A. Osman, J. Simon, A. Bengtsson, S. Kosen, P. Krantz, D. P. Lozano, M. Scigliuzzo, P. Delsing, J. Bylander, A. Fadavi Roudsari
We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with $T_1$ relaxation times averaging above 50$~mu$s ($Q>$1.5$times$ 10$^6$). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7$%$ on a wafer that contains forty 0.5$times$0.5-cm$^2$ chips, with junction areas ranging between 0.01 and 0.16 $mu$m$^2$. The average on-chip spread in resistance is 2.7$%$, with 20 chips varying between 1.4 and 2$%$. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5$%$. We show that 60-70$%$ of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.
{"title":"Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits","authors":"A. Osman, J. Simon, A. Bengtsson, S. Kosen, P. Krantz, D. P. Lozano, M. Scigliuzzo, P. Delsing, J. Bylander, A. Fadavi Roudsari","doi":"10.1063/5.0037093","DOIUrl":"https://doi.org/10.1063/5.0037093","url":null,"abstract":"We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with $T_1$ relaxation times averaging above 50$~mu$s ($Q>$1.5$times$ 10$^6$). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7$%$ on a wafer that contains forty 0.5$times$0.5-cm$^2$ chips, with junction areas ranging between 0.01 and 0.16 $mu$m$^2$. The average on-chip spread in resistance is 2.7$%$, with 20 chips varying between 1.4 and 2$%$. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5$%$. We show that 60-70$%$ of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73905181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.21203/rs.3.rs-105803/v1
C. Cho, J. Lyu, C. Ng, J. J. He, T. Abdel-Baset, M. Abdel-Hafiez, R. Lortz
We present magnetic torque, specific heat and thermal expansion measurements combined with a piezo rotary positioner of the bulk transition metal dichalcogenide (TMD) superconductor NbS2 in high magnetic fields applied strictly parallel to its layer structure. The upper critical field of superconducting TMDs in the 2D form is known to be dramatically enhanced by a special form of Ising spin orbit coupling. This Ising superconductivity is very robust against the Pauli limit for superconductivity. We find that superconductivity beyond the Pauli limit still exists in bulk single crystals of NbS2. However, the comparison of our upper critical field transition line with numerical simulations rather points to the development of a Fulde-Ferrell-Larkin-Ovchinnikov state above the Pauli limit as a cause. This is also consistent with the observation of a magnetic field driven phase transition in the thermodynamic quantities within the superconducting state near the Pauli limit.
{"title":"Superconductivity beyond Pauli's limit in bulk NbS2: Evidence for the Fulde-Ferrell-Larkin-Ovchinnikov state","authors":"C. Cho, J. Lyu, C. Ng, J. J. He, T. Abdel-Baset, M. Abdel-Hafiez, R. Lortz","doi":"10.21203/rs.3.rs-105803/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-105803/v1","url":null,"abstract":"\u0000 We present magnetic torque, specific heat and thermal expansion measurements combined with a piezo rotary positioner of the bulk transition metal dichalcogenide (TMD) superconductor NbS2 in high magnetic fields applied strictly parallel to its layer structure. The upper critical field of superconducting TMDs in the 2D form is known to be dramatically enhanced by a special form of Ising spin orbit coupling. This Ising superconductivity is very robust against the Pauli limit for superconductivity. We find that superconductivity beyond the Pauli limit still exists in bulk single crystals of NbS2. However, the comparison of our upper critical field transition line with numerical simulations rather points to the development of a Fulde-Ferrell-Larkin-Ovchinnikov state above the Pauli limit as a cause. This is also consistent with the observation of a magnetic field driven phase transition in the thermodynamic quantities within the superconducting state near the Pauli limit.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81486174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-09DOI: 10.1103/PhysRevB.102.180508
M. Žemlička, M. Kopčík, P. Szab'o, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely
Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path $k_F*l$ close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field $B_{c2}$, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At $B_{c2}$ a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above $B_{c2}$.
{"title":"Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field","authors":"M. Žemlička, M. Kopčík, P. Szab'o, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely","doi":"10.1103/PhysRevB.102.180508","DOIUrl":"https://doi.org/10.1103/PhysRevB.102.180508","url":null,"abstract":"Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path $k_F*l$ close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field $B_{c2}$, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At $B_{c2}$ a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving the system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above $B_{c2}$.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83479115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-04DOI: 10.1103/PHYSREVB.103.014511
S. Sundar, S. Dunsiger, S. Gheidi, K. Akella, A. M. Cot'e, H. U. Özdemir, N. R. Lee-Hone, D. Broun, E. Mun, F. Honda, Y. Sato, T. Koizumi, R. Settai, Y. Hirose, I. Bonalde, J. Sonier
We report a $mu$SR investigation of a non-centrosymmetric superconductor (LaNiC$_2$) in single crystal form. Compared to previous $mu$SR studies of non-centrosymmetric superconducting polycrystalline and powder samples, the unambiguous orientation of single crystals enables a simultaneous determination of the absolute value of the magnetic penetration depth and the vortex core size from measurements that probe the magnetic field distribution in the vortex state. The magnetic field dependence of these quantities unambiguously demonstrates the presence of two nodeless superconducting energy gaps. In addition, we detect weak internal magnetic fields in the superconducting phase, confirming earlier $mu$SR evidence for a time-reversal symmetry breaking superconducting state. Our results suggest that Cooper pairing in LaNiC$_2$ is characterized by the same interorbital equal-spin pairing model introduced to describe the pairing state in the centrosymmetric superconductor LaNiGa$_2$.
{"title":"Two-gap time reversal symmetry breaking superconductivity in noncentrosymmetric \u0000LaNiC2","authors":"S. Sundar, S. Dunsiger, S. Gheidi, K. Akella, A. M. Cot'e, H. U. Özdemir, N. R. Lee-Hone, D. Broun, E. Mun, F. Honda, Y. Sato, T. Koizumi, R. Settai, Y. Hirose, I. Bonalde, J. Sonier","doi":"10.1103/PHYSREVB.103.014511","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.014511","url":null,"abstract":"We report a $mu$SR investigation of a non-centrosymmetric superconductor (LaNiC$_2$) in single crystal form. Compared to previous $mu$SR studies of non-centrosymmetric superconducting polycrystalline and powder samples, the unambiguous orientation of single crystals enables a simultaneous determination of the absolute value of the magnetic penetration depth and the vortex core size from measurements that probe the magnetic field distribution in the vortex state. The magnetic field dependence of these quantities unambiguously demonstrates the presence of two nodeless superconducting energy gaps. In addition, we detect weak internal magnetic fields in the superconducting phase, confirming earlier $mu$SR evidence for a time-reversal symmetry breaking superconducting state. Our results suggest that Cooper pairing in LaNiC$_2$ is characterized by the same interorbital equal-spin pairing model introduced to describe the pairing state in the centrosymmetric superconductor LaNiGa$_2$.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75970450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}