The impact of relative humidity on the formation of low-frictional interface in hydrogenated carbon nitride (CNx:H) coatings sliding against Si3N4 balls and the formation continuity was elucidated through friction tests conducted in both air and nitrogen atmospheres with controlled relative humidity levels. In air atmosphere, a carbonaceous tribolayer with a transformed structure from the initial CNx:H was formed on Si3N4 at less than the critical humidity that existed in 1.0–3.0% RH, resulting in low friction (μ < 0.05) and a low specific wear rate of the balls (< 2 × 10–9 mm3/N·m). In contrast, this tribolayer failed to form above 3.0% RH. In nitrogen atmosphere, within the 0.25–1.0% RH range, the tribolayer continued to form concurrently with wear progression, maintaining low friction for over 50,000 cycles. However, in less than this humidity range, the lifetime of low friction was limited owing to the tribolayer’s structural alteration. Thus, relative humidity influences not only the formation of the low-frictional interface but also the formation continuity. On the CNx:H friction surface, hydrogen, hydroxyl, and oxygen groups from environmental water and oxygen molecules continued to chemisorb owing to tribochemical reactions on the uppermost few nanometers during continuous low friction in a nitrogen atmosphere, while hydrogen content of CNx:H desorbed. This study experimentally confirmed the critical role of controlling relative humidity in tribological systems using CNx:H coatings to achieve low friction and improve its durability of low friction through the continuous formation of the low-frictional interface.