Pub Date : 2020-12-10DOI: 10.1103/PhysRevB.105.224508
E. Khalaf, P. Ledwith, A. Vishwanath
When two graphene sheets are twisted relative to each other by a small angle, enhanced correlations lead to superconductivity whose origin remains under debate. Here, we derive some general constraints on superconductivity in twisted bilayer graphene (TBG), independent of its underlying mechanism. Neglecting weak coupling between valleys, the global symmetry group of TBG consists of independent spin rotations in each valley in addition to valley charge rotations, $ {rm SU}(2) times {rm SU}(2) times {rm U}_V(1) $. This symmetry is further enhanced to a full ${rm SU}(4)$ in the idealized chiral limit. In both cases, we show that any charge $2e$ pairing must break the global symmetry. Additionally, if the pairing is unitary the resulting superconductor admits fractional vortices. This leads to the following general statement: Any superconducting condensate in either symmetry class has to satisfy one of three possibilities: (i) the superconducting pairing is non-unitary, (ii) the superconducting condensate has charge $2e$ but admits at least half quantum vortices which carry a flux of $h/4e$, or (iii) the superconducting condensate has charge $2me$, $m>1$, with vortices carrying $h/2me$ flux. The latter possibility can be realized by a symmetric charge $4e$ superconductor ($m=2$). Non-unitary pairing (i) is expected in TBG for superconductors observed in the vicinity of flavor polarized states. On the other hand, in the absence of flavor polarization, e.g. in the vicinity of charge neutrality, one of the two exotic possibilities (ii) and (iii) is expected. We sketch how all three scenarios can be realized in different limits within a strong coupling theory of superconductivity based on skyrmions. Finally we discuss the effect of symmetry lowering anisotropies and experimental implications of these scenarios.
{"title":"Symmetry constraints on superconductivity in twisted bilayer graphene: Fractional vortices, $4e$ condensates or non-unitary pairing.","authors":"E. Khalaf, P. Ledwith, A. Vishwanath","doi":"10.1103/PhysRevB.105.224508","DOIUrl":"https://doi.org/10.1103/PhysRevB.105.224508","url":null,"abstract":"When two graphene sheets are twisted relative to each other by a small angle, enhanced correlations lead to superconductivity whose origin remains under debate. Here, we derive some general constraints on superconductivity in twisted bilayer graphene (TBG), independent of its underlying mechanism. Neglecting weak coupling between valleys, the global symmetry group of TBG consists of independent spin rotations in each valley in addition to valley charge rotations, $ {rm SU}(2) times {rm SU}(2) times {rm U}_V(1) $. This symmetry is further enhanced to a full ${rm SU}(4)$ in the idealized chiral limit. In both cases, we show that any charge $2e$ pairing must break the global symmetry. Additionally, if the pairing is unitary the resulting superconductor admits fractional vortices. This leads to the following general statement: Any superconducting condensate in either symmetry class has to satisfy one of three possibilities: (i) the superconducting pairing is non-unitary, (ii) the superconducting condensate has charge $2e$ but admits at least half quantum vortices which carry a flux of $h/4e$, or (iii) the superconducting condensate has charge $2me$, $m>1$, with vortices carrying $h/2me$ flux. The latter possibility can be realized by a symmetric charge $4e$ superconductor ($m=2$). Non-unitary pairing (i) is expected in TBG for superconductors observed in the vicinity of flavor polarized states. On the other hand, in the absence of flavor polarization, e.g. in the vicinity of charge neutrality, one of the two exotic possibilities (ii) and (iii) is expected. We sketch how all three scenarios can be realized in different limits within a strong coupling theory of superconductivity based on skyrmions. Finally we discuss the effect of symmetry lowering anisotropies and experimental implications of these scenarios.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75457437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-10DOI: 10.1103/PhysRevB.103.174502
Arushi, Deepak Singh, A. Hillier, M. Scheurer, Ravi P. Singh
The Th$_{7}$Fe$_{3}$ family of superconductors provides a rich playground for unconventional superconductivity. La$_7$Ni$_3$ is the latest member of this family, which we here investigate by means of thermodynamic and muon spin rotation and relaxation measurements. Our specific heat data provides evidence for two distinct and approximately isotropic superconducting gaps. The larger gap has a value slightly higher than that of weak-coupling BCS theory, indicating the presence of significant correlations. These observations are confirmed by transverse-field muon-rotation measurements. Furthermore, zero-field measurements reveal small internal fields in the superconducting state, which occur close to the onset of superconductivity and indicate that the superconducting order parameter breaks time-reversal symmetry. We discuss two possible microscopic scenarios -- an unconventional $E_{2}(1,i)$ state and an $s+i,s$ superconductor, which is reached by two consecutive transitions -- and illustrate which interactions will favor these phases. Our results establish La$_{7}$Ni$_{3}$ as the first member of the Th$_{7}$Fe$_{3}$ family displaying both time-reversal-symmetry-breaking and multigap superconductivity.
{"title":"Time-reversal symmetry breaking and multigap superconductivity in the noncentrosymmetric superconductor \u0000La7Ni3","authors":"Arushi, Deepak Singh, A. Hillier, M. Scheurer, Ravi P. Singh","doi":"10.1103/PhysRevB.103.174502","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.174502","url":null,"abstract":"The Th$_{7}$Fe$_{3}$ family of superconductors provides a rich playground for unconventional superconductivity. La$_7$Ni$_3$ is the latest member of this family, which we here investigate by means of thermodynamic and muon spin rotation and relaxation measurements. Our specific heat data provides evidence for two distinct and approximately isotropic superconducting gaps. The larger gap has a value slightly higher than that of weak-coupling BCS theory, indicating the presence of significant correlations. These observations are confirmed by transverse-field muon-rotation measurements. Furthermore, zero-field measurements reveal small internal fields in the superconducting state, which occur close to the onset of superconductivity and indicate that the superconducting order parameter breaks time-reversal symmetry. We discuss two possible microscopic scenarios -- an unconventional $E_{2}(1,i)$ state and an $s+i,s$ superconductor, which is reached by two consecutive transitions -- and illustrate which interactions will favor these phases. Our results establish La$_{7}$Ni$_{3}$ as the first member of the Th$_{7}$Fe$_{3}$ family displaying both time-reversal-symmetry-breaking and multigap superconductivity.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85044811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}