Ascorbic acid (AsA) is mainly known as an antioxidant. However, if the peculiar features of the AsA system in the different stages of seed development and germinationare taken into consideration, it can be concluded that the function of AsA goes far beyond its antioxidant properties. The possible involvement of AsA in the regulation of hormone synthesis and in the epigenetic control of gene expression opens new directions to further research. In recent years, seed priming with AsA has been successfully used as a strategy to improve germination and plant productivity. Beneficial effects of seed AsA priming could be observed in several crop species, but the underlying molecular mechanism(s) are still unclear. The available evidence suggests that AsA priming induces a wide range of coordinated responses allowing primed seeds to overcome adverse environmental conditions.
{"title":"Ascorbic Acid in Seeds, Priming and Beyond","authors":"Mattia Terzaghi, Mario C. De Tullio","doi":"10.3390/seeds2040032","DOIUrl":"https://doi.org/10.3390/seeds2040032","url":null,"abstract":"Ascorbic acid (AsA) is mainly known as an antioxidant. However, if the peculiar features of the AsA system in the different stages of seed development and germinationare taken into consideration, it can be concluded that the function of AsA goes far beyond its antioxidant properties. The possible involvement of AsA in the regulation of hormone synthesis and in the epigenetic control of gene expression opens new directions to further research. In recent years, seed priming with AsA has been successfully used as a strategy to improve germination and plant productivity. Beneficial effects of seed AsA priming could be observed in several crop species, but the underlying molecular mechanism(s) are still unclear. The available evidence suggests that AsA priming induces a wide range of coordinated responses allowing primed seeds to overcome adverse environmental conditions.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"55 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135221357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abiotic stresses, sometimes due to dramatic environmental changes, such as sudden and heavy rainfalls, or drought, increasing temperatures or soil salinization, deeply affect the growth and yield of plants. Progress in terms of improving the abiotic stress tolerance of plants can be obtained via classical breeding and genetic engineering, which can be slow, or by practice, such as acclimation and seed priming. The latter can improve seedling performance, and it can be considered a short-term approach. Seed priming with different agents and biopriming may offer the possibility to improve stress tolerance, even though its beneficial effect depends on crop species, dose, and time of application. The aim of this review is to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus is on those abiotic stresses, e.g., drought and soil salinity, that are most often associated with climate change and poor agricultural practices and those crops that are most important for human nutrition. Comments are provided on the challenges and pros and cons of this methodology.
{"title":"The Utilization of Seed Priming as a Tool to Overcome Salt and Drought Stresses: Is Still a Long Way to Go?","authors":"Cinzia Forni, Ilaria Borromeo","doi":"10.3390/seeds2040031","DOIUrl":"https://doi.org/10.3390/seeds2040031","url":null,"abstract":"Abiotic stresses, sometimes due to dramatic environmental changes, such as sudden and heavy rainfalls, or drought, increasing temperatures or soil salinization, deeply affect the growth and yield of plants. Progress in terms of improving the abiotic stress tolerance of plants can be obtained via classical breeding and genetic engineering, which can be slow, or by practice, such as acclimation and seed priming. The latter can improve seedling performance, and it can be considered a short-term approach. Seed priming with different agents and biopriming may offer the possibility to improve stress tolerance, even though its beneficial effect depends on crop species, dose, and time of application. The aim of this review is to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus is on those abiotic stresses, e.g., drought and soil salinity, that are most often associated with climate change and poor agricultural practices and those crops that are most important for human nutrition. Comments are provided on the challenges and pros and cons of this methodology.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"8 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pre-sowing treatment of seeds with an α static magnetic field has been reported in the literature as a means of enhancing plant development. In this work, we have designed, characterized, and constructed a setup for exposing small vegetable seeds to a static magnetic field. In a series of experiments, we have treated the seeds of vegetables that are important for the Mediterranean diet, i.e., tomato, lettuce, and salad rocket. The results show that tomato seedlings significantly benefit from a pre-sowing treatment with a magnetic flux density of 45 mT, for both an exposure time of 60 and 90 min compared to control, while the time of treatment that leads to improved growth is 90 min. In order to improve the growth of salad rocket seedlings the magnetic field had to be 150 mT, whereas the results for lettuce seeds were a bit inconsistent, i.e., it is not clear whether a lower (45 mT) or a higher (300 mT) magnetic flux density should be applied.
{"title":"Pre-Sowing Static Magnetic Field Treatment of Vegetable Seeds and Its Effect on Germination and Young Seedlings Development","authors":"Athanasios Koukounaras, Achilles Boursianis, Stefanos Kostas, Argyris Theopoulos, Filippos Bantis, Theodoros Samaras","doi":"10.3390/seeds2040030","DOIUrl":"https://doi.org/10.3390/seeds2040030","url":null,"abstract":"The pre-sowing treatment of seeds with an α static magnetic field has been reported in the literature as a means of enhancing plant development. In this work, we have designed, characterized, and constructed a setup for exposing small vegetable seeds to a static magnetic field. In a series of experiments, we have treated the seeds of vegetables that are important for the Mediterranean diet, i.e., tomato, lettuce, and salad rocket. The results show that tomato seedlings significantly benefit from a pre-sowing treatment with a magnetic flux density of 45 mT, for both an exposure time of 60 and 90 min compared to control, while the time of treatment that leads to improved growth is 90 min. In order to improve the growth of salad rocket seedlings the magnetic field had to be 150 mT, whereas the results for lettuce seeds were a bit inconsistent, i.e., it is not clear whether a lower (45 mT) or a higher (300 mT) magnetic flux density should be applied.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Bento da Silva, Tatiana Arantes Afonso Vaz, Marcio Luis Acencio, Luiz Augusto Bovolenta, Henk W. M. Hilhorst, Edvaldo A. Amaral da Silva
Solanum paniculatum L. belongs to the Solanaceae family and has the ability to grow and develop under unfavorable environmental conditions such as drought and salt stress, acid soils and soils poor in nutrients. The present work aimed to analyze S. paniculatum seed transcriptome associated with induced tolerance to drought stress by osmopriming. Seeds subjected to osmopriming (−1.0 MPa) displayed a higher germination and normal seedling percentage under drought stress when compared with unprimed seeds. RNA-seq transcriptome profiles of osmoprimed and unprimed seeds were determined and the potential proteins involved in the drought tolerance of S. paniculatum were identified. From the 34,640 assembled transcripts for both osmoprimed and unprimed seeds, only 235 were differentially expressed and, among these, 23 (10%) transcripts were predicted to code for proteins potentially involved in response to stress, response to abiotic stimulus and response to chemical. The possible mechanisms by which these stress-associated genes may confer tolerance to osmoprimed Solanum paniculatum seeds to germinate under water deficit was discussed and may help to find markers for the selection of new materials belonging to the Solanaceae family that are more tolerant to stress during and following germination.
{"title":"Can Osmopriming Induce Cross-Tolerance for Abiotic Stresses in Solanum paniculatum L. Seeds? A Transcriptome Analysis Point of View","authors":"Pedro Bento da Silva, Tatiana Arantes Afonso Vaz, Marcio Luis Acencio, Luiz Augusto Bovolenta, Henk W. M. Hilhorst, Edvaldo A. Amaral da Silva","doi":"10.3390/seeds2040029","DOIUrl":"https://doi.org/10.3390/seeds2040029","url":null,"abstract":"Solanum paniculatum L. belongs to the Solanaceae family and has the ability to grow and develop under unfavorable environmental conditions such as drought and salt stress, acid soils and soils poor in nutrients. The present work aimed to analyze S. paniculatum seed transcriptome associated with induced tolerance to drought stress by osmopriming. Seeds subjected to osmopriming (−1.0 MPa) displayed a higher germination and normal seedling percentage under drought stress when compared with unprimed seeds. RNA-seq transcriptome profiles of osmoprimed and unprimed seeds were determined and the potential proteins involved in the drought tolerance of S. paniculatum were identified. From the 34,640 assembled transcripts for both osmoprimed and unprimed seeds, only 235 were differentially expressed and, among these, 23 (10%) transcripts were predicted to code for proteins potentially involved in response to stress, response to abiotic stimulus and response to chemical. The possible mechanisms by which these stress-associated genes may confer tolerance to osmoprimed Solanum paniculatum seeds to germinate under water deficit was discussed and may help to find markers for the selection of new materials belonging to the Solanaceae family that are more tolerant to stress during and following germination.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Kai, Alejandra Alfaro Pinto, A. Clavijo Mccormick, J. Nadarajan, Xiong Zhao He, Marion MacKay, Craig McGill
Ex situ conservation involves the maintenance and reproduction of species in areas outside their natural habitats. Seed banking is a well-established ex situ approach used for plant conservation. Seed banking consists of collecting, drying, and storing seeds to preserve genetic diversity. The main limitation of this technique is that the seed must be desiccation tolerant. Seed storage behaviour can vary among species, and for some species, drying without loss of viability is not possible, meaning storage under conventional seed banking conditions (sub-zero temperatures and low relative humidity) is not possible. Understanding seed storage behaviour is an essential prerequisite for establishing whether conventional seed banking is an option for seed conservation. This study investigated the desiccation tolerance and sensitivity of mature seeds of two native New Zealand species of Pittosporum (P. eugenioides and P. crassifolium) from two geographic locations (Palmerston North and Wellington), with the aim of understanding their seed storage behaviour and thereby improving conservation outcomes. The variables measured were seed moisture content, viability, germination, and desiccation responses. We developed sorption isotherm for both species to support the future development of storage protocols. Our results show that both P. eugenioides and P. crassifolium display non-orthodox behaviour, i.e., are desiccation sensitive and cannot be stored under conventional seed banking conditions, but also suggest that seed desiccation responses vary with the geographical origin of the seeds. This study highlights the importance of exploring seed storage behaviour using different populations to optimize ex situ conservation strategies aimed at preserving the genetic diversity of New Zealand’s threatened and endangered species.
{"title":"Seed Desiccation Sensitivity Varies with Geographic Distribution in Two New Zealand Native Pittosporum Species","authors":"Yu Kai, Alejandra Alfaro Pinto, A. Clavijo Mccormick, J. Nadarajan, Xiong Zhao He, Marion MacKay, Craig McGill","doi":"10.3390/seeds2030028","DOIUrl":"https://doi.org/10.3390/seeds2030028","url":null,"abstract":"Ex situ conservation involves the maintenance and reproduction of species in areas outside their natural habitats. Seed banking is a well-established ex situ approach used for plant conservation. Seed banking consists of collecting, drying, and storing seeds to preserve genetic diversity. The main limitation of this technique is that the seed must be desiccation tolerant. Seed storage behaviour can vary among species, and for some species, drying without loss of viability is not possible, meaning storage under conventional seed banking conditions (sub-zero temperatures and low relative humidity) is not possible. Understanding seed storage behaviour is an essential prerequisite for establishing whether conventional seed banking is an option for seed conservation. This study investigated the desiccation tolerance and sensitivity of mature seeds of two native New Zealand species of Pittosporum (P. eugenioides and P. crassifolium) from two geographic locations (Palmerston North and Wellington), with the aim of understanding their seed storage behaviour and thereby improving conservation outcomes. The variables measured were seed moisture content, viability, germination, and desiccation responses. We developed sorption isotherm for both species to support the future development of storage protocols. Our results show that both P. eugenioides and P. crassifolium display non-orthodox behaviour, i.e., are desiccation sensitive and cannot be stored under conventional seed banking conditions, but also suggest that seed desiccation responses vary with the geographical origin of the seeds. This study highlights the importance of exploring seed storage behaviour using different populations to optimize ex situ conservation strategies aimed at preserving the genetic diversity of New Zealand’s threatened and endangered species.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76103084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Pagano, Enrico Doria, A. Mondoni, Fiona Jane White, A. Balestrazzi, A. Macovei
The adaptability of seed metabolism to different environmental conditions represents a crucial aspect to understand the effects of climate change on plant populations in wild environments. Among the indicators of stress and repair in seeds, tocopherols and malondialdehyde have been related to membrane stability in seed deterioration. Alpine plants constitute an interesting system to understand stress response dynamics because of the relevant climate variations challenging seed viability in alpine environments. This study considered five accessions of Viscaria alpina seeds collected over five years, highlighting significant correlations between environmental parameters such as precipitations and temperature, and several indicators of the oxidative stress response. These provide new insights on how changes in indicators of the seed stress response can reflect annual variations in temperature and precipitations affecting their parental plants, with possible implications on the current understanding of seed persistence in alpine environments threatened by climate change and on the effects of seed storage.
{"title":"Oxidant and Antioxidant Profiling in Viscaria alpina Seed Populations Following the Temporal Dynamics of an Alpine Climate","authors":"Andrea Pagano, Enrico Doria, A. Mondoni, Fiona Jane White, A. Balestrazzi, A. Macovei","doi":"10.3390/seeds2030027","DOIUrl":"https://doi.org/10.3390/seeds2030027","url":null,"abstract":"The adaptability of seed metabolism to different environmental conditions represents a crucial aspect to understand the effects of climate change on plant populations in wild environments. Among the indicators of stress and repair in seeds, tocopherols and malondialdehyde have been related to membrane stability in seed deterioration. Alpine plants constitute an interesting system to understand stress response dynamics because of the relevant climate variations challenging seed viability in alpine environments. This study considered five accessions of Viscaria alpina seeds collected over five years, highlighting significant correlations between environmental parameters such as precipitations and temperature, and several indicators of the oxidative stress response. These provide new insights on how changes in indicators of the seed stress response can reflect annual variations in temperature and precipitations affecting their parental plants, with possible implications on the current understanding of seed persistence in alpine environments threatened by climate change and on the effects of seed storage.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74589292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial intelligence is more present than ever in virtually all sectors of society. This is in large part due to the development of increasingly powerful deep learning models capable of tackling classification problems that were previously untreatable. As a result, there has been a proliferation of scientific articles applying deep learning to a plethora of different problems. The interest in deep learning in agriculture has been continuously growing since the inception of this type of technique in the early 2010s. Soybeans, being one of the most important agricultural commodities, has frequently been the target of efforts in this regard. In this context, it can be challenging to keep track of a constantly evolving state of the art. This review characterizes the current state of the art of deep learning applied to soybean crops, detailing the main advancements achieved so far and, more importantly, providing an in-depth analysis of the main challenges and research gaps that still remain. The ultimate goal is to facilitate the leap from academic research to technologies that actually work under the difficult conditions found in the the field.
{"title":"Deep Learning for Soybean Monitoring and Management","authors":"J. Barbedo","doi":"10.3390/seeds2030026","DOIUrl":"https://doi.org/10.3390/seeds2030026","url":null,"abstract":"Artificial intelligence is more present than ever in virtually all sectors of society. This is in large part due to the development of increasingly powerful deep learning models capable of tackling classification problems that were previously untreatable. As a result, there has been a proliferation of scientific articles applying deep learning to a plethora of different problems. The interest in deep learning in agriculture has been continuously growing since the inception of this type of technique in the early 2010s. Soybeans, being one of the most important agricultural commodities, has frequently been the target of efforts in this regard. In this context, it can be challenging to keep track of a constantly evolving state of the art. This review characterizes the current state of the art of deep learning applied to soybean crops, detailing the main advancements achieved so far and, more importantly, providing an in-depth analysis of the main challenges and research gaps that still remain. The ultimate goal is to facilitate the leap from academic research to technologies that actually work under the difficult conditions found in the the field.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83235738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandra Alfaro Pinto, C. McGill, J. Nadarajan, Fredy L Archila Morales, A. Clavijo Mccormick
Neotropical orchids are vulnerable to extinction due to overharvesting, habitat destruction and climate change. However, a basic understanding of orchid seed biology to support conservation efforts is still lacking for most species. Seed morphology is linked to plant adaptation and evolution, influencing seed dispersal, dormancy, longevity, and germination, which are valuable traits for conservation. In this study, we characterized and compared the morphological traits of seed capsules (size, shape, and colour) and seeds (seed and embryo shape and size and internal airspace volume) for three epiphytic Neotropical orchid species of the genus Lycaste native to Guatemala: L. cochleata, L. lasioglossa, and L. virginalis. The three species show qualitative similarities in seed capsule colour and appearance and in seed morphology (i.e., scobiform oval-shaped seeds and prolate-spheroid embryos). All species have small-sized seeds (length of L. cochleata: 210 µm, L. lasioglossa: 230 µm, and L. virginalis: 260 µm), with proportionally large embryos (length of L. cochleata: 140 µm, L. lasioglossa: 120 µm, and L. virginalis: 150 µm) and an internal air-space volume that occupies less than half of the seed (L. cochleata: 17%, L. lasioglossa: 42%, and L. virginalis: 30%). This finding is consistent with previous reports for other epiphytic orchid species, which typically have lower air volumes than terrestrial orchids. These differences are likely a result of evolutionary changes associated with different habits and may influence seed dispersal. We also found some significant differences in seed morphology between the studied species, but their taxonomic, biological, and ecological relevance remain to be elucidated. More comparative studies, including on other Lycaste species with different habits, are needed to explore relationships between seed morphology, taxonomy, biology, and ecology in this genus to support its conservation.
由于过度采伐、栖息地破坏和气候变化,新热带兰花很容易灭绝。然而,对兰花种子生物学的基本了解仍不足以支持大多数物种的保护工作。种子形态与植物的适应和进化有关,影响种子的传播、休眠、寿命和萌发,是植物保护的重要特征。本研究对原产于危地马拉的三种Lycaste属新热带附生兰(L. cochleata, L. lasioglossa和L. virginalis)的种皮(大小、形状和颜色)和种子(种子和胚胎形状、大小和内部空间体积)的形态特征进行了表征和比较。这三个物种在种皮颜色和外观以及种子形态(即,十字形卵圆形种子和长球形胚)上具有质的相似性。所有种的种子都很小(耳蜗长210µm, lasioglosa长230µm, virginalis长260µm),胚按比例大(耳蜗长140µm, lasioglosa长120µm, virginalis长150µm),内部空气空间体积占种子的不到一半(耳蜗长17%,lasioglosa长42%,virginalis长30%)。这一发现与之前对其他附生兰花物种的报道一致,后者通常比陆生兰花的空气量更低。这些差异可能是与不同习性相关的进化变化的结果,并可能影响种子的传播。我们还发现不同种类的种子形态存在显著差异,但它们在分类、生物学和生态学上的相关性仍有待阐明。需要更多的比较研究,包括与其他不同习性的Lycaste种的比较研究,以探索该属种子形态、分类、生物学和生态学之间的关系,以支持其保护。
{"title":"Seed Morphology of Three Neotropical Orchid Species of the Lycaste Genus","authors":"Alejandra Alfaro Pinto, C. McGill, J. Nadarajan, Fredy L Archila Morales, A. Clavijo Mccormick","doi":"10.3390/seeds2030025","DOIUrl":"https://doi.org/10.3390/seeds2030025","url":null,"abstract":"Neotropical orchids are vulnerable to extinction due to overharvesting, habitat destruction and climate change. However, a basic understanding of orchid seed biology to support conservation efforts is still lacking for most species. Seed morphology is linked to plant adaptation and evolution, influencing seed dispersal, dormancy, longevity, and germination, which are valuable traits for conservation. In this study, we characterized and compared the morphological traits of seed capsules (size, shape, and colour) and seeds (seed and embryo shape and size and internal airspace volume) for three epiphytic Neotropical orchid species of the genus Lycaste native to Guatemala: L. cochleata, L. lasioglossa, and L. virginalis. The three species show qualitative similarities in seed capsule colour and appearance and in seed morphology (i.e., scobiform oval-shaped seeds and prolate-spheroid embryos). All species have small-sized seeds (length of L. cochleata: 210 µm, L. lasioglossa: 230 µm, and L. virginalis: 260 µm), with proportionally large embryos (length of L. cochleata: 140 µm, L. lasioglossa: 120 µm, and L. virginalis: 150 µm) and an internal air-space volume that occupies less than half of the seed (L. cochleata: 17%, L. lasioglossa: 42%, and L. virginalis: 30%). This finding is consistent with previous reports for other epiphytic orchid species, which typically have lower air volumes than terrestrial orchids. These differences are likely a result of evolutionary changes associated with different habits and may influence seed dispersal. We also found some significant differences in seed morphology between the studied species, but their taxonomic, biological, and ecological relevance remain to be elucidated. More comparative studies, including on other Lycaste species with different habits, are needed to explore relationships between seed morphology, taxonomy, biology, and ecology in this genus to support its conservation.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"294 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77093915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nguyen Quoc Hung, Le Thi My Ha, Nguyen Quoc Hieu, Pham Thi Thanh Tu, Vu Phong Lam
The aim of this study was to find the optimal gibberellic acid (GA3) and copper sulfate (CuSO4·5H2O) concentrations to reduce the number of seeds and increase the quality of Bac Son mandarin fruit. In experiment 1, the control plants (without GA3) were sprayed with water, and the remaining plants were sprayed with different concentrations of GA3 (50, 75, 100, or 125 ppm). In experiment 2, the control plants (without CuSO4·5H2O) were sprayed with water, and the remaining plants were sprayed with different concentrations of CuSO4·5H2O (50, 75, 100, or 125 ppm). Spraying GA3 at 100 ppm in 2018 produced the lowest seed number and the highest theoretical yield. In 2019, spraying GA3 led to a lower seed number and a higher actual yield compared with the control. Similarly, spraying CuSO4·5H2O significantly reduced the number of seeds/fruit and significantly increased the theoretical yield in 2018. In 2019, the total number of seeds/fruit was significantly lower in the CuSO4·5H2O treatments than in the control. Importantly, both GA3 and CuSO4·5H2O treatments did not adversely affect the fruit’s biochemical parameters or yield. These findings demonstrate that spraying GA3 or CuSO4·5H2O at a certain concentration can effectively reduce the number of seeds per fruit in Bac Son mandarin without compromising fruit quality or yield.
{"title":"Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit","authors":"Nguyen Quoc Hung, Le Thi My Ha, Nguyen Quoc Hieu, Pham Thi Thanh Tu, Vu Phong Lam","doi":"10.3390/seeds2030024","DOIUrl":"https://doi.org/10.3390/seeds2030024","url":null,"abstract":"The aim of this study was to find the optimal gibberellic acid (GA3) and copper sulfate (CuSO4·5H2O) concentrations to reduce the number of seeds and increase the quality of Bac Son mandarin fruit. In experiment 1, the control plants (without GA3) were sprayed with water, and the remaining plants were sprayed with different concentrations of GA3 (50, 75, 100, or 125 ppm). In experiment 2, the control plants (without CuSO4·5H2O) were sprayed with water, and the remaining plants were sprayed with different concentrations of CuSO4·5H2O (50, 75, 100, or 125 ppm). Spraying GA3 at 100 ppm in 2018 produced the lowest seed number and the highest theoretical yield. In 2019, spraying GA3 led to a lower seed number and a higher actual yield compared with the control. Similarly, spraying CuSO4·5H2O significantly reduced the number of seeds/fruit and significantly increased the theoretical yield in 2018. In 2019, the total number of seeds/fruit was significantly lower in the CuSO4·5H2O treatments than in the control. Importantly, both GA3 and CuSO4·5H2O treatments did not adversely affect the fruit’s biochemical parameters or yield. These findings demonstrate that spraying GA3 or CuSO4·5H2O at a certain concentration can effectively reduce the number of seeds per fruit in Bac Son mandarin without compromising fruit quality or yield.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73247481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical dormancy (PY) due to a water-impermeable seed/fruit coat is one of the characteristic features of many species of Fabaceae; however, the timing and context of the evolution of this trait are poorly understood. In this investigation, fossil and molecular data are used to constrain the timing of the evolution of PY. The phylogenetic reconstruction programs GB-to-TNT and BEAUTi/BEAST are used to create chloroplast gene-based (rbcL and matK) phylogenies of taxa with well-represented fossil records. PY and non-dormancy are mapped to the terminals of the phylogeny, and ancestral states are reconstructed using parsimony. The initial evolution of PY in Fabaceae is reconstructed to have occurred sometime in the interval between divergence from Polygalaceae (late Campanian) to the diversification of crown-group Fabaceae (late Paleocene) when Fabaceae is known to have undergone multiple whole genome duplication (WGD) events across the Cretaceous/Paleogene (K/Pg) boundary. As in Nelumbo, another taxon with PY, Fabaceae may have developed PY in association with climatic change and WGD across the K/Pg boundary. The evolution of PY in association with WGD at the K/Pg boundary is an intriguing hypothesis that requires further investigation.
{"title":"Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae","authors":"G. Jaganathan, K. Berry","doi":"10.3390/seeds2030023","DOIUrl":"https://doi.org/10.3390/seeds2030023","url":null,"abstract":"Physical dormancy (PY) due to a water-impermeable seed/fruit coat is one of the characteristic features of many species of Fabaceae; however, the timing and context of the evolution of this trait are poorly understood. In this investigation, fossil and molecular data are used to constrain the timing of the evolution of PY. The phylogenetic reconstruction programs GB-to-TNT and BEAUTi/BEAST are used to create chloroplast gene-based (rbcL and matK) phylogenies of taxa with well-represented fossil records. PY and non-dormancy are mapped to the terminals of the phylogeny, and ancestral states are reconstructed using parsimony. The initial evolution of PY in Fabaceae is reconstructed to have occurred sometime in the interval between divergence from Polygalaceae (late Campanian) to the diversification of crown-group Fabaceae (late Paleocene) when Fabaceae is known to have undergone multiple whole genome duplication (WGD) events across the Cretaceous/Paleogene (K/Pg) boundary. As in Nelumbo, another taxon with PY, Fabaceae may have developed PY in association with climatic change and WGD across the K/Pg boundary. The evolution of PY in association with WGD at the K/Pg boundary is an intriguing hypothesis that requires further investigation.","PeriodicalId":85504,"journal":{"name":"Seeds (New York, N.Y.)","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87622784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}