"},"PeriodicalIF":2.7,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Transport in Porous Media
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1