S. Crowley, I. Bradbury, A. Messmer, SJ Duffy, SS Islam, I. Fleming
: When escapee farmed Atlantic salmon Salmo salar interbreed with wild fish, the introgression of maladaptive genes can lower wild population productivity and alter key life his-tory traits. To date, only a few European studies have compared wild, farm, and hybrid salmon under common conditions in the wild, isolating the influence of genetics on survival and fitness-related traits. Here, we examined the performance of experimentally derived Atlantic salmon fry from 4 cross types (wild, farm, and reciprocal F 1 hybrids) during the first summer of growth at 3 locations in southern Newfoundland. Overall survival was high, with the cross type rank order consistent across sites (mean percent recaptured: wild-mother hybrids 26.2% ≈ wild 26.0% > farm 19.2% > farm-mother hybrids 12.8%). Wild fish were smaller than wild-mother hybrids and farm fish, though differed less in size from farm-mother hybrids. At 2 out of 3 sites, wild-mother hybrids were larger than wild and farm-mother hybrid fish but had only a small size advantage over farm fish. Shape differences were small and mainly related to body depth, with the largest differences between wild and farm fish. Wild-mother hybrids had fewer parr marks than other cross types at a single site, and though differences in the size of marks were minimal, farm fish tended to have the narrowest marks. Overall, these results show that genetic differences exist for fitness-related traits among wild, farm, and hybrid juveniles, even over short temporal scales and under favourable environmental conditions, and may contribute to patterns of reduced farm-mother hybrid and feral farm survival in the wild.
{"title":"Common-garden comparison of relative survival and fitness-related traits of wild, farm, and hybrid Atlantic salmon Salmo salar parr in nature","authors":"S. Crowley, I. Bradbury, A. Messmer, SJ Duffy, SS Islam, I. Fleming","doi":"10.3354/aei00425","DOIUrl":"https://doi.org/10.3354/aei00425","url":null,"abstract":": When escapee farmed Atlantic salmon Salmo salar interbreed with wild fish, the introgression of maladaptive genes can lower wild population productivity and alter key life his-tory traits. To date, only a few European studies have compared wild, farm, and hybrid salmon under common conditions in the wild, isolating the influence of genetics on survival and fitness-related traits. Here, we examined the performance of experimentally derived Atlantic salmon fry from 4 cross types (wild, farm, and reciprocal F 1 hybrids) during the first summer of growth at 3 locations in southern Newfoundland. Overall survival was high, with the cross type rank order consistent across sites (mean percent recaptured: wild-mother hybrids 26.2% ≈ wild 26.0% > farm 19.2% > farm-mother hybrids 12.8%). Wild fish were smaller than wild-mother hybrids and farm fish, though differed less in size from farm-mother hybrids. At 2 out of 3 sites, wild-mother hybrids were larger than wild and farm-mother hybrid fish but had only a small size advantage over farm fish. Shape differences were small and mainly related to body depth, with the largest differences between wild and farm fish. Wild-mother hybrids had fewer parr marks than other cross types at a single site, and though differences in the size of marks were minimal, farm fish tended to have the narrowest marks. Overall, these results show that genetic differences exist for fitness-related traits among wild, farm, and hybrid juveniles, even over short temporal scales and under favourable environmental conditions, and may contribute to patterns of reduced farm-mother hybrid and feral farm survival in the wild.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LM Howarth, LM Lewis-McCrea, L. Kellogg, ET Apostolaki, GK Reid
This paper reviews the impacts of shellfish and finfish aquaculture on eelgrass Zostera marina, the most widely distributed seagrass species in the northern hemisphere. Shellfish aquaculture can have positive, neutral, and negative effects on eelgrass. Positive interactions can be generated by the filtering activity of cultured bivalves, which may improve water quality and reduce epiphyte loads, and shellfish biodeposits may provide more nutrients to eelgrass and other vegetation. However, negative responses are more commonly reported and can be caused by shading and sedimentation. These negative effects tend to occur directly under and immediately surrounding shellfish farms and rapidly diminish with increasing distance. In contrast to shellfish aquaculture, only one field study has investigated the effects of finfish aquaculture on eelgrass in a temperate setting, and the results were inconclusive. However, many studies have investigated the effects of Mediterranean finfish farms on 2 other species of seagrass (Posidonia oceanica and Cymodocea nodosa). These studies reported clear negative interactions, which have been linked to increased nutrient concentrations, sulphides, sedimentation, epiphyte loads, and grazing pressure. It is unknown if these studies are relevant for finfish aquaculture in temperate regions due to differences in environmental conditions, and because the studies focused on different species of seagrass. Thus, further study in a temperate setting is warranted. We conclude by highlighting key research gaps that could help regulators establish unambiguous operational and siting guidelines that minimize the potential for negative interactions between aquaculture and eelgrass.
{"title":"Aquaculture and eelgrass Zostera marina interactions in temperate ecosystems","authors":"LM Howarth, LM Lewis-McCrea, L. Kellogg, ET Apostolaki, GK Reid","doi":"10.3354/aei00426","DOIUrl":"https://doi.org/10.3354/aei00426","url":null,"abstract":"This paper reviews the impacts of shellfish and finfish aquaculture on eelgrass Zostera marina, the most widely distributed seagrass species in the northern hemisphere. Shellfish aquaculture can have positive, neutral, and negative effects on eelgrass. Positive interactions can be generated by the filtering activity of cultured bivalves, which may improve water quality and reduce epiphyte loads, and shellfish biodeposits may provide more nutrients to eelgrass and other vegetation. However, negative responses are more commonly reported and can be caused by shading and sedimentation. These negative effects tend to occur directly under and immediately surrounding shellfish farms and rapidly diminish with increasing distance. In contrast to shellfish aquaculture, only one field study has investigated the effects of finfish aquaculture on eelgrass in a temperate setting, and the results were inconclusive. However, many studies have investigated the effects of Mediterranean finfish farms on 2 other species of seagrass (Posidonia oceanica and Cymodocea nodosa). These studies reported clear negative interactions, which have been linked to increased nutrient concentrations, sulphides, sedimentation, epiphyte loads, and grazing pressure. It is unknown if these studies are relevant for finfish aquaculture in temperate regions due to differences in environmental conditions, and because the studies focused on different species of seagrass. Thus, further study in a temperate setting is warranted. We conclude by highlighting key research gaps that could help regulators establish unambiguous operational and siting guidelines that minimize the potential for negative interactions between aquaculture and eelgrass.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Cantrell, R. Vanderstichel, R. Filgueira, J. Grant, C. Revie
Sea lice are one of the most economically costly and ecologically concerning problems facing the salmon farming industry. Here, we validated a coupled biological and physical model that simulated sea lice larvae dispersal from salmon farms in the Broughton Archipelago (BA), British Columbia, Canada. We employed a concept from ecological agent-based modeling known as ‘pattern matching’, which identifies similar emergent properties in both the simulated and observed data to confirm that the simulation contained sufficient complexity to recreate the emergent properties of the system. One emergent property from the biophysical simulations was the existence of sub-networks of farms. These were also identified in the observed sea lice count data in this study using a space-time scan statistic (SaTScan) to identify significant spatio-temporal clusters of farms. Despite finding support for our simulation in the observed data, which consisted of over a decade’s worth of monthly sea lice abundance counts from salmon farms in the BA, the validation was not entirely straightforward. The complexities associated with validating this biophysical dispersal simulation highlight the need to further develop validation techniques for agent-based models in general, and biophysical simulations in particular, which often result in patchiness in their dispersal fields. The methods utilised in this validation could be adopted as a template for other epidemiological dispersal models, particularly those related to aquaculture, which typically have robust disease monitoring data collection plans in place.
{"title":"Validation of a sea lice dispersal model: principles from ecological agent-based models applied to aquatic epidemiology","authors":"D. Cantrell, R. Vanderstichel, R. Filgueira, J. Grant, C. Revie","doi":"10.3354/aei00390","DOIUrl":"https://doi.org/10.3354/aei00390","url":null,"abstract":"Sea lice are one of the most economically costly and ecologically concerning problems facing the salmon farming industry. Here, we validated a coupled biological and physical model that simulated sea lice larvae dispersal from salmon farms in the Broughton Archipelago (BA), British Columbia, Canada. We employed a concept from ecological agent-based modeling known as ‘pattern matching’, which identifies similar emergent properties in both the simulated and observed data to confirm that the simulation contained sufficient complexity to recreate the emergent properties of the system. One emergent property from the biophysical simulations was the existence of sub-networks of farms. These were also identified in the observed sea lice count data in this study using a space-time scan statistic (SaTScan) to identify significant spatio-temporal clusters of farms. Despite finding support for our simulation in the observed data, which consisted of over a decade’s worth of monthly sea lice abundance counts from salmon farms in the BA, the validation was not entirely straightforward. The complexities associated with validating this biophysical dispersal simulation highlight the need to further develop validation techniques for agent-based models in general, and biophysical simulations in particular, which often result in patchiness in their dispersal fields. The methods utilised in this validation could be adopted as a template for other epidemiological dispersal models, particularly those related to aquaculture, which typically have robust disease monitoring data collection plans in place.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69592463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Skjæraasen, Ø. Karlsen, Ø. Langangen, Tv der Meeren, NR Keeley, M. Myksvoll, G. Dahle, E. Moland, R. Nilsen, KM Elvik Schrøder, R. Bannister, E. Olsen
{"title":"Impact of salmon farming on Atlantic cod spatio-temporal reproductive dynamics","authors":"J. Skjæraasen, Ø. Karlsen, Ø. Langangen, Tv der Meeren, NR Keeley, M. Myksvoll, G. Dahle, E. Moland, R. Nilsen, KM Elvik Schrøder, R. Bannister, E. Olsen","doi":"10.3354/aei00415","DOIUrl":"https://doi.org/10.3354/aei00415","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validating a biophysical parasite model with fish farm pen and plankton trawl data","authors":"TP Adams, S. Marshall, S. Brown, K. Black","doi":"10.3354/aei00416","DOIUrl":"https://doi.org/10.3354/aei00416","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Hu, Z. Yu, Y. Huang, D. Liu, Feng Wang, T. Zhang
The oceans continue to warm due to rising atmospheric greenhouse gas concentrations. Most climate-change studies of aquaculture species use temperature changes based on coarseresolution climate models and without considering thermal ranges of an animal. Coarse-resolution climate models are generated by global-scale data, which is insufficient to capture the conditions of coastal areas where most aquaculture activity occurs. Therefore, ocean warming research on coastal organisms requires a more comprehensive design to include broad temperature gradients. By using the ecologically and commercially important coastal whelk Rapana venosa, we combined long-term and short-term experiments and selected 4 temperature treatments (19, 23, 27, and 30°C) to simulate different scenarios to test ocean warming effects on growth rates and foraging performances of whelks. We found that elevated temperature within the whelk’s thermal range (23 and 27°C) significantly increased growth rates and enhanced foraging performances of marine whelks when compared to the current temperature (19°C). Conversely, the whelk’s performance collapsed at 30°C in terms of both growth and foraging behavior. Our research clearly shows that local conditions and the tolerance range of a species must be considered to develop meaningful information for testing the effects of a changing climate. Our study suggests that rapa whelks may increase their feeding and reach larger sizes during warmer periods. Moreover, our study may provide a foundation for future climate research on aquaculture species.
{"title":"Elevated temperatures increase growth and enhance foraging performances of a marine gastropod","authors":"N. Hu, Z. Yu, Y. Huang, D. Liu, Feng Wang, T. Zhang","doi":"10.3354/AEI00398","DOIUrl":"https://doi.org/10.3354/AEI00398","url":null,"abstract":"The oceans continue to warm due to rising atmospheric greenhouse gas concentrations. Most climate-change studies of aquaculture species use temperature changes based on coarseresolution climate models and without considering thermal ranges of an animal. Coarse-resolution climate models are generated by global-scale data, which is insufficient to capture the conditions of coastal areas where most aquaculture activity occurs. Therefore, ocean warming research on coastal organisms requires a more comprehensive design to include broad temperature gradients. By using the ecologically and commercially important coastal whelk Rapana venosa, we combined long-term and short-term experiments and selected 4 temperature treatments (19, 23, 27, and 30°C) to simulate different scenarios to test ocean warming effects on growth rates and foraging performances of whelks. We found that elevated temperature within the whelk’s thermal range (23 and 27°C) significantly increased growth rates and enhanced foraging performances of marine whelks when compared to the current temperature (19°C). Conversely, the whelk’s performance collapsed at 30°C in terms of both growth and foraging behavior. Our research clearly shows that local conditions and the tolerance range of a species must be considered to develop meaningful information for testing the effects of a changing climate. Our study suggests that rapa whelks may increase their feeding and reach larger sizes during warmer periods. Moreover, our study may provide a foundation for future climate research on aquaculture species.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Legrand, T. Kutti, EV Gonzalez Casal, Sps Rastrick, S. Andersen, V. Husa
Maerl beds are formed by the accumulation of free-living coralline algae and have considerable ecological significance due to the high diversity of associated fauna and flora. The rapid expansion of the Atlantic salmon Salmo salar aquaculture industry in Norway may have major impacts on surrounding maerl beds through the release of effluents, including fish faeces. This study is the first to test the effects of salmon faeces and inorganic sediment deposition on the photosynthesis, respiration, calcification and pigment content of the coralline alga Lithothamnion soriferum. In a 6 wk laboratory experiment, inorganic sediment and salmon faeces deposition significantly reduced the amount of light reaching the surface of coral line algae. No impact of inorganic sediment deposition was detected on L. soriferum physiology, while salmon faeces deposition increased respiration rate and reduced net primary production and calcification. The accumulation of salmon faeces stimulates proliferation of bacteria, with adverse consequences on L. soriferum physiology due to the potential release of toxic compounds. Burial by salmon faeces deposition also affects the physiology of coralline algae due to the flocculation of sticky faeces particles, which may limit nutrient and gas exchanges in the vicinity of thalli. Carbon dioxide accumulation in the vicinity of L. soriferum may lead to a decline in pH and alter the calcification process in cell walls. In natural maerl beds, the negative effect of faeces deposition may be exacerbated by longer-term exposure and the presence of other chemicals released by fish farms.
{"title":"Reduced physiological performance in a free-living coralline alga induced by salmon faeces deposition","authors":"E. Legrand, T. Kutti, EV Gonzalez Casal, Sps Rastrick, S. Andersen, V. Husa","doi":"10.3354/AEI00403","DOIUrl":"https://doi.org/10.3354/AEI00403","url":null,"abstract":"Maerl beds are formed by the accumulation of free-living coralline algae and have considerable ecological significance due to the high diversity of associated fauna and flora. The rapid expansion of the Atlantic salmon Salmo salar aquaculture industry in Norway may have major impacts on surrounding maerl beds through the release of effluents, including fish faeces. This study is the first to test the effects of salmon faeces and inorganic sediment deposition on the photosynthesis, respiration, calcification and pigment content of the coralline alga Lithothamnion soriferum. In a 6 wk laboratory experiment, inorganic sediment and salmon faeces deposition significantly reduced the amount of light reaching the surface of coral line algae. No impact of inorganic sediment deposition was detected on L. soriferum physiology, while salmon faeces deposition increased respiration rate and reduced net primary production and calcification. The accumulation of salmon faeces stimulates proliferation of bacteria, with adverse consequences on L. soriferum physiology due to the potential release of toxic compounds. Burial by salmon faeces deposition also affects the physiology of coralline algae due to the flocculation of sticky faeces particles, which may limit nutrient and gas exchanges in the vicinity of thalli. Carbon dioxide accumulation in the vicinity of L. soriferum may lead to a decline in pH and alter the calcification process in cell walls. In natural maerl beds, the negative effect of faeces deposition may be exacerbated by longer-term exposure and the presence of other chemicals released by fish farms.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urechis unicinctus is an important commercial and ecological invertebrate that has potential applications in the study of marine invertebrate evolution and marine pharmaceutical development. Here we analyzed the intestinal microbial diversity of U. unicinctus from 2 different habitats using 16S rDNA 454 high-throughput sequencing. The dominant phyla were Proteo bacteria, Bacterioidetes, Firmicutes, and Actinobacteria in gut samples of U. unicinctus, which significantly differed from those in its 2 habitats (i.e. intertidal mudflat and pond polyculture). Exceptions were Proteobacteria, Firmicutes and Bacterioidetes, which were the dominant phyla in the sediment and water samples. The top 15 genera in the gut samples did not show any significant differences between the 2 habitats. Functional analysis of the intestinal microbial community showed that metabolism, including carbohydrate and amino acid metabolism, was the most important function. Methane metabolism was one of the main components of energy metabolism. The gut microbes also played an important role in environmental and genetic information processing, cellular processes, etc. These findings provide an understanding of gut microbiome composition and diversity in U. unicinctus from 2 different habitats. Our results can inform the management of animal health in U. unicinctus farming activities and further gut microecology research.
{"title":"Intestinal microbial diversity and functional analysis of Urechis unicinctus from two different habitats: pond polycultured with Penaeus japonicus and coastal zone","authors":"Y. Tang, S. Ma, Y. Liu, Y. Pi, Y. Zhao","doi":"10.3354/AEI00395","DOIUrl":"https://doi.org/10.3354/AEI00395","url":null,"abstract":"Urechis unicinctus is an important commercial and ecological invertebrate that has potential applications in the study of marine invertebrate evolution and marine pharmaceutical development. Here we analyzed the intestinal microbial diversity of U. unicinctus from 2 different habitats using 16S rDNA 454 high-throughput sequencing. The dominant phyla were Proteo bacteria, Bacterioidetes, Firmicutes, and Actinobacteria in gut samples of U. unicinctus, which significantly differed from those in its 2 habitats (i.e. intertidal mudflat and pond polyculture). Exceptions were Proteobacteria, Firmicutes and Bacterioidetes, which were the dominant phyla in the sediment and water samples. The top 15 genera in the gut samples did not show any significant differences between the 2 habitats. Functional analysis of the intestinal microbial community showed that metabolism, including carbohydrate and amino acid metabolism, was the most important function. Methane metabolism was one of the main components of energy metabolism. The gut microbes also played an important role in environmental and genetic information processing, cellular processes, etc. These findings provide an understanding of gut microbiome composition and diversity in U. unicinctus from 2 different habitats. Our results can inform the management of animal health in U. unicinctus farming activities and further gut microecology research.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69592791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Light is a fundamental environmental cue which influences the migration of many marine organisms. For the salmon louse Lepeophtheirus salmonis, light is believed to drive the diel vertical migration behaviour of their planktonic larvae. Salmon lice are of critical importance to the salmonid industry due to the damage they cause to wild and farmed hosts. Salmon lice larvae have an eyespot and are positively phototactic, yet how light intensity alters their vertical distribution remains unclear. Here, we tested how light intensity (0, 0.5, 10 and 80 μmol m−2 s−1), dispersal duration (1, 4 and 12 h) and release point (surface or bottom) influenced the vertical migration of salmon lice nauplii and copepodids under controlled conditions in experimental columns. Overall, higher light intensity increased the proportion of nauplii that aggregated at the surface. Copepodid behaviour differed from that of nauplii, as they swam upwards in both light and fully dark conditions, and surface aggregations increased with dispersal duration. Results from the experiments did not support the existing view that light strongly influences the vertical position of copepodids in the water column. Combined with previous work, our results reveal that salmon lice larval stages display different vertical responses to light, temperature and salinity, which may be explained by the different strategies of nauplii (maximise survival and dispersal) and copepodids (maximise host-finding success). Our results have implications for salmon lice dispersal models, where re sponses of copepodids and nauplii to light are currently parametrised by the same equations. Implementing stage-specific behaviours towards light may improve the outputs of dispersal models.
{"title":"Salmon lice nauplii and copepodids display different vertical migration patterns in response to light","authors":"A. Szetey, D. W. Wright, F. Oppedal, T. Dempster","doi":"10.3354/AEI00396","DOIUrl":"https://doi.org/10.3354/AEI00396","url":null,"abstract":"Light is a fundamental environmental cue which influences the migration of many marine organisms. For the salmon louse Lepeophtheirus salmonis, light is believed to drive the diel vertical migration behaviour of their planktonic larvae. Salmon lice are of critical importance to the salmonid industry due to the damage they cause to wild and farmed hosts. Salmon lice larvae have an eyespot and are positively phototactic, yet how light intensity alters their vertical distribution remains unclear. Here, we tested how light intensity (0, 0.5, 10 and 80 μmol m−2 s−1), dispersal duration (1, 4 and 12 h) and release point (surface or bottom) influenced the vertical migration of salmon lice nauplii and copepodids under controlled conditions in experimental columns. Overall, higher light intensity increased the proportion of nauplii that aggregated at the surface. Copepodid behaviour differed from that of nauplii, as they swam upwards in both light and fully dark conditions, and surface aggregations increased with dispersal duration. Results from the experiments did not support the existing view that light strongly influences the vertical position of copepodids in the water column. Combined with previous work, our results reveal that salmon lice larval stages display different vertical responses to light, temperature and salinity, which may be explained by the different strategies of nauplii (maximise survival and dispersal) and copepodids (maximise host-finding success). Our results have implications for salmon lice dispersal models, where re sponses of copepodids and nauplii to light are currently parametrised by the same equations. Implementing stage-specific behaviours towards light may improve the outputs of dispersal models.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69592800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A trend in Atlantic salmon aquaculture is to establish new production sites that are susceptible to extreme weather conditions; however, strong and persistent water currents may compromise fish welfare. Defining acceptable current conditions necessitates an assessment of sustained swimming abilities that are fuelled solely by aerobic metabolism and do not result in fatigue. In this study, the limit of sustained swimming was quantified with regards to both speed and time in Atlantic salmon of ~700 g and ~39 cm at 12°C by testing fish in groups of 10 in a large swim tunnel respirometer. First, critical swimming speed (Ucrit) (107 cm s−1) and minimum cost of transport (66 cm s−1) were measured. Sustained swimming trials at constant speeds were then performed based on a percentage of the group mean Ucrit (80, 85, 90, 95, 100 or 105%). Fish were forced to swim until they fatigued or until 72 h had passed. Surprisingly, most fish were able to sustain 80 and 85% Ucrit for 72 consecutive hours. However, at the highest speeds, fatigue was reached within the first 2 h. By categorizing fatigue times of individual fish into <2, 2−72 or >72 h, significant differences in relative swimming speeds were found that corresponded to 2.7, 2.5 and 2.2 body lengths s−1, respectively. These results document impressive sustained swimming capacities in farmed Atlantic salmon and add important temporal insights about ambient current limits with regards to fish welfare at exposed aquaculture sites.
大西洋鲑鱼水产养殖的一个趋势是建立易受极端天气条件影响的新生产地;然而,强烈和持续的水流可能会损害鱼类的福利。定义可接受的当前条件需要评估仅由有氧代谢提供能量且不会导致疲劳的持续游泳能力。在这项研究中,通过在大型游泳隧道呼吸计中以10条鱼为一组进行测试,对~700 g和~39 cm的大西洋鲑鱼在12°C下持续游泳的速度和时间进行了量化。首先,测量临界游泳速度(Ucrit) (107 cm s - 1)和最小运输成本(66 cm s - 1)。然后根据组平均Ucrit的百分比(80、85、90、95、100或105%)进行恒定速度的持续游泳试验。鱼被迫游到疲劳或72小时过去。令人惊讶的是,大多数鱼能够连续72小时维持80%到85%的温度。然而,在最高速度下,在前2小时内就会达到疲劳。通过将个体鱼的疲劳时间划分为72小时,发现相对游泳速度分别对应2.7、2.5和2.2体长s−1。这些结果记录了养殖大西洋鲑鱼令人印象深刻的持续游泳能力,并对暴露的水产养殖场的鱼类福利的环境电流限制提供了重要的时间见解。
{"title":"What is the limit of sustained swimming in Atlantic salmon post smolts?","authors":"M. Hvas, O. Folkedal, F. Oppedal","doi":"10.3354/AEI00401","DOIUrl":"https://doi.org/10.3354/AEI00401","url":null,"abstract":"A trend in Atlantic salmon aquaculture is to establish new production sites that are susceptible to extreme weather conditions; however, strong and persistent water currents may compromise fish welfare. Defining acceptable current conditions necessitates an assessment of sustained swimming abilities that are fuelled solely by aerobic metabolism and do not result in fatigue. In this study, the limit of sustained swimming was quantified with regards to both speed and time in Atlantic salmon of ~700 g and ~39 cm at 12°C by testing fish in groups of 10 in a large swim tunnel respirometer. First, critical swimming speed (Ucrit) (107 cm s−1) and minimum cost of transport (66 cm s−1) were measured. Sustained swimming trials at constant speeds were then performed based on a percentage of the group mean Ucrit (80, 85, 90, 95, 100 or 105%). Fish were forced to swim until they fatigued or until 72 h had passed. Surprisingly, most fish were able to sustain 80 and 85% Ucrit for 72 consecutive hours. However, at the highest speeds, fatigue was reached within the first 2 h. By categorizing fatigue times of individual fish into <2, 2−72 or >72 h, significant differences in relative swimming speeds were found that corresponded to 2.7, 2.5 and 2.2 body lengths s−1, respectively. These results document impressive sustained swimming capacities in farmed Atlantic salmon and add important temporal insights about ambient current limits with regards to fish welfare at exposed aquaculture sites.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}