首页 > 最新文献

Tribology Letters最新文献

英文 中文
Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication 不同深度沟槽纹理对水润滑条件下 GCr15-SiC 摩擦副的摩擦和磨损性能的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-23 DOI: 10.1007/s11249-024-01926-5
Yusen Zhang, Wei Long, Yan Qiao, Puteng Gui, Yuting Yin, Haifeng Qian

Surface texturing is an effective technology for enhancing lubrication and anti-wear properties through hydrodynamic effects and secondary lubrication. In this study, two types of variable-depth groove textures were designed to enhance the lubrication performance of friction pairs. Based on theoretical analysis, the coefficient of friction (COF), wear characteristics, and triboelectric open-circuit voltages produced by different textures were evaluated in a series of experiments. Using a friction testing setup, scanning electron microscopy, energy dispersive spectrometry, an electrometer (Keithley 6514), Raman spectroscopy, surface microtopography, and lubrication mechanisms were revealed. First, two types of variable-depth groove textures were designed based on computational fluid dynamics. Second, SiC samples with these textures were fabricated using laser surface texturing technology, and ball–disk rotary friction experiments were performed. During the friction tests, the shallow inner and deep outer (SDT) groove textures exhibited a lower COF at medium and low speeds under varying loads. Finally, the lubrication mechanism was attributed to the synergistic effect of four factors: the hydrodynamic effect of the lubricant, enhanced ability of debris expulsion, oxide tribofilms at the interface, and polarization electric field generated at the solid–liquid interfaces between the lubricant and friction pair. The results indicate that the minimum COF of the SDT texture can be reduced to 0.025. These insights offer valuable guidance for design methods and new lubrication mechanisms for enhancing the lubrication and anti-wear properties of friction pairs in mechanical systems.

Graphical Abstract

表面纹理是通过流体动力效应和二次润滑增强润滑和抗磨性能的有效技术。本研究设计了两种不同深度的沟槽纹理,以增强摩擦副的润滑性能。在理论分析的基础上,通过一系列实验对不同纹理产生的摩擦系数(COF)、磨损特性和三电开路电压进行了评估。利用摩擦测试装置、扫描电子显微镜、能量色散光谱仪、电度计(Keithley 6514)、拉曼光谱、表面微观形貌和润滑机制进行了揭示。首先,基于计算流体动力学设计了两种不同深度的沟槽纹理。其次,利用激光表面纹理技术制作了具有这些纹理的 SiC 样品,并进行了球盘旋转摩擦实验。在摩擦试验中,内浅外深(SDT)沟槽纹理在不同载荷下的中低速时表现出较低的 COF。最后,润滑机理被归结为四个因素的协同作用:润滑剂的流体动力效应、碎片排出能力的增强、界面上的氧化物三膜以及润滑剂和摩擦副之间的固液界面上产生的极化电场。结果表明,SDT 纹理的最小 COF 可降至 0.025。这些见解为提高机械系统中摩擦副的润滑和抗磨损性能的设计方法和新的润滑机制提供了宝贵的指导。 图文摘要
{"title":"Influence of Variable-Depth Groove Texture on the Friction and Wear Performance of GCr15–SiC Friction Pairs Under Water Lubrication","authors":"Yusen Zhang,&nbsp;Wei Long,&nbsp;Yan Qiao,&nbsp;Puteng Gui,&nbsp;Yuting Yin,&nbsp;Haifeng Qian","doi":"10.1007/s11249-024-01926-5","DOIUrl":"10.1007/s11249-024-01926-5","url":null,"abstract":"<div><p>Surface texturing is an effective technology for enhancing lubrication and anti-wear properties through hydrodynamic effects and secondary lubrication. In this study, two types of variable-depth groove textures were designed to enhance the lubrication performance of friction pairs. Based on theoretical analysis, the coefficient of friction (COF), wear characteristics, and triboelectric open-circuit voltages produced by different textures were evaluated in a series of experiments. Using a friction testing setup, scanning electron microscopy, energy dispersive spectrometry, an electrometer (Keithley 6514), Raman spectroscopy, surface microtopography, and lubrication mechanisms were revealed. First, two types of variable-depth groove textures were designed based on computational fluid dynamics. Second, SiC samples with these textures were fabricated using laser surface texturing technology, and ball–disk rotary friction experiments were performed. During the friction tests, the shallow inner and deep outer (SDT) groove textures exhibited a lower COF at medium and low speeds under varying loads. Finally, the lubrication mechanism was attributed to the synergistic effect of four factors: the hydrodynamic effect of the lubricant, enhanced ability of debris expulsion, oxide tribofilms at the interface, and polarization electric field generated at the solid–liquid interfaces between the lubricant and friction pair. The results indicate that the minimum COF of the SDT texture can be reduced to 0.025. These insights offer valuable guidance for design methods and new lubrication mechanisms for enhancing the lubrication and anti-wear properties of friction pairs in mechanical systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation 润滑油在燃烧汽油发动机活塞组件和曲轴箱中的雾状流动:粘指剂的影响以及与润滑油降解的联系
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-18 DOI: 10.1007/s11249-024-01925-6
Christopher J. Dyson, Martin Priest, Peter M. Lee

Droplet flows, termed misting, are significant lubrication flow mechanisms to, in and around the piston assembly. Therefore, these are important in piston assembly tribology and engine performance. Crankcase lubricant degradation rate has been hypothesised to be influenced by lubricant droplet flows through the piston assembly and crankcase, but not previously confirmed. Lubricant was sampled from the sump, top ring zone (TRZ), and mist and aerosol from the crankcase during an extended run. The physical and chemical degradation of these samples was characterised. Droplet flows were intermediate in degradation and fuel dilution between TRZ and sump. Flows with smaller droplet sizes were more degraded that those with larger droplets. The degradation of polymers was dependent on their molecular architecture.

被称为雾化的液滴流是活塞组件内部和周围的重要润滑流动机制。因此,这对活塞组件摩擦学和发动机性能非常重要。有人假设曲轴箱润滑油降解率会受到流经活塞组件和曲轴箱的润滑油液滴流的影响,但此前并未得到证实。在长时间运行过程中,从油底壳、顶环区(TRZ)以及曲轴箱的雾气和气溶胶中采集了润滑油样本。对这些样本的物理和化学降解特性进行了分析。液滴流在降解和燃料稀释方面介于 TRZ 和油底壳之间。液滴较小的流体比液滴较大的流体降解程度更高。聚合物的降解取决于其分子结构。
{"title":"The Flow of Lubricant as a Mist in the Piston Assembly and Crankcase of a Fired Gasoline Engine: The Effect of Viscosity Modifier and the Link to Lubricant Degradation","authors":"Christopher J. Dyson,&nbsp;Martin Priest,&nbsp;Peter M. Lee","doi":"10.1007/s11249-024-01925-6","DOIUrl":"10.1007/s11249-024-01925-6","url":null,"abstract":"<div><p>Droplet flows, termed misting, are significant lubrication flow mechanisms to, in and around the piston assembly. Therefore, these are important in piston assembly tribology and engine performance. Crankcase lubricant degradation rate has been hypothesised to be influenced by lubricant droplet flows through the piston assembly and crankcase, but not previously confirmed. Lubricant was sampled from the sump, top ring zone (TRZ), and mist and aerosol from the crankcase during an extended run. The physical and chemical degradation of these samples was characterised. Droplet flows were intermediate in degradation and fuel dilution between TRZ and sump. Flows with smaller droplet sizes were more degraded that those with larger droplets. The degradation of polymers was dependent on their molecular architecture.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01925-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on Corrosion–Wear Interaction Behavior of 8Cr4Mo4V-Bearing Steel Under Various Operating Conditions 不同工作条件下 8Cr4Mo4V 轴承钢的腐蚀磨损交互行为研究
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-09 DOI: 10.1007/s11249-024-01924-7
Chao Zhao, Lixia Ying, Chongyang Nie, Tianlin Zhu, Peng Chen

Coupled corrosion and wear damage in marine atmospheric environment seriously restricts the development of aerospace bearings, the aim of present work is to study the influence of various corrosion and wear conditions on the corrosion–wear interaction behavior of 8Cr4Mo4V-bearing steel. The influence of corrosion on wear and wear on corrosion for 8Cr4Mo4V-bearing steel under five corrosion temperatures, NaCl concentrations, rotational speeds, and normal loads was investigated and discussed, respectively, and the quantitative characterization of corrosion–wear interaction (CWI) effect was established. The corroded steels were prepared using salt spray corrosion, a ball-on-disc friction testing machine was used to obtain the coefficient of friction (COF) of corroded steels under dry wear. The corrosion weight losses, wear mass losses, and worn surface morphologies of corroded steels were characterized. The results show that both synergistic and antagonistic effects existed in CWI of 8Cr4Mo4V-bearing steel due to coupling action of corrosion pits and rust layers, which depends on operating conditions. The corrosion temperature and NaCl concentration directly affect the friction stability and corrosion contribution for tribological process via initial corrosion surface, while rotational speed and normal load influence the wear contribution for corrosion process through surface wear degree. This paper gives an idea for analysis of tribocorrosion properties of bearing steel under various alternating corrosion and wear operating conditions.

海洋大气环境中的腐蚀和磨损耦合破坏严重制约着航空轴承的发展,本研究旨在研究各种腐蚀和磨损条件对 8Cr4Mo4V 轴承钢腐蚀-磨损相互作用行为的影响。分别研究和讨论了 8Cr4Mo4V 轴承钢在五种腐蚀温度、NaCl 浓度、转速和正常载荷条件下腐蚀对磨损和磨损对腐蚀的影响,并确定了腐蚀-磨损相互作用(CWI)效应的定量特征。采用盐雾腐蚀法制备了腐蚀钢,并使用盘上球摩擦试验机获得了腐蚀钢在干磨损条件下的摩擦系数(COF)。对腐蚀钢的腐蚀重量损失、磨损质量损失和磨损表面形态进行了表征。结果表明,由于腐蚀坑和锈层的耦合作用,8Cr4Mo4V 钢的 CWI 存在协同效应和拮抗效应,这取决于操作条件。腐蚀温度和氯化钠浓度通过初始腐蚀表面直接影响摩擦稳定性和摩擦过程的腐蚀贡献,而转速和法向载荷则通过表面磨损程度影响腐蚀过程的磨损贡献。本文为分析轴承钢在各种交替腐蚀和磨损工况下的摩擦腐蚀特性提供了一种思路。
{"title":"Investigation on Corrosion–Wear Interaction Behavior of 8Cr4Mo4V-Bearing Steel Under Various Operating Conditions","authors":"Chao Zhao,&nbsp;Lixia Ying,&nbsp;Chongyang Nie,&nbsp;Tianlin Zhu,&nbsp;Peng Chen","doi":"10.1007/s11249-024-01924-7","DOIUrl":"10.1007/s11249-024-01924-7","url":null,"abstract":"<div><p>Coupled corrosion and wear damage in marine atmospheric environment seriously restricts the development of aerospace bearings, the aim of present work is to study the influence of various corrosion and wear conditions on the corrosion–wear interaction behavior of 8Cr4Mo4V-bearing steel. The influence of corrosion on wear and wear on corrosion for 8Cr4Mo4V-bearing steel under five corrosion temperatures, NaCl concentrations, rotational speeds, and normal loads was investigated and discussed, respectively, and the quantitative characterization of corrosion–wear interaction (CWI) effect was established. The corroded steels were prepared using salt spray corrosion, a ball-on-disc friction testing machine was used to obtain the coefficient of friction (COF) of corroded steels under dry wear. The corrosion weight losses, wear mass losses, and worn surface morphologies of corroded steels were characterized. The results show that both synergistic and antagonistic effects existed in CWI of 8Cr4Mo4V-bearing steel due to coupling action of corrosion pits and rust layers, which depends on operating conditions. The corrosion temperature and NaCl concentration directly affect the friction stability and corrosion contribution for tribological process via initial corrosion surface, while rotational speed and normal load influence the wear contribution for corrosion process through surface wear degree. This paper gives an idea for analysis of tribocorrosion properties of bearing steel under various alternating corrosion and wear operating conditions.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Numerical Simulation Method for 3D Rough Surface Topography of Shot Peening Parts with Specified 3D Roughness Spatial Parameters 指定三维粗糙度空间参数的喷丸强化零件三维粗糙表面形貌数值模拟新方法
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-01 DOI: 10.1007/s11249-024-01921-w
Jiling Chen, Jinyuan Tang, Wen Shao, Xin Li, Jiuyue Zhao, Wei Zhou, Ding Zhang

According to random process theory, the existing autocorrelation function (ACF) expression that characterizes the spatial features of the shot peening (SP) surface topography makes it difficult to constrain the 3D roughness spatial parameters defined in ISO 25178, which restricts the correlation studies between surface topography and service performance. This paper introduces a new ACF expression for reconstructing the SP surface topography with specified spatial parameters. Based on the new expression, a numerical simulation method for stratified surface topography applicable to SP after finishing is introduced. The main idea is to perform feature extraction and feature modeling on the measured surface with the help of machine learning. The new method is applied to the numerical simulation of the SP and grinding-shot peening (Gr-SP) surface topography with a coverage of 200%. The relative error in height distribution and spatial parameters between the measured and simulated surface topography are less than 5%. The new method of height distribution and spatial parameters active design is provided to study the correlation between surface topography and service performance of shot peening parts.

Graphical Abstract

根据随机过程理论,现有的表征喷丸强化(SP)表面形貌空间特征的自相关函数(ACF)表达式难以约束 ISO 25178 中定义的三维粗糙度空间参数,从而限制了表面形貌与服务性能之间的相关性研究。本文介绍了一种新的 ACF 表达式,用于重建具有指定空间参数的喷丸表面形貌。在新表达式的基础上,介绍了一种适用于精加工后 SP 的分层表面形貌数值模拟方法。其主要思想是在机器学习的帮助下对测量表面进行特征提取和特征建模。新方法应用于覆盖率为 200% 的 SP 和磨削喷丸 (Gr-SP) 表面形貌的数值模拟。测量和模拟的表面形貌在高度分布和空间参数上的相对误差小于 5%。这种高度分布和空间参数主动设计的新方法可用于研究表面形貌与喷丸强化零件使用性能之间的相关性。
{"title":"A New Numerical Simulation Method for 3D Rough Surface Topography of Shot Peening Parts with Specified 3D Roughness Spatial Parameters","authors":"Jiling Chen,&nbsp;Jinyuan Tang,&nbsp;Wen Shao,&nbsp;Xin Li,&nbsp;Jiuyue Zhao,&nbsp;Wei Zhou,&nbsp;Ding Zhang","doi":"10.1007/s11249-024-01921-w","DOIUrl":"10.1007/s11249-024-01921-w","url":null,"abstract":"<div><p>According to random process theory, the existing autocorrelation function (ACF) expression that characterizes the spatial features of the shot peening (SP) surface topography makes it difficult to constrain the 3D roughness spatial parameters defined in ISO 25178, which restricts the correlation studies between surface topography and service performance. This paper introduces a new ACF expression for reconstructing the SP surface topography with specified spatial parameters. Based on the new expression, a numerical simulation method for stratified surface topography applicable to SP after finishing is introduced. The main idea is to perform feature extraction and feature modeling on the measured surface with the help of machine learning. The new method is applied to the numerical simulation of the SP and grinding-shot peening (Gr-SP) surface topography with a coverage of 200%. The relative error in height distribution and spatial parameters between the measured and simulated surface topography are less than 5%. The new method of height distribution and spatial parameters active design is provided to study the correlation between surface topography and service performance of shot peening parts.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Friction Radius Variation on the Friction-Induced Vibration and Noise 摩擦半径变化对摩擦引起的振动和噪音的影响
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-10-01 DOI: 10.1007/s11249-024-01923-8
Sujie Li, Zaiyu Xiang, Songlan Xie, Jiakun Zhang, Zhengming Xiao, Bin Tang, Deqiang He
<div><p>In mechanical equipment friction pairs, there are instances of varying friction radius (e.g., brake pads in trains), but the impact of variation in friction radius on friction-induced vibration noise (FIVN) has not yet been clearly understood and has drawn little attention. To address this, a series of tests under different friction radii were carried out using a CETR friction and wear tester, and a finite element model(FEM) based on the main structure of the tester was established to carry out complex modal and transient dynamic simulations. Furthermore, a two-degree-of-freedom (2-DOF) numerical model was proposed to analyze the stability and dynamic characteristics of the ball-disc friction system. Based on the FIVN simulation tests, finite element simulations, and numerical analysis results, the impact of variations in the friction radius on FIVN was discussed. The results indicate that the friction radius is a crucial factor impacting the intensity and evolution of FIVN. Under the experimental parameters employed in this study, the intensity of FIVN increases with the enlargement of the friction radius. Correspondingly, an increase in friction radius significantly increases the friction disc’s wear. The scratches’ width, depth, and wear volume increase. In the friction process, the increase in friction radius leads to an increase in the wear amount of the friction disk, which also results in a significant accumulation of wear debris actively engaging in the frictional process at the interface. Therefore, the degradation of the friction surface becomes increasingly severe and exhibits complex tribological behaviors. The increase in friction radius facilitates modal coupling phenomena in friction systems, inducing high-intensity unstable vibrations within this system. Furthermore, with a larger friction radius, the structure of the friction system is more prone to deform. As the friction ball moves more significantly along with the friction disk, the concentration of contact stress at the interface intensifies notably in the region adjacent to the cutting-in end, accompanied by an increase in the numerical value of the contact stress. In scenarios with a large friction radius, the concentration of contact stress on surfaces is the primary reason for the greater width, depth, and wear volume of the scratches on the friction disc. The 2-DOF numerical model of the ball-disc friction system we established effectively helped us discuss the impact of the friction radius and coefficient of friction (COF) on system stability. It is found that under a large friction radius and COF, the system exhibits modal coupling phenomena, with a state of vibrational instability. The intensity of friction-induced vibration (FIV) also increases with the friction radius. In conclusion, this study finds that the friction radius is a key factor affecting FIVN, and appropriate measures should be taken to improve the tribological behavior of the interface to suppr
在机械设备摩擦副中,存在摩擦半径变化的情况(如列车的刹车片),但摩擦半径变化对摩擦诱发振动噪声(FIVN)的影响尚未得到清楚的认识,也很少引起人们的关注。针对这一问题,我们使用 CETR 摩擦和磨损试验机进行了一系列不同摩擦半径下的试验,并建立了基于试验机主体结构的有限元模型(FEM),以进行复杂的模态和瞬态动态模拟。此外,还提出了一个二自由度(2-DOF)数值模型,用于分析球盘摩擦系统的稳定性和动态特性。根据 FIVN 模拟试验、有限元模拟和数值分析结果,讨论了摩擦半径变化对 FIVN 的影响。结果表明,摩擦半径是影响 FIVN 强度和演变的关键因素。在本研究采用的实验参数下,FIVN 的强度随着摩擦半径的增大而增大。相应地,摩擦半径的增大会显著增加摩擦片的磨损。划痕的宽度、深度和磨损量都会增加。在摩擦过程中,摩擦半径的增加会导致摩擦片磨损量的增加,同时也会导致大量磨损碎屑在界面处积聚,积极参与摩擦过程。因此,摩擦表面的退化变得越来越严重,并表现出复杂的摩擦学行为。摩擦半径的增大促进了摩擦系统中的模态耦合现象,在该系统中引发了高强度的不稳定振动。此外,摩擦半径越大,摩擦系统的结构越容易变形。当摩擦球随摩擦盘移动的幅度较大时,界面上的接触应力集中在切入端附近的区域会明显加剧,同时接触应力的数值也会增加。在摩擦半径较大的情况下,表面接触应力集中是摩擦盘上划痕的宽度、深度和磨损量增大的主要原因。我们建立的球盘摩擦系统 2-DOF 数值模型有效地帮助我们讨论了摩擦半径和摩擦系数(COF)对系统稳定性的影响。研究发现,在摩擦半径和摩擦系数较大的情况下,系统会表现出模态耦合现象,出现振动不稳定状态。摩擦诱导振动(FIV)的强度也随着摩擦半径的增大而增大。总之,本研究发现摩擦半径是影响 FIVN 的关键因素,应采取适当措施改善界面的摩擦学行为,以在遇到大摩擦半径时抑制 FIVN。
{"title":"The Effect of Friction Radius Variation on the Friction-Induced Vibration and Noise","authors":"Sujie Li,&nbsp;Zaiyu Xiang,&nbsp;Songlan Xie,&nbsp;Jiakun Zhang,&nbsp;Zhengming Xiao,&nbsp;Bin Tang,&nbsp;Deqiang He","doi":"10.1007/s11249-024-01923-8","DOIUrl":"10.1007/s11249-024-01923-8","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In mechanical equipment friction pairs, there are instances of varying friction radius (e.g., brake pads in trains), but the impact of variation in friction radius on friction-induced vibration noise (FIVN) has not yet been clearly understood and has drawn little attention. To address this, a series of tests under different friction radii were carried out using a CETR friction and wear tester, and a finite element model(FEM) based on the main structure of the tester was established to carry out complex modal and transient dynamic simulations. Furthermore, a two-degree-of-freedom (2-DOF) numerical model was proposed to analyze the stability and dynamic characteristics of the ball-disc friction system. Based on the FIVN simulation tests, finite element simulations, and numerical analysis results, the impact of variations in the friction radius on FIVN was discussed. The results indicate that the friction radius is a crucial factor impacting the intensity and evolution of FIVN. Under the experimental parameters employed in this study, the intensity of FIVN increases with the enlargement of the friction radius. Correspondingly, an increase in friction radius significantly increases the friction disc’s wear. The scratches’ width, depth, and wear volume increase. In the friction process, the increase in friction radius leads to an increase in the wear amount of the friction disk, which also results in a significant accumulation of wear debris actively engaging in the frictional process at the interface. Therefore, the degradation of the friction surface becomes increasingly severe and exhibits complex tribological behaviors. The increase in friction radius facilitates modal coupling phenomena in friction systems, inducing high-intensity unstable vibrations within this system. Furthermore, with a larger friction radius, the structure of the friction system is more prone to deform. As the friction ball moves more significantly along with the friction disk, the concentration of contact stress at the interface intensifies notably in the region adjacent to the cutting-in end, accompanied by an increase in the numerical value of the contact stress. In scenarios with a large friction radius, the concentration of contact stress on surfaces is the primary reason for the greater width, depth, and wear volume of the scratches on the friction disc. The 2-DOF numerical model of the ball-disc friction system we established effectively helped us discuss the impact of the friction radius and coefficient of friction (COF) on system stability. It is found that under a large friction radius and COF, the system exhibits modal coupling phenomena, with a state of vibrational instability. The intensity of friction-induced vibration (FIV) also increases with the friction radius. In conclusion, this study finds that the friction radius is a key factor affecting FIVN, and appropriate measures should be taken to improve the tribological behavior of the interface to suppr","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and Chemical Evolution of PTFE-α-Al2O3 Composites Versus 304 SS Tribofilms During Dry Sliding 聚四氟乙烯-α-Al2O3 复合材料与 304 SS 三膜在干滑动过程中的物理和化学变化
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-28 DOI: 10.1007/s11249-024-01922-9
Faysal M. Haque, Christopher P. Junk, Mark A. Sidebottom

Polytetrafluoroethylene (PTFE) is renowned for its remarkably low friction coefficient (µ ~ 0.1) yet exhibits notably high wear rates (K ~ 104) in dry sliding applications. To mitigate this, various metallic and non-metallic fillers have been explored, consistently demonstrating a reduction in wear rates of unfilled PTFE between 10 and 104 times. Among these fillers, α-Al2O3 is one of the most extensively studied materials. 5 wt% of α-Al2O3 filler into PTFE yields a composite material, PTFE- α-Al2O3, characterized by a wear rate a staggering 104 times lower than unfilled PTFE. This reduction in wear has been attributed to the formation of tribofilms on the PTFE composite and metal counterbody material. These tribofilms emerge due to the interaction between broken fluropolymer chains and environmental water and oxygen. This interaction results in the creation of carboxylate salt groups, which subsequently react with metal/metal oxide particles (both from the counterbody and the metal filler) to form tribofilms. Despite numerous studies scrutinizing the chemical composition of the tribofilms pre- and post-test, the chemical development of these films has remained largely unexplored. In this study, the authors utilize attenuated total reflection infrared spectroscopy (ATR-IR), transmission infrared (IR) spectroscopy, optical microscopy, and stylus profilometry to observe tribofilm development. A thorough topographical and chemical description of the tribofilm is provided via these techniques. The ratio of carboxylate salt groups directly corresponds with improved wear performance and these changes are very local to the worn polymer surface. This discovery contributes to a deeper understanding of the tribological behavior of PTFE-α-Al2O3 composites.

Graphical Abstract

聚四氟乙烯(PTFE)以其极低的摩擦系数(µ ~ 0.1)而闻名,但在干滑动应用中却表现出明显的高磨损率(K ~ 104)。为了缓解这一问题,人们对各种金属和非金属填料进行了研究,结果表明,未填充的聚四氟乙烯的磨损率可降低 10 到 104 倍。在这些填料中,α-Al2O3 是研究最为广泛的材料之一。在聚四氟乙烯中加入 5 wt% 的 α-Al2O3 填充剂,可产生一种名为 PTFE- α-Al2O3 的复合材料,其磨损率比未填充的聚四氟乙烯低 104 倍。磨损率降低的原因是聚四氟乙烯复合材料和金属对体材料上形成了三膜。这些三膜的形成是由于断裂的氟聚合物链与环境中的水和氧相互作用的结果。这种相互作用会产生羧酸盐基团,随后与金属/金属氧化物颗粒(包括金属基体和金属填料)发生反应,形成三膜。尽管有许多研究对测试前后三膜的化学成分进行了仔细研究,但这些薄膜的化学发展在很大程度上仍未得到探讨。在本研究中,作者利用衰减全反射红外光谱(ATR-IR)、透射红外(IR)光谱、光学显微镜和测针轮廓仪来观察三膜的发展。这些技术提供了三膜的全面地形和化学描述。羧酸盐基团的比例与磨损性能的改善直接相关,而且这些变化在磨损的聚合物表面非常局部。这一发现有助于加深对 PTFE-α-Al2O3 复合材料摩擦学行为的理解。
{"title":"Physical and Chemical Evolution of PTFE-α-Al2O3 Composites Versus 304 SS Tribofilms During Dry Sliding","authors":"Faysal M. Haque,&nbsp;Christopher P. Junk,&nbsp;Mark A. Sidebottom","doi":"10.1007/s11249-024-01922-9","DOIUrl":"10.1007/s11249-024-01922-9","url":null,"abstract":"<div><p>Polytetrafluoroethylene (PTFE) is renowned for its remarkably low friction coefficient (µ ~ 0.1) yet exhibits notably high wear rates (K ~ 10<sup>4</sup>) in dry sliding applications. To mitigate this, various metallic and non-metallic fillers have been explored, consistently demonstrating a reduction in wear rates of unfilled PTFE between 10 and 10<sup>4</sup> times. Among these fillers, α-Al<sub>2</sub>O<sub>3</sub> is one of the most extensively studied materials. 5 wt% of α-Al<sub>2</sub>O<sub>3</sub> filler into PTFE yields a composite material, PTFE- α-Al<sub>2</sub>O<sub>3</sub>, characterized by a wear rate a staggering 10<sup>4</sup> times lower than unfilled PTFE. This reduction in wear has been attributed to the formation of tribofilms on the PTFE composite and metal counterbody material. These tribofilms emerge due to the interaction between broken fluropolymer chains and environmental water and oxygen. This interaction results in the creation of carboxylate salt groups, which subsequently react with metal/metal oxide particles (both from the counterbody and the metal filler) to form tribofilms. Despite numerous studies scrutinizing the chemical composition of the tribofilms pre- and post-test, the chemical development of these films has remained largely unexplored. In this study, the authors utilize attenuated total reflection infrared spectroscopy (ATR-IR), transmission infrared (IR) spectroscopy, optical microscopy, and stylus profilometry to observe tribofilm development. A thorough topographical and chemical description of the tribofilm is provided via these techniques. The ratio of carboxylate salt groups directly corresponds with improved wear performance and these changes are very local to the worn polymer surface. This discovery contributes to a deeper understanding of the tribological behavior of PTFE-α-Al<sub>2</sub>O<sub>3</sub> composites.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01922-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding on Slide-Ring Gels 在滑环凝胶上滑动
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-27 DOI: 10.1007/s11249-024-01920-x
Andrew R. Rhode, Iván Montes de Oca, Michael L. Chabinyc, Christopher M. Bates, Angela A. Pitenis

Recent investigations have pointed to physical entanglements that greatly outnumber chemical crosslinks as key sources of energy dissipation and low friction in hydrogel networks. Slide-ring gels are an emerging class of hydrogels described by their mobile crosslinks, which are formed by rings topologically constrained to slide along linear polymer chains within the network. These materials have enjoyed decades of study by polymer chemists but have been underexplored by the tribology community. In this work, we synthesized a pseudo-rotaxane crosslinker from poly(ethylene glycol) diacrylate (PEG-diacrylate) and α-cyclodextrin-acrylate followed by hydrogel networks by connecting the sliding crosslinks with polyacrylamide chains. The mechanical and tribological properties of slide-ring hydrogels were investigated using a custom-built microtribometer. Slide-ring hydrogels exhibit unique behavior compared to conventional covalently crosslinked polyacrylamide hydrogels and offer a vast design space for future investigations.

Graphical Abstract

最近的研究表明,物理缠结远远超过化学交联,是水凝胶网络中能量耗散和低摩擦的关键来源。滑环凝胶是一类新兴的水凝胶,其特点是具有可移动的交联,这些交联是由拓扑限制在网络内沿着线性聚合物链滑动的环形成的。高分子化学家对这类材料进行了数十年的研究,但摩擦学界对它们的研究还很不够。在这项工作中,我们用聚(乙二醇)二丙烯酸酯(PEG-二丙烯酸酯)和α-环糊精-丙烯酸酯合成了一种假交联剂,然后用聚丙烯酰胺链连接滑动交联的水凝胶网络。研究人员使用定制的微轨迹仪对滑环水凝胶的机械和摩擦学特性进行了研究。与传统的共价交联聚丙烯酰胺水凝胶相比,滑环水凝胶表现出独特的行为,为未来的研究提供了广阔的设计空间。
{"title":"Sliding on Slide-Ring Gels","authors":"Andrew R. Rhode,&nbsp;Iván Montes de Oca,&nbsp;Michael L. Chabinyc,&nbsp;Christopher M. Bates,&nbsp;Angela A. Pitenis","doi":"10.1007/s11249-024-01920-x","DOIUrl":"10.1007/s11249-024-01920-x","url":null,"abstract":"<div><p>Recent investigations have pointed to physical entanglements that greatly outnumber chemical crosslinks as key sources of energy dissipation and low friction in hydrogel networks. Slide-ring gels are an emerging class of hydrogels described by their mobile crosslinks, which are formed by rings topologically constrained to slide along linear polymer chains within the network. These materials have enjoyed decades of study by polymer chemists but have been underexplored by the tribology community. In this work, we synthesized a pseudo-rotaxane crosslinker from poly(ethylene glycol) diacrylate (PEG-diacrylate) and <i>α</i>-cyclodextrin-acrylate followed by hydrogel networks by connecting the sliding crosslinks with polyacrylamide chains. The mechanical and tribological properties of slide-ring hydrogels were investigated using a custom-built microtribometer. Slide-ring hydrogels exhibit unique behavior compared to conventional covalently crosslinked polyacrylamide hydrogels and offer a vast design space for future investigations.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01920-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Graphene and Its Tribological Properties Based on Deep Eutectic Solvent Stripping Method 基于深共晶溶剂剥离法制备石墨烯及其摩擦学特性
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-24 DOI: 10.1007/s11249-024-01919-4
Ting Li, Yun Chen, Rui Wang, Junhai Wang, Xinran Li, Lixiu Zhang

Graphene (GP), when used as a lubricant additive, not only reduces the friction coefficient but also enhances wear resistance by forming a protective lubrication film. However, there are still several challenges in practical applications related to graphene preparation. Therefore, this study employs a novel type of ionic liquid deep eutectic solvent as an interlayer agent for graphene preparation and investigates its tribological properties when used as an additive. We used choline chloride/ethylene glycol deep eutectic solvent as the intercalation agent and successfully prepared graphene samples using liquid-phase exfoliation. The resulting graphene samples had a thickness of 4–5 layers. The peeling mechanism is analyzed through molecular dynamics simulations and characterization techniques such as Raman spectroscopy, XRD, SEM, and AFM. In friction experiments conducted with different mass fractions of 1.5 wt% DES and 0.05 wt% GP as lubricant additives, it is observed that the mixture exhibits optimal lubrication performance compared to base oil alone; specifically reducing average friction coefficient by 56.8% and depth of wear marks by 59.8%. This enhancement in friction performance can be attributed to both high wettability and synergistic effects between composite lubricants. Considering the wide range of available DESs and two-dimensional materials, these newly developed functional two-dimensional materials based on DES hold significant research potential.

石墨烯(GP)用作润滑油添加剂时,不仅能降低摩擦系数,还能通过形成保护性润滑膜提高耐磨性。然而,石墨烯的制备在实际应用中仍面临一些挑战。因此,本研究采用了一种新型离子液体深共晶溶剂作为石墨烯制备的层间剂,并研究了其作为添加剂使用时的摩擦学特性。我们使用氯化胆碱/乙二醇深共晶溶剂作为插层剂,利用液相剥离法成功制备了石墨烯样品。所制备的石墨烯样品厚度为 4-5 层。通过分子动力学模拟以及拉曼光谱、XRD、SEM 和原子力显微镜等表征技术分析了剥离机理。在使用不同质量分数的 1.5 wt% DES 和 0.05 wt% GP 作为润滑油添加剂进行的摩擦实验中观察到,与单独使用基础油相比,该混合物具有最佳的润滑性能;特别是平均摩擦系数降低了 56.8%,磨损痕迹深度降低了 59.8%。摩擦性能的提高可归因于高润湿性和复合润滑剂之间的协同效应。考虑到现有的 DES 和二维材料种类繁多,这些基于 DES 新开发的功能性二维材料具有巨大的研究潜力。
{"title":"Preparation of Graphene and Its Tribological Properties Based on Deep Eutectic Solvent Stripping Method","authors":"Ting Li,&nbsp;Yun Chen,&nbsp;Rui Wang,&nbsp;Junhai Wang,&nbsp;Xinran Li,&nbsp;Lixiu Zhang","doi":"10.1007/s11249-024-01919-4","DOIUrl":"10.1007/s11249-024-01919-4","url":null,"abstract":"<div><p>Graphene (GP), when used as a lubricant additive, not only reduces the friction coefficient but also enhances wear resistance by forming a protective lubrication film. However, there are still several challenges in practical applications related to graphene preparation. Therefore, this study employs a novel type of ionic liquid deep eutectic solvent as an interlayer agent for graphene preparation and investigates its tribological properties when used as an additive. We used choline chloride/ethylene glycol deep eutectic solvent as the intercalation agent and successfully prepared graphene samples using liquid-phase exfoliation. The resulting graphene samples had a thickness of 4–5 layers. The peeling mechanism is analyzed through molecular dynamics simulations and characterization techniques such as Raman spectroscopy, XRD, SEM, and AFM. In friction experiments conducted with different mass fractions of 1.5 wt% DES and 0.05 wt% GP as lubricant additives, it is observed that the mixture exhibits optimal lubrication performance compared to base oil alone; specifically reducing average friction coefficient by 56.8% and depth of wear marks by 59.8%. This enhancement in friction performance can be attributed to both high wettability and synergistic effects between composite lubricants. Considering the wide range of available DESs and two-dimensional materials, these newly developed functional two-dimensional materials based on DES hold significant research potential.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strongly Different Adhesion Reduction for 1D or 2D Random Fractal Roughness, and an Extension of the BAM Model to Anisotropic Surfaces 一维或二维随机分形粗糙度的粘附力降低率截然不同,BAM 模型扩展到各向异性表面
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-19 DOI: 10.1007/s11249-024-01916-7
M. Ciavarella, F. Pérez-Ràfols

The influence of roughness on adhesion has been studied since the time of Fuller and Tabor, but recently there has been debate about how roughness exactly seems to kill (but sometimes enhance!) adhesion, particularly with reference to the accepted model of fractal roughness. We show that the Persson–Tosatti criterion does not depend on anisotropy of the surface for a typical power law PSD if written in terms of rms roughness and magnification. Instead, a very simple extension of the Bearing Area Model (BAM) of Ciavarella to anisotropic fractal surface shows a weak but clear dependence on the anisotropy, with higher adhesion in the 1D case, showing better agreement than the Persson–Tosatti criterion to actual numerical results of Afferrante Violano and Dini. However, neither of the two models permit to capture the strong hysteresis found in experiments between loading and unloading, which is very likely to enhance adhesion more as we move from the isotropic to the full 1D case. This suggests the mechanism of load amplification along contact lines and the associated elastic instabilities, is not captured by either the Persson–Tosatti or the BAM model applied to anisotropic surfaces.

粗糙度对附着力的影响自 Fuller 和 Tabor 时代起就开始研究,但最近关于粗糙度究竟是如何扼杀(但有时也会增强!)附着力的,特别是关于公认的分形粗糙度模型,一直存在争论。我们的研究表明,对于典型的幂律 PSD,如果用均方根粗糙度和放大率来表示,佩尔松-托萨蒂标准并不取决于表面的各向异性。相反,将 Ciavarella 的轴承区模型 (BAM) 非常简单地扩展到各向异性的分形表面,却显示出对各向异性微弱但明确的依赖性,在一维情况下粘附力更高,与 Afferrante Violano 和 Dini 的实际数值结果相比,显示出更好的一致性。然而,这两个模型都无法捕捉到实验中发现的加载和卸载之间的强烈滞后现象,而当我们从各向同性情况转向全一维情况时,这种滞后现象很可能会增强附着力。这表明,应用于各向异性表面的 Persson-Tosatti 模型或 BAM 模型都无法捕捉到沿接触线的载荷放大机制以及相关的弹性不稳定性。
{"title":"Strongly Different Adhesion Reduction for 1D or 2D Random Fractal Roughness, and an Extension of the BAM Model to Anisotropic Surfaces","authors":"M. Ciavarella,&nbsp;F. Pérez-Ràfols","doi":"10.1007/s11249-024-01916-7","DOIUrl":"10.1007/s11249-024-01916-7","url":null,"abstract":"<div><p>The influence of roughness on adhesion has been studied since the time of Fuller and Tabor, but recently there has been debate about how roughness exactly seems to kill (but sometimes enhance!) adhesion, particularly with reference to the accepted model of fractal roughness. We show that the Persson–Tosatti criterion does not depend on anisotropy of the surface for a typical power law PSD if written in terms of rms roughness and magnification. Instead, a very simple extension of the Bearing Area Model (BAM) of Ciavarella to anisotropic fractal surface shows a weak but clear dependence on the anisotropy, with higher adhesion in the 1D case, showing better agreement than the Persson–Tosatti criterion to actual numerical results of Afferrante Violano and Dini. However, neither of the two models permit to capture the strong hysteresis found in experiments between loading and unloading, which is very likely to enhance adhesion more as we move from the isotropic to the full 1D case. This suggests the mechanism of load amplification along contact lines and the associated elastic instabilities, is not captured by either the Persson–Tosatti or the BAM model applied to anisotropic surfaces.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01916-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction Enhancement and Autoparametric Resonance 摩擦增强和自参数共振
IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-16 DOI: 10.1007/s11249-024-01918-5
S. Yu. Krylov

Recent intriguing experimental observations of atomic scale friction enhancement, that takes place at scanning velocities correspondent with the cantilever frequency and/or its fractions (1/n, n = 1, 2, 3, …), can be explained as the manifestation of an autoparametric resonance. Taking explicitly into account high flexibility of AFM tips, the developed theory reveals the autoparametric resonance to be a natural consequence of the rich dynamics of the combined tip–cantilever system. Besides the explanation of the observed friction force peaks, the theory predicts a dense multiplicity of smaller peaks to appear when the washboard frequency coincides with a rational part (m/n, with integer m and n) of the cantilever frequency. An important conclusion is made that the resonance enhancement of friction is independent of frequency of excited phonons, and it should manifest itself for any possible mechanism of frictional energy dissipation in the substrate, phononic, electronic, or any other.

Graphical Abstract

最近有趣的实验观察表明,在与悬臂频率和/或其分数(1/n, n = 1, 2, 3, ...)相对应的扫描速度下发生的原子级摩擦增强,可以解释为自参数共振的表现。考虑到原子力显微镜针尖的高柔性,所建立的理论揭示了自参数共振是针尖-悬臂组合系统丰富动态的自然结果。除了解释观察到的摩擦力峰值外,该理论还预测,当洗衣板频率与悬臂频率的有理部分(m/n,m 和 n 为整数)重合时,会出现密集的多个较小峰值。得出的一个重要结论是,摩擦力的共振增强与激发声子的频率无关,它应表现为基体中任何可能的摩擦能量耗散机制,声子、电子或任何其他机制。
{"title":"Friction Enhancement and Autoparametric Resonance","authors":"S. Yu. Krylov","doi":"10.1007/s11249-024-01918-5","DOIUrl":"10.1007/s11249-024-01918-5","url":null,"abstract":"<div><p>Recent intriguing experimental observations of atomic scale friction enhancement, that takes place at scanning velocities correspondent with the cantilever frequency and/or its fractions (1/<i>n</i>, <i>n</i> = 1, 2, 3, …), can be explained as the manifestation of an autoparametric resonance. Taking explicitly into account high flexibility of AFM tips, the developed theory reveals the autoparametric resonance to be a natural consequence of the rich dynamics of the combined tip–cantilever system. Besides the explanation of the observed friction force peaks, the theory predicts a dense multiplicity of smaller peaks to appear when the washboard frequency coincides with a rational part (m/n, with integer m and n) of the cantilever frequency. An important conclusion is made that the resonance enhancement of friction is independent of frequency of excited phonons, and it should manifest itself for any possible mechanism of frictional energy dissipation in the substrate, phononic, electronic, or any other.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tribology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1