Pub Date : 2024-10-18DOI: 10.1016/j.apradiso.2024.111552
Miloš Tichý , Ondřej Huml , Tomáš Bílý , Evžen Losa , Evžen Novák , Bohumil Jánský , Jiří Rejchrt
The neutron spectrum was measured at two locations in the spent fuel storage facility of the Temelín nuclear power plant. The measurement had two primary objectives: to map the neutron -γ field by quantifying the ambient dose equivalent H∗(10) and to identify methods that could improve the quality of the adjusted neutron spectrum using a Bonner Sphere Spectrometer (BSS). Three spectrometers were used: a BSS and two proton recoil spectrometers. Hydrogen-filled proportional counters and an EJ309 scintillator were used to construct the a priori spectrum for BSS adjustment. The details of this process and its results are discussed. The a posteriori spectrum was used to calculate the ambient dose equivalent H∗(10). The resulting spectrum is highly thermalised, but the predominant contribution to H∗(10) was in the 100 keV-1.3 MeV range. The use of hydrogen-proportional counters in combination with the BSS is recommended.
{"title":"Measurement of neutron spectra in spent fuel storage","authors":"Miloš Tichý , Ondřej Huml , Tomáš Bílý , Evžen Losa , Evžen Novák , Bohumil Jánský , Jiří Rejchrt","doi":"10.1016/j.apradiso.2024.111552","DOIUrl":"10.1016/j.apradiso.2024.111552","url":null,"abstract":"<div><div>The neutron spectrum was measured at two locations in the spent fuel storage facility of the Temelín nuclear power plant. The measurement had two primary objectives: to map the neutron -γ field by quantifying the ambient dose equivalent H∗(10) and to identify methods that could improve the quality of the adjusted neutron spectrum using a Bonner Sphere Spectrometer (BSS). Three spectrometers were used: a BSS and two proton recoil spectrometers. Hydrogen-filled proportional counters and an EJ309 scintillator were used to construct the a priori spectrum for BSS adjustment. The details of this process and its results are discussed. The a posteriori spectrum was used to calculate the ambient dose equivalent H∗(10). The resulting spectrum is highly thermalised, but the predominant contribution to H∗(10) was in the 100 keV-1.3 MeV range. The use of hydrogen-proportional counters in combination with the BSS is recommended.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111552"},"PeriodicalIF":1.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1016/j.apradiso.2024.111533
Qi-Ze Liu , Wen-Han Dai , Ming Zeng , Zhi Zeng , V.F. Batyaev , K.V. Pavlov , A.Yu. Titarenko , Yu.E. Titarenko , R.S. Tikhonov , V.M. Zhivun
The accelerator-driven subcritical system (ADS) is a competitive option for next-generation nuclear energy systems. Production cross sections of long-lived residual radioactive nuclides in a proton-nuclide reaction are basic quantities for the calculation of accumulated radioactivity in the use of ADS systems. This work presents the production cross sections of 102mRh and 108mAg in a natural lead (natPb) target activated by 400 MeV protons. The natPb target was irradiated by a 400 MeV proton beam in NRC “Kurchatov Institute” and measured two decades later by a low background gamma spectrometer in China Jinping Underground Laboratory (CJPL). A spectrum analysis method based on simulated single-isotope spectrum and Bayesian peak fitting was employed to compute the activities and production cross sections of the residual nuclides. The experimentally measured cross-sections for 102mRh and 108mAg were 0.72 ± 0.05 mb and 0.76 ± 0.09 mb respectively. These values are approximately twice as high as those predicted by the QGSP_INCLXX_HP model and fall within the range predicted by the INCL4+ABLA and LAQGSM+GEM2 models for mass numbers A=102 and A=108. These findings offer new experimental insights for ADS research and provide a practical benchmark for theoretical models concerning proton-lead interactions.
{"title":"Production cross sections of 102mRh and 108mAg in proton bombed natPb target with 400 MeV energy","authors":"Qi-Ze Liu , Wen-Han Dai , Ming Zeng , Zhi Zeng , V.F. Batyaev , K.V. Pavlov , A.Yu. Titarenko , Yu.E. Titarenko , R.S. Tikhonov , V.M. Zhivun","doi":"10.1016/j.apradiso.2024.111533","DOIUrl":"10.1016/j.apradiso.2024.111533","url":null,"abstract":"<div><div>The accelerator-driven subcritical system (ADS) is a competitive option for next-generation nuclear energy systems. Production cross sections of long-lived residual radioactive nuclides in a proton-nuclide reaction are basic quantities for the calculation of accumulated radioactivity in the use of ADS systems. This work presents the production cross sections of <sup>102m</sup>Rh and <sup>108m</sup>Ag in a natural lead (<sup>nat</sup>Pb) target activated by 400 MeV protons. The <sup>nat</sup>Pb target was irradiated by a 400 MeV proton beam in NRC “Kurchatov Institute” and measured two decades later by a low background gamma spectrometer in China Jinping Underground Laboratory (CJPL). A spectrum analysis method based on simulated single-isotope spectrum and Bayesian peak fitting was employed to compute the activities and production cross sections of the residual nuclides. The experimentally measured cross-sections for <sup>102m</sup>Rh and <sup>108m</sup>Ag were 0.72 ± 0.05 mb and 0.76 ± 0.09 mb respectively. These values are approximately twice as high as those predicted by the QGSP_INCLXX_HP model and fall within the range predicted by the INCL4+ABLA and LAQGSM+GEM2 models for mass numbers A=102 and A=108. These findings offer new experimental insights for ADS research and provide a practical benchmark for theoretical models concerning proton-lead interactions.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111533"},"PeriodicalIF":1.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.apradiso.2024.111554
Wei Jiang , Xixiang Yue , Sili Chen , Zhengke Zhang , Ji Wang , Jinsong Wang
With the development of nuclear industry, radioactive elements such as 137Cs put a threat on the water environment. It is a challenging task to remove the Cs+ in the nuclear wastewater. In the current study, we prepared a new Cs+-adsorbing material by introducing sulfhydryl group onto the surface of hollow mesoporous silica microspheres, then oxidizing the sulfhydryl group to sulfonic acid group. The obtained HMSS-SO3H material had an excellent adsorption capacity for Cs+ in the aqueous solution, with an adsorption capacity of 51.53 mg g−1 in 30 min. Characterization approaches, such as FT-IR and EDS, were used to confirm the result of modification. Adsorption experiments were carried out under. The influence of various parameters on the adsorption process was investigated under the conditions of changing pH, temperature, and time. The effect of competitive ions was also explored. The results indicated that the adsorption process followed the pseudo-second-order model and the main adsorption mechanisms are electrostatic interaction and coordination. The material had a best adsorption performance at a neutral pH. The adsorption process could well-fit the Langmuir's model, with a theoretical maximum adsorption capacity of 81.31 mg g−1. And the adsorption capacity was slightly affected by competing ions such as Mg2+ and Ca2+. The results indicate that the HMSS-SO3H prepared in this study is a promising adsorbent for Cs+, with the advantages of high adsorption capacity, fast adsorption rate and high selectivity.
{"title":"The adsorption of cesium by sulfonic acid functionalized hollow mesoporous silica microspheres","authors":"Wei Jiang , Xixiang Yue , Sili Chen , Zhengke Zhang , Ji Wang , Jinsong Wang","doi":"10.1016/j.apradiso.2024.111554","DOIUrl":"10.1016/j.apradiso.2024.111554","url":null,"abstract":"<div><div>With the development of nuclear industry, radioactive elements such as <sup>137</sup>Cs put a threat on the water environment. It is a challenging task to remove the Cs<sup>+</sup> in the nuclear wastewater. In the current study, we prepared a new Cs<sup>+</sup>-adsorbing material by introducing sulfhydryl group onto the surface of hollow mesoporous silica microspheres, then oxidizing the sulfhydryl group to sulfonic acid group. The obtained HMSS-SO<sub>3</sub>H material had an excellent adsorption capacity for Cs<sup>+</sup> in the aqueous solution, with an adsorption capacity of 51.53 mg g<sup>−1</sup> in 30 min. Characterization approaches, such as FT-IR and EDS, were used to confirm the result of modification. Adsorption experiments were carried out under. The influence of various parameters on the adsorption process was investigated under the conditions of changing pH, temperature, and time. The effect of competitive ions was also explored. The results indicated that the adsorption process followed the pseudo-second-order model and the main adsorption mechanisms are electrostatic interaction and coordination. The material had a best adsorption performance at a neutral pH. The adsorption process could well-fit the Langmuir's model, with a theoretical maximum adsorption capacity of 81.31 mg g<sup>−1</sup>. And the adsorption capacity was slightly affected by competing ions such as Mg<sup>2+</sup> and Ca<sup>2+</sup>. The results indicate that the HMSS-SO<sub>3</sub>H prepared in this study is a promising adsorbent for Cs<sup>+</sup>, with the advantages of high adsorption capacity, fast adsorption rate and high selectivity.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111554"},"PeriodicalIF":1.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.apradiso.2024.111555
Jinlin Song , Xiaobin Tang , Pin Gong , Zhimeng Hu , Dajian Liang , Zeyu Wang , Peng Wang , Hong Ying , Haining Shi , Ao Liu , Zhifei Zhao , Song Bai
Silicon carbide (SiC) detectors have excellent radiation detection capabilities for various radiation particles, including high energy resolution, fast response times, and good radiation resistance. A SiC radiation detection system was developed to measure the neutron fluence rate and the γ-ray dose rate in high intensity radiation fields. The system was composed of two SiC detectors, a temperature monitor, two preamplifiers for each SiC detector, a data acquisition unit with two signal channels, three pairs of communication devices, and an application software to analyze and visualize the measurement data. The two SiC detectors were fabricated based on two kinds of 4H-SiC diodes and used to respectively respond to neutrons and γ-rays. Repeated experiments showed that the two SiC detectors of the system can respond to α-particles, neutrons, and γ-rays. To verify the performance of the SiC detection system, including the response linearity of the neutron fluence rate, the measurement range of the γ-ray dose rate, and the radiation resistance of the SiC radiation detectors, the system was tested in multiple neutron and γ-ray fields. The tests results show the system can measure the neutron fluence rate from 5.64 × 10 2 cm−2 s−1 to 1.03 × 10 5 cm−2 s−1 with excellent linearity response, and the γ-ray dose rate from 0.005 Gy/h to 20 Gy/h. Furthermore, the SiC detectors demonstrated good radiation resistance. The neutron and γ-ray radiation field can still be measured stably by the system after exposure to neutron fluence of 1.07 × 10 14 cm−2 and γ-ray dose of 3.52 × 10 4 Gy. This work is the preliminary research to continue the exploration how to measure the n/γ hybrid fields accurately using SiC detectors considering the different energy of neutrons.
{"title":"Development of a silicon carbide radiation detection system and experimentation of the system performance","authors":"Jinlin Song , Xiaobin Tang , Pin Gong , Zhimeng Hu , Dajian Liang , Zeyu Wang , Peng Wang , Hong Ying , Haining Shi , Ao Liu , Zhifei Zhao , Song Bai","doi":"10.1016/j.apradiso.2024.111555","DOIUrl":"10.1016/j.apradiso.2024.111555","url":null,"abstract":"<div><div>Silicon carbide (SiC) detectors have excellent radiation detection capabilities for various radiation particles, including high energy resolution, fast response times, and good radiation resistance. A SiC radiation detection system was developed to measure the neutron fluence rate and the γ-ray dose rate in high intensity radiation fields. The system was composed of two SiC detectors, a temperature monitor, two preamplifiers for each SiC detector, a data acquisition unit with two signal channels, three pairs of communication devices, and an application software to analyze and visualize the measurement data. The two SiC detectors were fabricated based on two kinds of 4H-SiC diodes and used to respectively respond to neutrons and γ-rays. Repeated experiments showed that the two SiC detectors of the system can respond to α-particles, neutrons, and γ-rays. To verify the performance of the SiC detection system, including the response linearity of the neutron fluence rate, the measurement range of the γ-ray dose rate, and the radiation resistance of the SiC radiation detectors, the system was tested in multiple neutron and γ-ray fields. The tests results show the system can measure the neutron fluence rate from 5.64 × 10 <sup>2</sup> cm<sup>−2</sup> s<sup>−1</sup> to 1.03 × 10 <sup>5</sup> cm<sup>−2</sup> s<sup>−1</sup> with excellent linearity response, and the γ-ray dose rate from 0.005 Gy/h to 20 Gy/h. Furthermore, the SiC detectors demonstrated good radiation resistance. The neutron and γ-ray radiation field can still be measured stably by the system after exposure to neutron fluence of 1.07 × 10 <sup>14</sup> cm<sup>−2</sup> and γ-ray dose of 3.52 × 10 <sup>4</sup> Gy. This work is the preliminary research to continue the exploration how to measure the n/γ hybrid fields accurately using SiC detectors considering the different energy of neutrons.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111555"},"PeriodicalIF":1.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-13DOI: 10.1016/j.apradiso.2024.111556
Shaymaa Mohammed Fayyadh , Ali Ben Ahmed
The results of the preparation of protective shields from ionizing radiation, flame retardant from pure epoxy supported by nano-bismuth oxide, show that the protective shields supported by nanoparticles improve the attenuation properties, the thermal stability, the flame retardancy and mechanical properties. Also, the polymeric shield supported by Bi2O3 (Na2CO3) retardant the flame much better than supported by Bi2O3 (NaOH). Finally, the quality of the protective shields increased as the energy of the photons of the ionizing rays decreased.
{"title":"Fabrication of polymeric shields to attenuation ionizing radiation and a flame retardant supported by nano-bismuth oxide prepared by co-deposition","authors":"Shaymaa Mohammed Fayyadh , Ali Ben Ahmed","doi":"10.1016/j.apradiso.2024.111556","DOIUrl":"10.1016/j.apradiso.2024.111556","url":null,"abstract":"<div><div>The results of the preparation of protective shields from ionizing radiation, flame retardant from pure epoxy supported by nano-bismuth oxide, show that the protective shields supported by nanoparticles improve the attenuation properties, the thermal stability, the flame retardancy and mechanical properties. Also, the polymeric shield supported by Bi<sub>2</sub>O<sub>3</sub> (Na<sub>2</sub>CO<sub>3</sub>) retardant the flame much better than supported by Bi<sub>2</sub>O<sub>3</sub> (NaOH). Finally, the quality of the protective shields increased as the energy of the photons of the ionizing rays decreased.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111556"},"PeriodicalIF":1.6,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.apradiso.2024.111545
Changsong Jin, Tiejun Li, Jianmin Zhang, Wei Zhang, Bo Yang, Ruixuan Ren, Cunhao Cui
In the field of nuclear science, obtaining and utilizing nuclear data, including nuclear reaction data, nuclear structure information, and radioactive decay data, is crucial. Neutron-induced nuclear reactions, particularly nuclear cross sections data, are essential for various applications, including reactor design. The EXFOR database is the only international repository for storing nuclear reaction experimental measurement information and data. However, experimental measurement data are often scarce, subject to discrepancies, or even errors, requiring human evaluation. This process can be prone to biases and significant uncertainties. To address these challenges, this study proposes a novel framework, Feature Engineering for Nuclear Reaction Cross Section Generation using Machine Learning (FECSG-ML), which employs machine learning methods to generate nuclear cross sections data, serving as a substitute for evaluating nuclear databases. Given the limited size of the EXFOR database, training a model solely on EXFOR data could lead to underfitting. Therefore, the proposed approach utilizes transfer learning, initially pre-training the model using the ENDF/B-VIII.0 dataset and subsequently fine-tuning it with the EXFOR database. This approach ensures high accuracy where real data are available and enables the learning of characteristics of the evaluation dataset where real data are lacking. Moreover, machine learning techniques are employed to transform discrete nuclear cross sections data into a continuous format, accommodating various isotopes and predicting multiple sets of cross sections data. The framework integrates various machine learning methods and utilizes ensemble learning for result optimization. Experimental results demonstrate that the regression curves generated by the FECSG-ML model align well with EXFOR data points, outperforming the ENDF/B-VIII.0 evaluation database. Furthermore, the nuclear cross sections data generated by the FECSG-ML model are applied in the OpenMC Monte Carlo simulation program to simulate pin fuel assemblies and CANDU reactors, confirming the effectiveness of the model. This study underscores the importance of accurate and reliable nuclear cross sections data and provides a method for substituting the evaluation of nuclear databases.
{"title":"FECSG-ML: Feature Engineering for Nuclear Reaction Cross Sections Generation Using Machine Learning","authors":"Changsong Jin, Tiejun Li, Jianmin Zhang, Wei Zhang, Bo Yang, Ruixuan Ren, Cunhao Cui","doi":"10.1016/j.apradiso.2024.111545","DOIUrl":"10.1016/j.apradiso.2024.111545","url":null,"abstract":"<div><div>In the field of nuclear science, obtaining and utilizing nuclear data, including nuclear reaction data, nuclear structure information, and radioactive decay data, is crucial. Neutron-induced nuclear reactions, particularly nuclear cross sections data, are essential for various applications, including reactor design. The EXFOR database is the only international repository for storing nuclear reaction experimental measurement information and data. However, experimental measurement data are often scarce, subject to discrepancies, or even errors, requiring human evaluation. This process can be prone to biases and significant uncertainties. To address these challenges, this study proposes a novel framework, <strong>F</strong>eature <strong>E</strong>ngineering for Nuclear Reaction <strong>C</strong>ross <strong>S</strong>ection <strong>G</strong>eneration using <strong>M</strong>achine <strong>L</strong>earning (FECSG-ML), which employs machine learning methods to generate nuclear cross sections data, serving as a substitute for evaluating nuclear databases. Given the limited size of the EXFOR database, training a model solely on EXFOR data could lead to underfitting. Therefore, the proposed approach utilizes transfer learning, initially pre-training the model using the ENDF/B-VIII.0 dataset and subsequently fine-tuning it with the EXFOR database. This approach ensures high accuracy where real data are available and enables the learning of characteristics of the evaluation dataset where real data are lacking. Moreover, machine learning techniques are employed to transform discrete nuclear cross sections data into a continuous format, accommodating various isotopes and predicting multiple sets of cross sections data. The framework integrates various machine learning methods and utilizes ensemble learning for result optimization. Experimental results demonstrate that the regression curves generated by the FECSG-ML model align well with EXFOR data points, outperforming the ENDF/B-VIII.0 evaluation database. Furthermore, the nuclear cross sections data generated by the FECSG-ML model are applied in the OpenMC Monte Carlo simulation program to simulate pin fuel assemblies and CANDU reactors, confirming the effectiveness of the model. This study underscores the importance of accurate and reliable nuclear cross sections data and provides a method for substituting the evaluation of nuclear databases.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111545"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.apradiso.2024.111549
W.L. Salgado, R.S.F. Dam, C.M. Salgado
This study presents the development of mathematical equations for calculating void fractions in pipes using gamma densitometry. A traditional measurement setup, consisting of a137Cs point source and a NaI(Tl) scintillator detector, was simulated using the Monte Carlo method via the MCNP6 code. To validate the proposed equations, water-gas biphasic models were simulated in tubes with square and cylindrical cross-sections, varying diameters, and radiation sources (241Am, 137Cs, 60Co) through gamma-ray transmission. A comparative analysis with existing equations from the literature was conducted. The void fractions, determined from the transmission photopeak, were in close agreement with the actual values. The proposed equations demonstrated a maximum mean relative error of 0.21% for cylindrical tubes in stratified and annular flow regimes.
{"title":"Development of analytical equations for void fraction in biphasic systems using gamma radiation and MCNP6 code","authors":"W.L. Salgado, R.S.F. Dam, C.M. Salgado","doi":"10.1016/j.apradiso.2024.111549","DOIUrl":"10.1016/j.apradiso.2024.111549","url":null,"abstract":"<div><div>This study presents the development of mathematical equations for calculating void fractions in pipes using gamma densitometry. A traditional measurement setup, consisting of a<sup>137</sup>Cs point source and a NaI(Tl) scintillator detector, was simulated using the Monte Carlo method via the MCNP6 code. To validate the proposed equations, water-gas biphasic models were simulated in tubes with square and cylindrical cross-sections, varying diameters, and radiation sources (<sup>241</sup>Am, <sup>137</sup>Cs, <sup>60</sup>Co) through gamma-ray transmission. A comparative analysis with existing equations from the literature was conducted. The void fractions, determined from the transmission photopeak, were in close agreement with the actual values. The proposed equations demonstrated a maximum mean relative error of 0.21% for cylindrical tubes in stratified and annular flow regimes.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111549"},"PeriodicalIF":1.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.apradiso.2024.111543
Tao Gao, Ao Zhang, Li Chen, Jingmin Li, Chong Liu
This study presents a design of a 3D interface simulation model featuring an inverted pyramid structure. Our objective is to forecast the performance of GaN-based betavoltaic nuclear batteries with the PN junction 3D interface structures comparing a practical machining process. Initially, we computed the electron-hole pairs (EHPs) generation rate in GaN materials irradiated by both 63Ni and 147Pm sources using Geant4. Furthermore, we employed COMSOL Multiphysics, a finite element analysis software, to simulate the EHPs transport phenomena within the battery and investigate the influence of structural parameters on the output performance. Despite maintaining thicknesses of the P- and N-regions and consistent doping concentrations (Hp-GaN, Hn-GaN, Na, and Nd) as constants, the simulation results revealed notable disparities in the short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum output power density (Pmax) among batteries irradiated with various radioactive sources. Subsequently, we investigated the output performance of the nuclear battery by altering parameters such as the number of inverted pyramid structures, junction depth, and type of radioactive source. Our investigation revealed that selecting 63Ni as the radioactive source, with Na at 1017 cm−3, Nd at 1014 cm−3, a junction depth of 0.1 μm, and inverted pyramid structures of 25, resulted in the following battery performance parameters: a short-circuit current density (Jsc) of 0.648 μA/cm2, an open-circuit voltage (Voc) of 2.3481 V, and a maximum output power density (Pmax) of 1.2949 μW/cm2. Substituting the radioactive source with 147Pm, the average short-circuit current density, Jsc, increased to 56.865 μA/cm2, and the maximum output power density, Pmax, increased to 94.975 μW/cm2, It's a significant enhancement in output performance.
{"title":"Performance study of GaN-based betavoltaic nuclear batteries with 3D interfaces","authors":"Tao Gao, Ao Zhang, Li Chen, Jingmin Li, Chong Liu","doi":"10.1016/j.apradiso.2024.111543","DOIUrl":"10.1016/j.apradiso.2024.111543","url":null,"abstract":"<div><div>This study presents a design of a 3D interface simulation model featuring an inverted pyramid structure. Our objective is to forecast the performance of <em>GaN</em>-based betavoltaic nuclear batteries with the <em>PN</em> junction 3D interface structures comparing a practical machining process. Initially, we computed the electron-hole pairs (<em>EHPs</em>) generation rate in <em>GaN</em> materials irradiated by both <sup><em>63</em></sup><em>Ni</em> and <sup><em>147</em></sup><em>Pm</em> sources using Geant4. Furthermore, we employed COMSOL Multiphysics, a finite element analysis software, to simulate the <em>EHPs</em> transport phenomena within the battery and investigate the influence of structural parameters on the output performance. Despite maintaining thicknesses of the <em>P</em>- and <em>N</em>-regions and consistent doping concentrations (<em>H</em><sub><em>p</em></sub><em>-GaN</em>, <em>Hn-GaN</em>, <em>N</em><sub><em>a</em></sub>, and <em>N</em><sub><em>d</em></sub>) as constants, the simulation results revealed notable disparities in the short-circuit current density (<em>J</em><sub><em>sc</em></sub>), open-circuit voltage (<em>V</em><sub><em>oc</em></sub>), and maximum output power density (<em>P</em><sub>max</sub>) among batteries irradiated with various radioactive sources. Subsequently, we investigated the output performance of the nuclear battery by altering parameters such as the number of inverted pyramid structures, junction depth, and type of radioactive source. Our investigation revealed that selecting <sup><em>63</em></sup><em>Ni</em> as the radioactive source, with <em>N</em><sub><em>a</em></sub> at 10<sup>17</sup> cm<sup>−3</sup>, <em>N</em><sub><em>d</em></sub> at 10<sup>14</sup> cm<sup>−3</sup>, a junction depth of 0.1 μm, and inverted pyramid structures of 25, resulted in the following battery performance parameters: a short-circuit current density (<em>J</em><sub><em>sc</em></sub>) of 0.648 μA/cm<sup>2</sup>, an open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 2.3481 V, and a maximum output power density (<em>P</em><sub>max</sub>) of 1.2949 μW/cm<sup>2</sup>. Substituting the radioactive source with <sup><em>147</em></sup><em>Pm</em>, the average short-circuit current density, <em>J</em><sub><em>sc</em></sub>, increased to 56.865 μA/cm<sup>2</sup>, and the maximum output power density, <em>P</em><sub>max</sub>, increased to 94.975 μW/cm<sup>2</sup>, It's a significant enhancement in output performance.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111543"},"PeriodicalIF":1.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1016/j.apradiso.2024.111548
Allan W.S. Santos , Iury S. Silveira , Luiz C. Meira-Belo , Andrea L.F. Novais , Divanizia N. Souza
The objective of this work was to study the properties of new vitreous samples of pure BAlMgLi and Ce-doped BAlMgLi produced by the melt-quenching method. The structural and vibrational characteristics of the samples were analyzed using x-ray diffraction (XRD), vibrational Raman spectroscopy, and vibrational Fourier transform infrared spectroscopy (FTIR). Optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques were also used to identify whether the samples showed a response to ionizing radiation. XRD analyses confirmed the predominance of the amorphous phase of the samples. The Raman spectra revealed that the atomic bonds present in the material matrix are of the pyroborate and metaborate type, enabling stretching vibrations in isolated BO4 and/or Al–O or Al–O–B units. The band at approximately 810 cm−1 is characteristic of the formation of the boroxol ring, indicating that the presence of other elements in the matrix does not affect its glassy characteristics. The FTIR analyses reinforce the results found by Raman spectroscopy, because bands characteristic of low hygroscopic glasses were observed, due to the conversion of BO3 units into BO4 in triborate, tetraborate, and pentaborate groups. This conversion is due to dopant entrainment, which contributes to the high optical transparency of the samples. Their OSL and TL signals were reproducible with intensities dependent on the dopant concentration and radiation dose, with the most intense emissions resulting from 0.5% Ce concentrations.
{"title":"Structural, vibrational, and luminescent properties of pure and Ce-doped magnesium lithium aluminoborate glass","authors":"Allan W.S. Santos , Iury S. Silveira , Luiz C. Meira-Belo , Andrea L.F. Novais , Divanizia N. Souza","doi":"10.1016/j.apradiso.2024.111548","DOIUrl":"10.1016/j.apradiso.2024.111548","url":null,"abstract":"<div><div>The objective of this work was to study the properties of new vitreous samples of pure BAlMgLi and Ce-doped BAlMgLi produced by the melt-quenching method. The structural and vibrational characteristics of the samples were analyzed using x-ray diffraction (XRD), vibrational Raman spectroscopy, and vibrational Fourier transform infrared spectroscopy (FTIR). Optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques were also used to identify whether the samples showed a response to ionizing radiation. XRD analyses confirmed the predominance of the amorphous phase of the samples. The Raman spectra revealed that the atomic bonds present in the material matrix are of the pyroborate and metaborate type, enabling stretching vibrations in isolated BO<sub>4</sub> and/or Al–O or Al–O–B units. The band at approximately 810 cm<sup>−1</sup> is characteristic of the formation of the boroxol ring, indicating that the presence of other elements in the matrix does not affect its glassy characteristics. The FTIR analyses reinforce the results found by Raman spectroscopy, because bands characteristic of low hygroscopic glasses were observed, due to the conversion of BO<sub>3</sub> units into BO<sub>4</sub> in triborate, tetraborate, and pentaborate groups. This conversion is due to dopant entrainment, which contributes to the high optical transparency of the samples. Their OSL and TL signals were reproducible with intensities dependent on the dopant concentration and radiation dose, with the most intense emissions resulting from 0.5% Ce concentrations.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111548"},"PeriodicalIF":1.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on analytical description of isotope production by bremsstrahlung (X-ray) radiation, an algorithm is proposed for calculating the optimal dimensions of a cylindrical target of given mass positioned at a given distance from a bremsstrahlung converter to ensure the maximum yield of the isotope product. The expressions are derived for the total activity and its distribution along the target axis. A technique of γ-spectrometric measuring the activity of a thick production target is proposed. The novel approach is validated by the 100Mo(γ,n)99Mo reaction induced in a natural molybdenum target by mass in the range 10–100g with the X-ray photons at an end-point energy of 40 MeV. The analytical predictions are in good agreement with the results of Monte-Carlo simulations and experiment.
{"title":"An analytical approach to optimization of isotope production by bremsstrahlung radiation","authors":"V.L. Uvarov, A.A. Zakharchenko, N.P. Dikiy, YuV. Lyashko, R.I. Pomatsalyuk","doi":"10.1016/j.apradiso.2024.111547","DOIUrl":"10.1016/j.apradiso.2024.111547","url":null,"abstract":"<div><div>Based on analytical description of isotope production by bremsstrahlung (X-ray) radiation, an algorithm is proposed for calculating the optimal dimensions of a cylindrical target of given mass positioned at a given distance from a bremsstrahlung converter to ensure the maximum yield of the isotope product. The expressions are derived for the total activity and its distribution along the target axis. A technique of γ-spectrometric measuring the activity of a thick production target is proposed. The novel approach is validated by the <sup>100</sup>Mo(γ,n)<sup>99</sup>Mo reaction induced in a natural molybdenum target by mass in the range 10–100g with the X-ray photons at an end-point energy of 40 MeV. The analytical predictions are in good agreement with the results of Monte-Carlo simulations and experiment.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111547"},"PeriodicalIF":1.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}