首页 > 最新文献

Tribology Letters最新文献

英文 中文
Assessing the Performance of TOR Lubricants in Humid Environments and Under Dew Conditions 评估 TOR 润滑油在潮湿环境和露水条件下的性能
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-16 DOI: 10.1007/s11249-024-01889-7
Simon Skurka, Radovan Galas, Milan Omasta, Haohao Ding, Wen-Jian Wang, Ivan Krupka, Martin Hartl

Top-of-rail (TOR) lubricants are commonly used for friction control in railway operations. They aim to lower friction and reduce noise and wear while ensuring sufficient transmission of traction/braking forces. However, the wheel–rail interface is an open system, so the conditions may suddenly change due to the weather, and different contaminants may enter the contact and influence the performance of these lubricants. Thus, this study examined the effect of humidity and dew on two commercial products, as these conditions often occur on the track. A methodology based on a creep curves measurement approach was used to assess product performance under various scenarios. All measurements were conducted on a universal tribometer in the ball-on-disc configuration covered with a climate chamber. The results show a strong influence of dew on the tested products, as dew lowered their performance parameters and caused low adhesion problems. Possible mechanisms of water–oil interaction and formation of oxidic third body layers were discussed. The main findings indicate that TOR lubricants may cause traction/braking problems if used in dew conditions. The present study may be helpful in optimising friction management methods in the future.

Graphical Abstract

轨顶(TOR)润滑油通常用于铁路运营中的摩擦控制。它们旨在降低摩擦、减少噪音和磨损,同时确保牵引力/制动力的充分传递。然而,轮轨界面是一个开放系统,因此条件可能会因天气而突然改变,不同的污染物可能会进入接触面并影响这些润滑剂的性能。因此,本研究考察了湿度和露水对两种商用产品的影响,因为这些情况经常出现在轨道上。研究采用了一种基于蠕变曲线测量方法的方法来评估各种情况下的产品性能。所有测量都是在一个球盘配置的通用摩擦磨损试验机上进行的,试验机上覆盖了一个气候室。结果表明,露水对测试产品的影响很大,因为露水降低了产品的性能参数,并造成附着力低的问题。讨论了水油相互作用和氧化第三体层形成的可能机制。主要研究结果表明,如果在露水条件下使用 TOR 润滑油,可能会导致牵引/制动问题。本研究可能有助于今后优化摩擦管理方法。
{"title":"Assessing the Performance of TOR Lubricants in Humid Environments and Under Dew Conditions","authors":"Simon Skurka,&nbsp;Radovan Galas,&nbsp;Milan Omasta,&nbsp;Haohao Ding,&nbsp;Wen-Jian Wang,&nbsp;Ivan Krupka,&nbsp;Martin Hartl","doi":"10.1007/s11249-024-01889-7","DOIUrl":"10.1007/s11249-024-01889-7","url":null,"abstract":"<div><p>Top-of-rail (TOR) lubricants are commonly used for friction control in railway operations. They aim to lower friction and reduce noise and wear while ensuring sufficient transmission of traction/braking forces. However, the wheel–rail interface is an open system, so the conditions may suddenly change due to the weather, and different contaminants may enter the contact and influence the performance of these lubricants. Thus, this study examined the effect of humidity and dew on two commercial products, as these conditions often occur on the track. A methodology based on a creep curves measurement approach was used to assess product performance under various scenarios. All measurements were conducted on a universal tribometer in the ball-on-disc configuration covered with a climate chamber. The results show a strong influence of dew on the tested products, as dew lowered their performance parameters and caused low adhesion problems. Possible mechanisms of water–oil interaction and formation of oxidic third body layers were discussed. The main findings indicate that TOR lubricants may cause traction/braking problems if used in dew conditions. The present study may be helpful in optimising friction management methods in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01889-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Force Microscopy of Transfer Film Development 转移膜显影的原子力显微镜观察
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-16 DOI: 10.1007/s11249-024-01893-x
Kathryn E. Shaffer, Edward J. McCumiskey, Brandon A. Krick, Jeffrey J. Ewin, Curtis R. Taylor, Christopher P. Junk, Gregory S. Blackman, W. Gregory Sawyer, Angela A. Pitenis

Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.

原子力显微镜(AFM)提供了对复杂、动态和瞬态系统进行基础和机理观察的机会,并最终将摩擦学相互作用过程中的材料微观结构及其演变联系起来。本研究的重点是聚四氟乙烯(PTFE)与 5 wt% α-相氧化铝颗粒混合后与 304L 不锈钢滑动过程中形成的动态含氟聚合物三膜的演变。定期中断滑动以进行原子力显微镜形貌扫描。随着滑动周期的增加,记录了平均薄膜粗糙度、平均摩擦系数和基于样品高度衰退的聚合物磨损率。地形图显示,三膜在钢制反样品的凹槽中成核、扩散,并通过滑动形成一层均匀的薄膜。在 10,000 次滑动周期左右及其后,可以看到明显的纳米级特征。扫描电子显微镜和能量色散 X 射线光谱显示,这些特征与富铝域之间存在良好的相关性,表明表面存在氧化铝颗粒。
{"title":"Atomic Force Microscopy of Transfer Film Development","authors":"Kathryn E. Shaffer,&nbsp;Edward J. McCumiskey,&nbsp;Brandon A. Krick,&nbsp;Jeffrey J. Ewin,&nbsp;Curtis R. Taylor,&nbsp;Christopher P. Junk,&nbsp;Gregory S. Blackman,&nbsp;W. Gregory Sawyer,&nbsp;Angela A. Pitenis","doi":"10.1007/s11249-024-01893-x","DOIUrl":"10.1007/s11249-024-01893-x","url":null,"abstract":"<div><p>Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01893-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Molecular Dynamics Study on the Adhesive Contact with Effect of Tangential Forces 切向力影响下的粘合接触分子动力学研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-13 DOI: 10.1007/s11249-024-01891-z
Jin-Shan He, Gan-Yun Huang, Yue-Sheng Wang, Liao-Liang Ke

Adhesive contact with the effect of tangential force may have important implications in friction and wear performances of small-sized devices and joining technologies. In the present work, adhesive contact involving tangential loading but before gross slip between spherical objects has been simulated through molecular dynamics (MD) to reveal the interaction between adhesion and the applied forces. When only the normal force is present, the results on force–displacement relationship and interfacial traction have been presented to compare with the predictions of Johnson–Kendall–Roberts (JKR), Maugis–Dugdale (M–D) and the Double–Hertz (D–H) models with the purpose of evaluating their applicability. In the presence of additional tangential forces, their interaction with adhesion has been studied in depth through loading and unloading. Distribution of the shear traction at the interface which is different from that in the existent models has been obtained. Those altogether may help to develop reasonable continuum models for adhesive contact under inclined forces.

切向力作用下的粘合接触可能会对小型设备和连接技术的摩擦和磨损性能产生重要影响。在本研究中,我们通过分子动力学(MD)模拟了球形物体之间涉及切向加载但尚未发生严重滑移的粘合接触,以揭示粘合力与外加力之间的相互作用。在只存在法向力的情况下,模拟结果与约翰逊-肯德尔-罗伯茨(JKR)、毛吉斯-杜格代尔(M-D)和双赫兹(D-H)模型的预测结果进行了比较,以评估它们的适用性。在存在额外切向力的情况下,通过加载和卸载深入研究了它们与附着力的相互作用。结果发现,界面上剪切牵引力的分布与现有模型不同。这些结果有助于为倾斜力作用下的粘附接触建立合理的连续模型。
{"title":"A Molecular Dynamics Study on the Adhesive Contact with Effect of Tangential Forces","authors":"Jin-Shan He,&nbsp;Gan-Yun Huang,&nbsp;Yue-Sheng Wang,&nbsp;Liao-Liang Ke","doi":"10.1007/s11249-024-01891-z","DOIUrl":"10.1007/s11249-024-01891-z","url":null,"abstract":"<div><p>Adhesive contact with the effect of tangential force may have important implications in friction and wear performances of small-sized devices and joining technologies. In the present work, adhesive contact involving tangential loading but before gross slip between spherical objects has been simulated through molecular dynamics (MD) to reveal the interaction between adhesion and the applied forces. When only the normal force is present, the results on force–displacement relationship and interfacial traction have been presented to compare with the predictions of Johnson–Kendall–Roberts (JKR), Maugis–Dugdale (M–D) and the Double–Hertz (D–H) models with the purpose of evaluating their applicability. In the presence of additional tangential forces, their interaction with adhesion has been studied in depth through loading and unloading. Distribution of the shear traction at the interface which is different from that in the existent models has been obtained. Those altogether may help to develop reasonable continuum models for adhesive contact under inclined forces.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts 更正:轧制流体动力润滑接触中的增稠剂行为
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-12 DOI: 10.1007/s11249-024-01887-9
Michal Okal, David Kostal, Kazumi Sakai, Ivan Krupka, Martin Hartl
{"title":"Correction to: Thickener Behaviour in Rolling Elastohydrodynamic Lubrication Contacts","authors":"Michal Okal,&nbsp;David Kostal,&nbsp;Kazumi Sakai,&nbsp;Ivan Krupka,&nbsp;Martin Hartl","doi":"10.1007/s11249-024-01887-9","DOIUrl":"10.1007/s11249-024-01887-9","url":null,"abstract":"","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01887-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Investigation on WC/C Coatings Applied on Bearings Subjected to Fretting Wear 受摩擦磨损轴承上使用的 WC/C 涂层的摩擦学研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-10 DOI: 10.1007/s11249-024-01892-y
B. Pinedo, G. Mendoza, A. López-Ortega, C. Zubizarreta, L. Mendizabal, S. Fraile, L. Ionescu

This study investigates the capability of WC/C coatings to protect bearing bores against fretting wear when there is a lack of lubrication, a typical failure mechanism in bearings subjected to vibrations. Linear pin-on-disc and rotary oscillating block-on-ring tribological tests were carried out reproducing fretting conditions to evaluate the tribological performance and fretting resistance of the developed WC/C coating in comparison with those of the two common coatings currently employed to prevent this type of bearing failure, i.e. thin-dense chrome and fluoropolymer coatings. The friction forces generated under fretting conditions were evaluated, and a deep surface analysis of the tribosystems was carried out through different microscopic techniques in order to identify the wear mechanisms prevailing in each coating. Results suggested that WC/C coatings could be promising candidates to mitigate fretting damage, as they combine a low friction coefficient with good wear resistance. Furthermore, WC/C coatings constitute a more sustainable solution compared to the currently employed PTFE and chrome-based coatings, paving the way to a greener society.

本研究调查了 WC/C 涂层在缺乏润滑时保护轴承孔免受摩擦磨损的能力,这是受振动影响的轴承的典型失效机制。我们进行了线性销对盘和旋转摆动块对环摩擦学试验,再现了摩擦磨损条件,以评估所开发的 WC/C 涂层的摩擦学性能和抗摩擦磨损性能,并与目前用于防止此类轴承故障的两种常见涂层(即薄致密铬涂层和含氟聚合物涂层)进行了比较。评估了在摩擦条件下产生的摩擦力,并通过不同的显微技术对摩擦系统进行了深入的表面分析,以确定每种涂层的磨损机制。结果表明,由于 WC/C 涂层兼具低摩擦系数和良好的耐磨性,因此有望成为减轻摩擦磨损的候选材料。此外,与目前使用的聚四氟乙烯和铬基涂层相比,WC/C 涂层是一种更具可持续性的解决方案,为实现绿色社会铺平了道路。
{"title":"Tribological Investigation on WC/C Coatings Applied on Bearings Subjected to Fretting Wear","authors":"B. Pinedo,&nbsp;G. Mendoza,&nbsp;A. López-Ortega,&nbsp;C. Zubizarreta,&nbsp;L. Mendizabal,&nbsp;S. Fraile,&nbsp;L. Ionescu","doi":"10.1007/s11249-024-01892-y","DOIUrl":"10.1007/s11249-024-01892-y","url":null,"abstract":"<div><p>This study investigates the capability of WC/C coatings to protect bearing bores against fretting wear when there is a lack of lubrication, a typical failure mechanism in bearings subjected to vibrations. Linear pin-on-disc and rotary oscillating block-on-ring tribological tests were carried out reproducing fretting conditions to evaluate the tribological performance and fretting resistance of the developed WC/C coating in comparison with those of the two common coatings currently employed to prevent this type of bearing failure, i.e. thin-dense chrome and fluoropolymer coatings. The friction forces generated under fretting conditions were evaluated, and a deep surface analysis of the tribosystems was carried out through different microscopic techniques in order to identify the wear mechanisms prevailing in each coating. Results suggested that WC/C coatings could be promising candidates to mitigate fretting damage, as they combine a low friction coefficient with good wear resistance. Furthermore, WC/C coatings constitute a more sustainable solution compared to the currently employed PTFE and chrome-based coatings, paving the way to a greener society.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Tribological Behavior of N-doped Graphene Oxide Quantum Dots with MoS2 and Al2O3 Nanocomposites as Lubricant Additive in Aqueous Glycerol 掺杂 N 的氧化石墨烯量子点与 MoS2 和 Al2O3 纳米复合材料在甘油水溶液中作为润滑添加剂的制备与摩擦学行为
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-03 DOI: 10.1007/s11249-024-01885-x
Sang Xiong, Jiaqi He, Chenglong Wang

N-doped graphene oxide quantum dots (NGOQDs) with MoS2 and Al2O3 nanocomposites were prepared by solvothermal method. The morphology and the composition and structure of the prepared composites were characterized by TEM, XRD, Raman, ATR-FTIR, and XPS. Tribological behavior of NGOQDs-MoS2 and NGOQDs-Al2O3 nanocomposites as lubricant additive in aqueous glycerol were studied. Through experiments and MD simulations, the tribochemistry-induced lubrication mechanism was disclosed. The results shows that the combination of NGOQDs and hydrated glycerol can significantly improve lubrication performance, and the addition of NGOQDs-MoS2 and NGOQDs-Al2O3 nanoparticles can further improve tribological properties. The formation of a tribofilm through tribochemical induced lubrication mechanism improves the wear resistance of metal surfaces.

Graphical abstract

采用溶热法制备了 N 掺杂氧化石墨烯量子点(NGOQDs)与 MoS2 和 Al2O3 纳米复合材料。利用 TEM、XRD、拉曼、ATR-FTIR 和 XPS 对所制备的复合材料的形貌、组成和结构进行了表征。研究了 NGOQDs-MoS2 和 NGOQDs-Al2O3 纳米复合材料作为润滑添加剂在甘油水溶液中的摩擦学行为。通过实验和 MD 模拟,揭示了摩擦化学诱导的润滑机理。结果表明,NGOQDs 与水合甘油的结合能显著改善润滑性能,而添加 NGOQDs-MoS2 和 NGOQDs-Al2O3 纳米粒子能进一步改善摩擦学性能。通过摩擦化学诱导润滑机制形成的三膜提高了金属表面的耐磨性。
{"title":"Preparation and Tribological Behavior of N-doped Graphene Oxide Quantum Dots with MoS2 and Al2O3 Nanocomposites as Lubricant Additive in Aqueous Glycerol","authors":"Sang Xiong,&nbsp;Jiaqi He,&nbsp;Chenglong Wang","doi":"10.1007/s11249-024-01885-x","DOIUrl":"10.1007/s11249-024-01885-x","url":null,"abstract":"<div><p>N-doped graphene oxide quantum dots (NGOQDs) with MoS<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanocomposites were prepared by solvothermal method. The morphology and the composition and structure of the prepared composites were characterized by TEM, XRD, Raman, ATR-FTIR, and XPS. Tribological behavior of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanocomposites as lubricant additive in aqueous glycerol were studied. Through experiments and MD simulations, the tribochemistry-induced lubrication mechanism was disclosed. The results shows that the combination of NGOQDs and hydrated glycerol can significantly improve lubrication performance, and the addition of NGOQDs-MoS<sub>2</sub> and NGOQDs-Al<sub>2</sub>O<sub>3</sub> nanoparticles can further improve tribological properties. The formation of a tribofilm through tribochemical induced lubrication mechanism improves the wear resistance of metal surfaces.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Humidity on the Tribological Properties of PA66 Gear Materials 湿度对 PA66 齿轮材料摩擦学特性的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-02 DOI: 10.1007/s11249-024-01882-0
Yonglong Wu, Jing Tan, Xinmin Li, Wing San Tony Hung, Ulf Olofsson, Löwer Manuel

PA66 is a commonly used material for plastic gears due to its excellent high-temperature resistance, high strength, self-lubrication, and friction resistance. In this study, the effect of different humidity levels on the tribological properties of PA66 materials in self-mated contacts are investigated using a pin-on-disk test rig. The results show that the friction coefficient and wear rate of the PA66-PA66 sliding combination increase drastically after humidity treatment mainly due to the surface plasticization caused by water absorption and the decrease of cohesive strength and glass transition temperature. Moreover, the limiting PV value of PA66 materials decreased significantly after moisture absorption, and when the actual PV value exceeds this reduced material limit, the degree of friction and wear increases drastically. The wear mechanism of the PA66-PA66 sliding combination is mainly adhesive wear without humidity treatment. The wear mechanism is adhesive wear combined with abrasive wear after humidity treatment (50%, 70%, 90%, immersion in water) and abrasive wear is most significant at 50% humidity. Abrasive wear decreases with the increase of the moisture content, while adhesive wear increases.

Graphical Abstract

PA66 具有优异的耐高温、高强度、自润滑和耐摩擦性能,是塑料齿轮的常用材料。本研究使用针盘试验台研究了不同湿度水平对 PA66 材料在自配接触中的摩擦学特性的影响。结果表明,湿度处理后 PA66-PA66 滑动组合的摩擦系数和磨损率急剧增加,主要原因是吸水导致表面塑化,以及内聚强度和玻璃化转变温度降低。此外,吸湿后 PA66 材料的极限 PV 值明显降低,当实际 PV 值超过这个降低的材料极限值时,摩擦和磨损程度会急剧增加。PA66-PA66 滑动组合的磨损机理主要是未经湿度处理的粘着磨损。经过湿度处理(50%、70%、90%,浸入水中)后,磨损机理是粘着磨损与磨料磨损相结合,在湿度为 50%时,磨料磨损最为显著。磨料磨损随着湿度的增加而减小,而粘着磨损则增加。
{"title":"Effect of Humidity on the Tribological Properties of PA66 Gear Materials","authors":"Yonglong Wu,&nbsp;Jing Tan,&nbsp;Xinmin Li,&nbsp;Wing San Tony Hung,&nbsp;Ulf Olofsson,&nbsp;Löwer Manuel","doi":"10.1007/s11249-024-01882-0","DOIUrl":"10.1007/s11249-024-01882-0","url":null,"abstract":"<div><p>PA66 is a commonly used material for plastic gears due to its excellent high-temperature resistance, high strength, self-lubrication, and friction resistance. In this study, the effect of different humidity levels on the tribological properties of PA66 materials in self-mated contacts are investigated using a pin-on-disk test rig. The results show that the friction coefficient and wear rate of the PA66-PA66 sliding combination increase drastically after humidity treatment mainly due to the surface plasticization caused by water absorption and the decrease of cohesive strength and glass transition temperature. Moreover, the limiting PV value of PA66 materials decreased significantly after moisture absorption, and when the actual PV value exceeds this reduced material limit, the degree of friction and wear increases drastically. The wear mechanism of the PA66-PA66 sliding combination is mainly adhesive wear without humidity treatment. The wear mechanism is adhesive wear combined with abrasive wear after humidity treatment (50%, 70%, 90%, immersion in water) and abrasive wear is most significant at 50% humidity. Abrasive wear decreases with the increase of the moisture content, while adhesive wear increases.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear in Progress: How Third Body Flow Controls Surface Damage 磨损进行时:第三体流如何控制表面损伤
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-02 DOI: 10.1007/s11249-024-01875-z
Olivier Bouillanne, Guilhem Mollon, Aurélien Saulot, Sylvie Descartes, Nathalie Serres, Guillaume Chassaing, Karim Demmou

Mechanical contacts in dry conditions are often characterized by an interfacial layer called “third body”, which generally originates from the degradations of the surfaces, but which can exhibit strongly different material properties. This layer is a direct consequence of past wear, but also exerts a control on the rate at which surfaces in contact will keep getting worn. A comprehensive understanding of mechanical contacts therefore relies on a theory describing the interplay between this sheared layer and the moving surfaces which confine it. In this paper, we make a step towards such a theory by quantitatively investigating the link between the flow regime of the third body and the mechanical loading it applies to the surfaces. For that purpose, a previously developed local model of solid flow based on the Multibody Meshfree Approach is employed, in order to simulate characteristic flow regimes identified in experiments. Typical stress concentration patterns endured by the surfaces are then described and quantified, and a simple damage model is used to demonstrate how such a model could lead to wear prediction. We demonstrate that agglomerated flow regimes are prone to enhance large and deep damaging of surfaces, while granular third body flows have a more limited and shallow damaging effect.

在干燥条件下的机械接触通常会有一层被称为 "第三体 "的界面层,这层界面层通常是由表面退化产生的,但其材料特性可能有很大差异。该层是过去磨损的直接结果,但也对接触表面继续磨损的速度起到控制作用。因此,对机械接触的全面理解有赖于描述剪切层和限制剪切层的运动表面之间相互作用的理论。在本文中,我们通过定量研究第三体的流动机制与施加在表面上的机械载荷之间的联系,向这种理论迈出了一步。为此,我们采用了以前开发的基于多体无网格方法的固体流动局部模型,以模拟实验中发现的特征流动状态。然后对表面承受的典型应力集中模式进行描述和量化,并使用一个简单的损坏模型来演示这种模型如何进行磨损预测。我们证明,团聚流状态容易对表面造成大面积、深层次的破坏,而颗粒状第三体流的破坏作用则较为有限、较浅。
{"title":"Wear in Progress: How Third Body Flow Controls Surface Damage","authors":"Olivier Bouillanne,&nbsp;Guilhem Mollon,&nbsp;Aurélien Saulot,&nbsp;Sylvie Descartes,&nbsp;Nathalie Serres,&nbsp;Guillaume Chassaing,&nbsp;Karim Demmou","doi":"10.1007/s11249-024-01875-z","DOIUrl":"10.1007/s11249-024-01875-z","url":null,"abstract":"<div><p>Mechanical contacts in dry conditions are often characterized by an interfacial layer called “third body”, which generally originates from the degradations of the surfaces, but which can exhibit strongly different material properties. This layer is a direct consequence of past wear, but also exerts a control on the rate at which surfaces in contact will keep getting worn. A comprehensive understanding of mechanical contacts therefore relies on a theory describing the interplay between this sheared layer and the moving surfaces which confine it. In this paper, we make a step towards such a theory by quantitatively investigating the link between the flow regime of the third body and the mechanical loading it applies to the surfaces. For that purpose, a previously developed local model of solid flow based on the Multibody Meshfree Approach is employed, in order to simulate characteristic flow regimes identified in experiments. Typical stress concentration patterns endured by the surfaces are then described and quantified, and a simple damage model is used to demonstrate how such a model could lead to wear prediction. We demonstrate that agglomerated flow regimes are prone to enhance large and deep damaging of surfaces, while granular third body flows have a more limited and shallow damaging effect.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Investigation of Chemically Modified Polytetrafluoroethylene Coating for Hydrogen Valve Application 氢气阀门应用中化学改性聚四氟乙烯涂层的摩擦学研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-29 DOI: 10.1007/s11249-024-01869-x
Danavath Balu, Piyush Chandra Verma, Suresh Kumar Reddy Narala, R. Sujith, Prabakaran Saravanan

Hydrogen embrittlement (HE) can cause catastrophic failure of stainless steel valve and related components in hydrogen refueling stations (HRSs), reducing reliability, safety and increasing the cost. Here, in this study, the ability of chemically modified polytetrafluoroethylene (CM-PTFE) coatings on steel substrates in reducing the HE susceptibility and, the friction and wear of valve parts, are explored due to its low hydrogen (H2) permeability and excellent solid lubrication. The solid lubrication properties of CM-PTFE-coated steel samples were investigated before and after H2 charging at a pressure of 7 × 105 Pascals. After H2 charging, the samples were subjected to CHNS and X-ray diffraction (XRD) analysis to quantify the percentage of H2 absorption and its effect on crystallinity of the samples, respectively, and interesting insights were obtained from both CHNS and XRD analysis. Furthermore, the effect of H2 charging on uncoated steel discs and CM-PTFE-coated discs were thoroughly investigated by hardness measurements, tribological characterization, wear behavior analysis of discs and pins and chemical elemental mapping. All test results are harmoniously suggesting that the H2 charging indeed softened the material significantly. The developed double function CM-PTFE coatings can minimize H2 permeability and also reduce friction, and wear of the components in HRSs.

氢脆(HE)会导致加氢站(HRS)中的不锈钢阀门和相关部件发生灾难性故障,从而降低可靠性和安全性并增加成本。在本研究中,探讨了钢基体上的化学改性聚四氟乙烯(CM-PTFE)涂层因其低氢(H2)渗透性和优异的固体润滑性,在降低氢脆敏感性、减少阀门部件摩擦和磨损方面的能力。在 7 × 105 帕斯卡压力下充入 H2 前后,研究了 CM-PTFE 涂层钢样品的固体润滑特性。充入 H2 后,对样品进行了 CHNS 和 X 射线衍射 (XRD) 分析,以分别量化样品吸收 H2 的百分比及其对结晶度的影响。此外,还通过硬度测量、摩擦学表征、盘和销的磨损行为分析以及化学元素图谱,深入研究了充入 H2 对未涂层钢盘和 CM-PTFE 涂层盘的影响。所有测试结果都一致表明,充入的 H2 确实极大地软化了材料。所开发的双功能 CM-PTFE 涂层可最大限度地降低 H2 渗透率,同时还能减少 HRS 中部件的摩擦和磨损。
{"title":"Tribological Investigation of Chemically Modified Polytetrafluoroethylene Coating for Hydrogen Valve Application","authors":"Danavath Balu,&nbsp;Piyush Chandra Verma,&nbsp;Suresh Kumar Reddy Narala,&nbsp;R. Sujith,&nbsp;Prabakaran Saravanan","doi":"10.1007/s11249-024-01869-x","DOIUrl":"10.1007/s11249-024-01869-x","url":null,"abstract":"<div><p>Hydrogen embrittlement (HE) can cause catastrophic failure of stainless steel valve and related components in hydrogen refueling stations (HRSs), reducing reliability, safety and increasing the cost. Here, in this study, the ability of chemically modified polytetrafluoroethylene (CM-PTFE) coatings on steel substrates in reducing the HE susceptibility and, the friction and wear of valve parts, are explored due to its low hydrogen (H<sub>2</sub>) permeability and excellent solid lubrication. The solid lubrication properties of CM-PTFE-coated steel samples were investigated before and after H<sub>2</sub> charging at a pressure of 7 × 10<sup>5</sup> Pascals. After H<sub>2</sub> charging, the samples were subjected to CHNS and X-ray diffraction (XRD) analysis to quantify the percentage of H<sub>2</sub> absorption and its effect on crystallinity of the samples, respectively, and interesting insights were obtained from both CHNS and XRD analysis. Furthermore, the effect of H<sub>2</sub> charging on uncoated steel discs and CM-PTFE-coated discs were thoroughly investigated by hardness measurements, tribological characterization, wear behavior analysis of discs and pins and chemical elemental mapping. All test results are harmoniously suggesting that the H<sub>2</sub> charging indeed softened the material significantly. The developed double function CM-PTFE coatings can minimize H<sub>2</sub> permeability and also reduce friction, and wear of the components in HRSs.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Dependence of Viscoelasticity of Lubricating Oil with Adsorptive Polymer Additives Sheared in Nanogaps 含吸附性聚合物添加剂的润滑油粘弹性在纳米间隙中剪切的温度依赖性
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-06-29 DOI: 10.1007/s11249-024-01884-y
Takumi Nozue, Shintaro Itoh, Naoya Okubo, Kenji Fukuzawa, Hedong Zhang, Naoki Azuma

Adsorptive polymer additives have been reported to improve the retention capacity of oil films under hydrodynamic lubrication and to reduce friction under boundary lubrication. These effects are believed to result from the formation of a polymer adsorption film on the surface that acts as a lubricious coating. Polymer adsorption films have become dominant in nanometer-order microscopic gaps. However, their mechanical properties are difficult to quantify. This hinders the development of polymer additives. In our previous study, we successfully measured the shear viscoelasticity of lubricants (base oils) sheared in nanogaps using an originally developed measurement method called the fiber wobbling method (FWM). In this study, we measured the shear viscoelasticity of polymer-added lubricants in nanogaps by using FWM. In addition, we developed a heating stage in the FWM to quantify the temperature dependence of shear viscoelasticity in nanogaps. As a result, the viscosity index improved and elasticity was observed in the nanogap, where the polymer adsorption film was dominant. Furthermore, our results indicated that the elasticity of the adsorbed polymer film originated from entropic elasticity.

Graphical Abstract

据报道,吸附性聚合物添加剂可提高流体动力润滑条件下油膜的保持能力,并减少边界润滑条件下的摩擦。这些效果被认为是由于在表面形成了一层作为润滑涂层的聚合物吸附膜。聚合物吸附膜已在纳米级微观间隙中占据主导地位。然而,它们的机械性能很难量化。这阻碍了聚合物添加剂的开发。在之前的研究中,我们使用一种最初开发的测量方法--纤维摆动法(FWM),成功测量了在纳米间隙中剪切的润滑油(基础油)的剪切粘弹性。在本研究中,我们使用 FWM 测量了纳米间隙中添加聚合物的润滑油的剪切粘弹性。此外,我们还在 FWM 中开发了一个加热阶段,以量化纳米间隙中剪切粘弹性的温度依赖性。结果表明,在聚合物吸附膜占主导地位的纳米间隙中,粘度指数得到了改善,并观察到了弹性。此外,我们的研究结果表明,吸附聚合物薄膜的弹性源于熵弹性。
{"title":"Temperature Dependence of Viscoelasticity of Lubricating Oil with Adsorptive Polymer Additives Sheared in Nanogaps","authors":"Takumi Nozue,&nbsp;Shintaro Itoh,&nbsp;Naoya Okubo,&nbsp;Kenji Fukuzawa,&nbsp;Hedong Zhang,&nbsp;Naoki Azuma","doi":"10.1007/s11249-024-01884-y","DOIUrl":"10.1007/s11249-024-01884-y","url":null,"abstract":"<div><p>Adsorptive polymer additives have been reported to improve the retention capacity of oil films under hydrodynamic lubrication and to reduce friction under boundary lubrication. These effects are believed to result from the formation of a polymer adsorption film on the surface that acts as a lubricious coating. Polymer adsorption films have become dominant in nanometer-order microscopic gaps. However, their mechanical properties are difficult to quantify. This hinders the development of polymer additives. In our previous study, we successfully measured the shear viscoelasticity of lubricants (base oils) sheared in nanogaps using an originally developed measurement method called the fiber wobbling method (FWM). In this study, we measured the shear viscoelasticity of polymer-added lubricants in nanogaps by using FWM. In addition, we developed a heating stage in the FWM to quantify the temperature dependence of shear viscoelasticity in nanogaps. As a result, the viscosity index improved and elasticity was observed in the nanogap, where the polymer adsorption film was dominant. Furthermore, our results indicated that the elasticity of the adsorbed polymer film originated from entropic elasticity.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01884-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tribology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1