I. L. Mengual, P. Sanchez‐Jerez, J. Ballester-Berman
{"title":"Offshore aquaculture as climate change adaptation in coastal areas: an analysis of sea surface temperature trends in the Western Mediterranean Sea","authors":"I. L. Mengual, P. Sanchez‐Jerez, J. Ballester-Berman","doi":"10.3354/aei00420","DOIUrl":"https://doi.org/10.3354/aei00420","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Ferriss, K. Veggerby, M. Bogeberg, L. Conway-Cranos, L. Hoberecht, P. Kiffney, K. Litle, J. Toft, B. Sanderson
{"title":"Characterizing the habitat function of bivalve aquaculture using underwater video","authors":"B. Ferriss, K. Veggerby, M. Bogeberg, L. Conway-Cranos, L. Hoberecht, P. Kiffney, K. Litle, J. Toft, B. Sanderson","doi":"10.3354/aei00418","DOIUrl":"https://doi.org/10.3354/aei00418","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"2 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Hedger, O. Diserud, B. Finstad, A. Jensen, D. Hendrichsen, O. Ugedal, T. F. Næsje
Salmon lice Lepeophtheirus salmonis infestation of sea trout Salmo trutta results in both additional marine mortality and behavioral changes which may contribute to sea trout population decline. For effective management of activities that increase exposure to salmon lice, such as salmon aquaculture, it is necessary to have a full understanding of how salmon lice may affect sea trout populations. An individual-based model (IBTRUTTA) was therefore developed to investigate the potential effects of salmon lice infestation on sea trout population abundance and dynamics based on data from the River Halselva and Altafjord system in northern Norway. This model allowed investigation of the effect of lice-induced mortality and also the compensatory salmonid behavioral mechanisms of premature return to freshwater, either persistent for overwintering or transitory after which sea trout could go back to sea. It was found that, in the absence of compensatory mechanisms, even low rates of lice infestation could lead to marked declines in sea trout abundance. Compensatory behavioral mechanisms had the potential to reduce these de clines, but persistent premature return resulted in reduced body mass of returning adults. The shape of the stock-recruitment relationship was also shown to strongly affect how lice-induced mortality impacted the population.
{"title":"Modeling salmon lice effects on sea trout population dynamics using an individual-based approach","authors":"R. Hedger, O. Diserud, B. Finstad, A. Jensen, D. Hendrichsen, O. Ugedal, T. F. Næsje","doi":"10.3354/AEI00397","DOIUrl":"https://doi.org/10.3354/AEI00397","url":null,"abstract":"Salmon lice Lepeophtheirus salmonis infestation of sea trout Salmo trutta results in both additional marine mortality and behavioral changes which may contribute to sea trout population decline. For effective management of activities that increase exposure to salmon lice, such as salmon aquaculture, it is necessary to have a full understanding of how salmon lice may affect sea trout populations. An individual-based model (IBTRUTTA) was therefore developed to investigate the potential effects of salmon lice infestation on sea trout population abundance and dynamics based on data from the River Halselva and Altafjord system in northern Norway. This model allowed investigation of the effect of lice-induced mortality and also the compensatory salmonid behavioral mechanisms of premature return to freshwater, either persistent for overwintering or transitory after which sea trout could go back to sea. It was found that, in the absence of compensatory mechanisms, even low rates of lice infestation could lead to marked declines in sea trout abundance. Compensatory behavioral mechanisms had the potential to reduce these de clines, but persistent premature return resulted in reduced body mass of returning adults. The shape of the stock-recruitment relationship was also shown to strongly affect how lice-induced mortality impacted the population.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69592974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leifeng Guo, B. Sun, Duanduan Chen, C. Yi, Jian Teng, Jielun Yu, Shou-dong Wang, Yuanyuan Ru, Hui Wang
ADP-ribosylation factors (Arfs) are guanosine triphosphate (GTP)-binding proteins that play essential roles in membrane trafficking, and they have been recently reported to be involved in innate immunity in crustaceans. However, little information is available on Arfs in the oriental river prawn Macrobrachium nipponense and their response to ammonia nitrogen stress. In this study, we identified a novel M. nipponense Arfn gene (MnArfn). The full-length cDNA of MnArfn was 1076 bp. It contained a 537 bp open reading frame (ORF) and encoded a 178 amino acid protein with a predicted molecular weight of 19.85 kDa. Sequence and phylogenetic analyses showed that MnArfn was an unidentified Arf, sharing 55−61% identity with other known Arfs. Quantitative real-time PCR (qPCR) indicated that all examined tissues (hepatopancreas, stomach, gill, heart, muscle, and eyestalk) expressed MnArfn. Hepatopancreas and gills, 2 organs involved in environmental stress management, had the highest expression. Under conditions of ammonia nitrogen stress, MnArfn expression in hepatopancreas and gills was significantly up-regulated at 6, 12, and 24 h. Western blotting experiments also revealed that MnArfn was distributed in all examined tissues, with the highest expression in hepatopancreas and gills, consistent with qPCR results. The findings from this study indicate that MnArfn may play an important role in the response of M. nipponense to ammonia nitrogen stress, which provides a new avenue to study the resistance mechanism(s) of crustaceans to ammonia nitrogen and to screen for individuals with resistance to unfavorable environments.
{"title":"Characterization of a novel ADP-ribosylation factor gene from Macrobrachium nipponense and its response to ammonia nitrogen stress","authors":"Leifeng Guo, B. Sun, Duanduan Chen, C. Yi, Jian Teng, Jielun Yu, Shou-dong Wang, Yuanyuan Ru, Hui Wang","doi":"10.3354/AEI00399","DOIUrl":"https://doi.org/10.3354/AEI00399","url":null,"abstract":"ADP-ribosylation factors (Arfs) are guanosine triphosphate (GTP)-binding proteins that play essential roles in membrane trafficking, and they have been recently reported to be involved in innate immunity in crustaceans. However, little information is available on Arfs in the oriental river prawn Macrobrachium nipponense and their response to ammonia nitrogen stress. In this study, we identified a novel M. nipponense Arfn gene (MnArfn). The full-length cDNA of MnArfn was 1076 bp. It contained a 537 bp open reading frame (ORF) and encoded a 178 amino acid protein with a predicted molecular weight of 19.85 kDa. Sequence and phylogenetic analyses showed that MnArfn was an unidentified Arf, sharing 55−61% identity with other known Arfs. Quantitative real-time PCR (qPCR) indicated that all examined tissues (hepatopancreas, stomach, gill, heart, muscle, and eyestalk) expressed MnArfn. Hepatopancreas and gills, 2 organs involved in environmental stress management, had the highest expression. Under conditions of ammonia nitrogen stress, MnArfn expression in hepatopancreas and gills was significantly up-regulated at 6, 12, and 24 h. Western blotting experiments also revealed that MnArfn was distributed in all examined tissues, with the highest expression in hepatopancreas and gills, consistent with qPCR results. The findings from this study indicate that MnArfn may play an important role in the response of M. nipponense to ammonia nitrogen stress, which provides a new avenue to study the resistance mechanism(s) of crustaceans to ammonia nitrogen and to screen for individuals with resistance to unfavorable environments.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nutrient removal in a constructed wetland treating aquaculture effluent at long hydraulic retention time","authors":"J. Dalsgaard, M. von Ahnen, P. Pedersen","doi":"10.3354/aei00411","DOIUrl":"https://doi.org/10.3354/aei00411","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito
Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.
{"title":"Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management","authors":"J. Aubin, V. Baizeau, C. Jaeger, M. Roucaute, S. Gamito","doi":"10.3354/AEI00406","DOIUrl":"https://doi.org/10.3354/AEI00406","url":null,"abstract":"Freshwater pond polyculture faces many challenges in Europe. Appropriate tools must be developed to better understand and manage trophic interactions in pond ecosystems. The objective of our study was to understand the trophic interactions and make inference on the fish diet in common carp polyculture through a combination of experiments and trophic web modeling. We conducted an experiment in small fishponds of common carp polyculture reared with roach and perch and used Ecopath with Ecosim software to characterize the food web. Two replicates of 3 treatments were performed: a semi-extensive pond with low fish density and no formulated feed, an intensive pond with twice the fish density and formulated feed and an intensive pond coupled with a planted lagoon. Ten trophic groups were defined to describe the food web. The modeling procedure enabled us to estimate the diets of each trophic group. The fish diet in fed and non-fed treatments differed greatly since the carp fed mainly on formulated feed when available. The roach exhibited trophic plasticity by adapting their diet to the available resources. The benthic macroinvertebrates and zooplankton were preyed upon intensively; they became the limiting factors for fish production and depended on phytoplankton availability. Detritus and phytoplankton were the main sources of nutrients in all treatments but were not used efficiently. These results provide several insights for improving polyculture. In particular, they promote better management of zooplankton and macroinvertebrates as food sources for target species and a better balance in fish assemblages for more efficient use of resources.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shellfish growers routinely observe fish and invertebrates interacting with their aquaculture gear. To quantitatively assess these interactions, underwater action cameras (GoPro®) were used to document fish and invertebrate activity in and around floating oyster bags, cages, and a natural marsh habitat on an oyster farm in the Little Egg Harbor region of Barnegat Bay, New Jersey, USA, in 2018. A free and open-source event-logging software was used to analyze video files. A total of 21 species from 4 phyla were identified across all days and sites. Nekton were quantified from continuously recorded video using the MaxN abundance metric, defined as the maximum number of individuals of a given species present within each 1 min segment of video. Species of both ecological and economic importance in the local ecosystem used the 3 intertidal habitats. Abundance and community composition observed around oyster cages differed from that around floating oyster bags and marsh edge; the latter 2 habitats were not significantly different. Juvenile fish were frequently observed, suggesting that the oyster farm may provide similar natural history functions as other natural marsh habitat.
{"title":"A fish’s-eye-view: accessible tools to document shellfish farms as marine habitat in New Jersey, USA","authors":"JP Shinn, DM Munroe, J. Rose","doi":"10.3354/AEI00407","DOIUrl":"https://doi.org/10.3354/AEI00407","url":null,"abstract":"Shellfish growers routinely observe fish and invertebrates interacting with their aquaculture gear. To quantitatively assess these interactions, underwater action cameras (GoPro®) were used to document fish and invertebrate activity in and around floating oyster bags, cages, and a natural marsh habitat on an oyster farm in the Little Egg Harbor region of Barnegat Bay, New Jersey, USA, in 2018. A free and open-source event-logging software was used to analyze video files. A total of 21 species from 4 phyla were identified across all days and sites. Nekton were quantified from continuously recorded video using the MaxN abundance metric, defined as the maximum number of individuals of a given species present within each 1 min segment of video. Species of both ecological and economic importance in the local ecosystem used the 3 intertidal habitats. Abundance and community composition observed around oyster cages differed from that around floating oyster bags and marsh edge; the latter 2 habitats were not significantly different. Juvenile fish were frequently observed, suggesting that the oyster farm may provide similar natural history functions as other natural marsh habitat.","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"54 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69593550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial response of hard- and mixed-bottom benthic epifauna to organic enrichment from salmon aquaculture in northern Norway","authors":"K. Dunlop, A. Harendza, R. Bannister, N. Keeley","doi":"10.3354/aei00419","DOIUrl":"https://doi.org/10.3354/aei00419","url":null,"abstract":"","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
: Subtropical coral reefs along the coast are facing multiple pressures. Mariculture is one of the main sources of such pressure. Oyster culture has become a worldwide phenomenon in coastal ecosystems. Due to the high filtration efficiency of oysters, their culture has helped to purify some coastal waters. However, high-density oyster culture has also had negative effects on coastal ecosystems, including the loss of natural habitat, changes in hydrology, cross infection of corals with pathogenic bacteria, and changes to the structure and function of bacterioplankton communities. In this study, the effect of oyster culture on coral reefs was characterized based on variability in the structure and function of bacterioplankton communities. Using 16S rRNA gene sequencing, a comprehensive bacterioplankton reference database was constructed for coral reef habitats associated with oyster culture and subjected to different disturbance gradients. Small shifts in the surrounding coral reef environment caused by oyster culture disturbance were detected by comparing the structure and function of bacterioplankton communities with biogeochemical parameters. The measured chemical dynamics explained 71.15% of the bacterioplankton community variability between habitats. Oyster culture increased the richness and diversity of bacterioplank-ton communities. Species composition similarity was highest between the oyster culture area and the nearest coral reef habitat. The spatial turnover in the bacterioplankton community was characterized by less uniform community assembly patterns. The bacterioplankton function of reefs relatively far from anthropogenic disturbance differed from that of those closer to such disturbances. Our results also show that the variability in structure and function of bacterioplankton communities between oyster culture areas and coral reef areas was mainly driven by salinity and ammonium. Oyster culture can impact bacterioplankton community composition and dynamics around coral reef habitats. The results provide an important context for developing frameworks for managing ecological interactions among oyster cultures and coral reef habitats of concern
{"title":"Impact of oyster culture on coral reef bacterioplankton community composition and function in Daya Bay, China","authors":"F. Tong, P. Zhang, X. Zhang, P. Chen","doi":"10.3354/aei00421","DOIUrl":"https://doi.org/10.3354/aei00421","url":null,"abstract":": Subtropical coral reefs along the coast are facing multiple pressures. Mariculture is one of the main sources of such pressure. Oyster culture has become a worldwide phenomenon in coastal ecosystems. Due to the high filtration efficiency of oysters, their culture has helped to purify some coastal waters. However, high-density oyster culture has also had negative effects on coastal ecosystems, including the loss of natural habitat, changes in hydrology, cross infection of corals with pathogenic bacteria, and changes to the structure and function of bacterioplankton communities. In this study, the effect of oyster culture on coral reefs was characterized based on variability in the structure and function of bacterioplankton communities. Using 16S rRNA gene sequencing, a comprehensive bacterioplankton reference database was constructed for coral reef habitats associated with oyster culture and subjected to different disturbance gradients. Small shifts in the surrounding coral reef environment caused by oyster culture disturbance were detected by comparing the structure and function of bacterioplankton communities with biogeochemical parameters. The measured chemical dynamics explained 71.15% of the bacterioplankton community variability between habitats. Oyster culture increased the richness and diversity of bacterioplank-ton communities. Species composition similarity was highest between the oyster culture area and the nearest coral reef habitat. The spatial turnover in the bacterioplankton community was characterized by less uniform community assembly patterns. The bacterioplankton function of reefs relatively far from anthropogenic disturbance differed from that of those closer to such disturbances. Our results also show that the variability in structure and function of bacterioplankton communities between oyster culture areas and coral reef areas was mainly driven by salinity and ammonium. Oyster culture can impact bacterioplankton community composition and dynamics around coral reef habitats. The results provide an important context for developing frameworks for managing ecological interactions among oyster cultures and coral reef habitats of concern","PeriodicalId":8376,"journal":{"name":"Aquaculture Environment Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69594524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}