Pub Date : 2023-11-06DOI: 10.24425/afe.2020.133328
This paper presents a new stand for studying the linear shrinkage kinetics of foundry alloys. The stand is equipped with a laser displacement sensor. Thanks to this arrangement, the measurement is of a contactless nature. This solution allows for the elimination of errors which occur in measurements made using intermediary elements (steel rods). The supposition of the expansion (shrinkage) of the sample and the expansion of the heated rod lead to the distortion of the image of the actual dimensional changes of the studied sample. A series of studies of foundry alloys conducted using the new stand allowed a new image of shrinkage kinetics to be obtained, in particular regarding cast iron. The authors introduce in the study methodology a real-time measurement of two linked quantities; shrinkage (the displacement of the free end of the sample) and temperature in the surface layer of the sample casting. This generates not only a classic image of shrinkage (S) understood as S = f (t), but also the view S = f (T). The latter correlation, developed based on results obtained using the contactless method, provide a new, so far poorly known image of the course of shrinkage in foundry alloys, especially cast iron with graphite in the structure. The study made use of hypo- and hypereutectic cast iron in order to generate an image of the differences which occur in the kinetics of shrinkage (as well as in pre-shrinkage expansion - expansion occurs during solidification).
{"title":"A New Laser-Registered View of the Shrinkage Kinetics of Foundry Alloys","authors":"","doi":"10.24425/afe.2020.133328","DOIUrl":"https://doi.org/10.24425/afe.2020.133328","url":null,"abstract":"This paper presents a new stand for studying the linear shrinkage kinetics of foundry alloys. The stand is equipped with a laser displacement sensor. Thanks to this arrangement, the measurement is of a contactless nature. This solution allows for the elimination of errors which occur in measurements made using intermediary elements (steel rods). The supposition of the expansion (shrinkage) of the sample and the expansion of the heated rod lead to the distortion of the image of the actual dimensional changes of the studied sample. A series of studies of foundry alloys conducted using the new stand allowed a new image of shrinkage kinetics to be obtained, in particular regarding cast iron. The authors introduce in the study methodology a real-time measurement of two linked quantities; shrinkage (the displacement of the free end of the sample) and temperature in the surface layer of the sample casting. This generates not only a classic image of shrinkage (S) understood as S = f (t), but also the view S = f (T). The latter correlation, developed based on results obtained using the contactless method, provide a new, so far poorly known image of the course of shrinkage in foundry alloys, especially cast iron with graphite in the structure. The study made use of hypo- and hypereutectic cast iron in order to generate an image of the differences which occur in the kinetics of shrinkage (as well as in pre-shrinkage expansion - expansion occurs during solidification).","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"718 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2020.133352
The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.
{"title":"Impact of Ti and Fe on the Microstructure and Properties of Copper and Copper Alloys","authors":"","doi":"10.24425/afe.2020.133352","DOIUrl":"https://doi.org/10.24425/afe.2020.133352","url":null,"abstract":"The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"543 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/AFE.2019.127116
M. Górny, M. Kawalec, G. Witek, A. Rejek
The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.
{"title":"The Influence of Wall Thickness and Mould Temperature on Structure and Properties of Thin Wall Ductile Iron Castings","authors":"M. Górny, M. Kawalec, G. Witek, A. Rejek","doi":"10.24425/AFE.2019.127116","DOIUrl":"https://doi.org/10.24425/AFE.2019.127116","url":null,"abstract":"The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2019.127140
S. Santhi, S. Vadayar, S. Srinivasan
Production of defect free castings requires good understanding of casting characteristics like mold filling ability and volume deficit characteristic. Pin test piece with cylindrical cores proposed by Engler and Ellerbrok was used to study the mold filling ability. Volume deficit characteristics experiments were conducted using the method designed by Engler. Alloy composition, Mold coat and Pouring temperature were considered as process parameters for the present study and experimental plan has been taken up through design of experiments. The alloy composition is most significant in influencing the mold filling ability, where as pouring temperature is for volume deficit. The Correlation Co-efficient value obtained is -0.98901 indicating strong a negative relation between mold filling ability and volume deficit characteristics. Negative values indicate a relationship between mold filling ability and volume deficit such that as values for mold filling ability increase, for volume deficit decrease.
{"title":"Estimation of Mold Filling Ability and Volume Deficit Characteristics of Cast Al-Si Alloys","authors":"S. Santhi, S. Vadayar, S. Srinivasan","doi":"10.24425/afe.2019.127140","DOIUrl":"https://doi.org/10.24425/afe.2019.127140","url":null,"abstract":"Production of defect free castings requires good understanding of casting characteristics like mold filling ability and volume deficit characteristic. Pin test piece with cylindrical cores proposed by Engler and Ellerbrok was used to study the mold filling ability. Volume deficit characteristics experiments were conducted using the method designed by Engler. Alloy composition, Mold coat and Pouring temperature were considered as process parameters for the present study and experimental plan has been taken up through design of experiments. The alloy composition is most significant in influencing the mold filling ability, where as pouring temperature is for volume deficit. The Correlation Co-efficient value obtained is -0.98901 indicating strong a negative relation between mold filling ability and volume deficit characteristics. Negative values indicate a relationship between mold filling ability and volume deficit such that as values for mold filling ability increase, for volume deficit decrease.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"26 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68944814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2019.127110
P. Schlafka, A.W. Bydałek
Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.
{"title":"The Influence of the Proportion of Charge from Waste Materials on the Quality of High Pressure Castings","authors":"P. Schlafka, A.W. Bydałek","doi":"10.24425/afe.2019.127110","DOIUrl":"https://doi.org/10.24425/afe.2019.127110","url":null,"abstract":"Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2019.127104
P-E Persson, Z. Ignaszak, H. Fransson, V. Kropotkin, R. Andersson, A. Kump
The conducted work shows and confirms how thermal analysis of grey and ductile iron is an important source for calculating metallurgical data to be used as input to increase the precision in simulation of cooling and solidification of cast iron. The aim with the methodology is to achieve a higher quality in the prediction of macro– and micro porosity in castings. As comparison objects standard type of sampling cups for thermal analysis (solidification module M ≈ 0.6 cm) is used. The results from thermal analysis elaborated with the ATAS MetStar system are evaluated parallel with the material quality (including tendency to external and internal defects) of the tested specimen. Significant temperatures and calculated quality parameters are evaluated in the ATAS MetStar system and used as input to calibrate the density curve as temperature function in NovaFlow&Solid simulation system. The modified data are imported to the NovaFlow&Solid simulation system and compared with real results.
{"title":"Increasing Precision and Yield in Casting Production by Simulation of the Solidification Process Based on Realistic Material Data Evaluated from Thermal Analysis (Using the ATAS MetStar System)","authors":"P-E Persson, Z. Ignaszak, H. Fransson, V. Kropotkin, R. Andersson, A. Kump","doi":"10.24425/afe.2019.127104","DOIUrl":"https://doi.org/10.24425/afe.2019.127104","url":null,"abstract":"The conducted work shows and confirms how thermal analysis of grey and ductile iron is an important source for calculating metallurgical data to be used as input to increase the precision in simulation of cooling and solidification of cast iron. The aim with the methodology is to achieve a higher quality in the prediction of macro– and micro porosity in castings. As comparison objects standard type of sampling cups for thermal analysis (solidification module M ≈ 0.6 cm) is used. The results from thermal analysis elaborated with the ATAS MetStar system are evaluated parallel with the material quality (including tendency to external and internal defects) of the tested specimen. Significant temperatures and calculated quality parameters are evaluated in the ATAS MetStar system and used as input to calibrate the density curve as temperature function in NovaFlow&Solid simulation system. The modified data are imported to the NovaFlow&Solid simulation system and compared with real results.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"18 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2021.138665
The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process
{"title":"Effect of Thermal Nodes Reduction in Wall Connections of the Charge-Handling Furnace Grates on Thermal Stresses","authors":"","doi":"10.24425/afe.2021.138665","DOIUrl":"https://doi.org/10.24425/afe.2021.138665","url":null,"abstract":"The paper presents FEM approach for comparative analyses of wall connections applied in cast grates used for charge transport in furnaces for heat and thermal-chemical treatment. Nine variants of wall connection were compared in term of temperature differences arising during cooling process and stresses caused by the differences. The presented comparative methodology consists of two steps. In first, the calculations of heat flow during cooling in oil for analysed constructions were carried out. As a result the temperature distributions vs cooling time in cross-sections of analysed wall connections were determined. In the second step, based on heat flow analyses, calculations of stresses caused by the temperature gradient in the wall connections were performed. The conducted calculations were used to evaluate an impact of thermal nodes reduction on maximum temperature differences and to quantitative comparison of various base design of the cast grate wall connection in term of level of thermal stresses and their distribution during cooling process. The obtained results clearly show which solution of wall connection should be applied in cast grate used for charge transport in real constructions and which of them should be avoided because the risk of high thermal stresses forming during cooling process","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"45 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135633920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2022.140213
Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced
{"title":"Influence of the Interface of Carbon Nanotube-Reinforced Aluminum Matrix Composites on the Mechanical Properties – a Review","authors":"","doi":"10.24425/afe.2022.140213","DOIUrl":"https://doi.org/10.24425/afe.2022.140213","url":null,"abstract":"Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"7 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2020.133336
The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm 2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm 2 , intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm 2 , randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 µm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm 2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm 2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm 2 , 50 s, and up to 1.16 GPa for 40 J/cm 2 , 200 s.
{"title":"Microstructure and Microhardness of Piston Alloy Al-10Si-2Cu Irradiated by Pulsed Electron Beam","authors":"","doi":"10.24425/afe.2020.133336","DOIUrl":"https://doi.org/10.24425/afe.2020.133336","url":null,"abstract":"The paper presents the research data on structure, phase composition, defect substructure state, and microhardness of surface layers in the piston alloy Al-10wt%Si-2wt%Cu irradiated by an electron beam with various energy densities and pulse times. An important finding to emerge from the study is that the processing by an electron beam with an energy density of 10 J/cm 2 brings about slight surface melting, whereas a weak thermal impact of an electron beam hardly changes the phase composition. Once an energy density of an electron beam is set 30 J/cm 2 , intermetallic compounds dissolve and numerous micropores arise. Irradiating by an electron beam with an energy density of 50 J/cm 2 , randomly located microcracks are detected on the treated surface with no regard to a pulse time. A structure of high-speed cellular crystallization with cells from 500 to 600 nm forms in the surface layer. A thickness of the modified layer is related to a beam energy density. As a beam energy density goes up, a thickness of a high-speed cellular crystallization layer increases. Atoms of Si, Cu, Ni, as well as a small quantity of Fe and Mg are detected in the surface, in thin layers surrounding crystallization cells. In a layer 60-80 µm below the irradiated surface, in material between high-speed crystallization cells, there are Si atoms and an insignificant number of Cu atoms. An analysis of a deeper material part has shown a structure similar to the as cast alloy. A drop of microhardness – if compared with the as cast material – is reported at an energy density of 10 J/cm 2 because an energy amount supplied by an electron beam to the alloy surface is insufficient for melting of the material and dissolution of the intermetallic phase. A raise of a beam energy density up to 20-50 J/cm 2 causes a max increase of microhardness up to 1.13 GPa for 40 J/cm 2 , 50 s, and up to 1.16 GPa for 40 J/cm 2 , 200 s.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"10 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/afe.2020.133330
Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO 2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.
{"title":"Microstructure and Properties of Laser Additive Deposited of Nickel Base Super Alloy Inconel 625","authors":"","doi":"10.24425/afe.2020.133330","DOIUrl":"https://doi.org/10.24425/afe.2020.133330","url":null,"abstract":"Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO 2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"8 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}