首页 > 最新文献

Astrobiology最新文献

英文 中文
Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life. 岩石行星大气的自氧化作用对生命起源的影响
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-01 DOI: 10.1089/ast.2023.0104
Anders Johansen, Eloi Camprubi, Elishevah van Kooten, H Jens Hoeijmakers

Rocky planets may acquire a primordial atmosphere by the outgassing of volatiles from their magma ocean. The distribution of O between H2O, CO, and CO2 in chemical equilibrium subsequently changes significantly with decreasing temperature. We consider here two chemical models: one where CH4 and NH3 are assumed to be irrevocably destroyed by photolysis and second where these molecules persist. In the first case, we show that CO cannot coexist with H2O, since CO oxidizes at low temperatures to form CO2 and H2. In both cases, H escapes from the thermosphere within a few 10 million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process, whereby rocky planet atmospheres become dominated by CO2 and H2O regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Oxidizing atmospheres are inefficient at producing HCN by lightning. Alternatively, we have demonstrated that lightning-produced NO, which dissolves as nitrate in oceans, and interplanetary dust particles may be the main sources of fixed nitrogen in emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO2, rather than from HCN and CO.

岩石行星可能是通过岩浆海洋中挥发物的排出而获得原始大气的。在化学平衡状态下,O 在 H2O、CO 和 CO2 之间的分布会随着温度的降低而发生显著变化。我们在此考虑了两种化学模型:一种是假定 CH4 和 NH3 被光解不可逆转地摧毁,另一种是假定这些分子持续存在。在第一种情况下,我们发现 CO 无法与 H2O 共存,因为 CO 在低温下会氧化生成 CO2 和 H2。在这两种情况下,H 都会在几千万年内通过吸收恒星的 XUV 辐射从热层中逃逸出来。这种逸出推动了大气中的自氧化过程,据此,岩质行星大气变得以 CO2 和 H2O 为主,而不管它们在排气时的初始氧化状态如何。HCN 被认为是前生物化合物和 RNA 的潜在前体。氧化大气通过闪电产生 HCN 的效率很低。另外,我们已经证明,闪电产生的 NO(在海洋中溶解为硝酸盐)和行星际尘埃粒子可能是新兴生物圈中固定氮的主要来源。我们的研究结果凸显了生命起源情景的必要性,在这种情景中,第一次新陈代谢从 CO2 而不是 HCN 和 CO 中固定其 C。
{"title":"Self-Oxidation of the Atmospheres of Rocky Planets with Implications for the Origin of Life.","authors":"Anders Johansen, Eloi Camprubi, Elishevah van Kooten, H Jens Hoeijmakers","doi":"10.1089/ast.2023.0104","DOIUrl":"https://doi.org/10.1089/ast.2023.0104","url":null,"abstract":"<p><p>Rocky planets may acquire a primordial atmosphere by the outgassing of volatiles from their magma ocean. The distribution of O between H<sub>2</sub>O, CO, and CO<sub>2</sub> in chemical equilibrium subsequently changes significantly with decreasing temperature. We consider here two chemical models: one where CH<sub>4</sub> and NH<sub>3</sub> are assumed to be irrevocably destroyed by photolysis and second where these molecules persist. In the first case, we show that CO cannot coexist with H<sub>2</sub>O, since CO oxidizes at low temperatures to form CO<sub>2</sub> and H<sub>2</sub>. In both cases, H escapes from the thermosphere within a few 10 million years by absorption of stellar XUV radiation. This escape drives an atmospheric self-oxidation process, whereby rocky planet atmospheres become dominated by CO<sub>2</sub> and H<sub>2</sub>O regardless of their initial oxidation state at outgassing. HCN is considered a potential precursor of prebiotic compounds and RNA. Oxidizing atmospheres are inefficient at producing HCN by lightning. Alternatively, we have demonstrated that lightning-produced NO, which dissolves as nitrate in oceans, and interplanetary dust particles may be the main sources of fixed nitrogen in emerging biospheres. Our results highlight the need for origin-of-life scenarios where the first metabolism fixes its C from CO<sub>2</sub>, rather than from HCN and CO.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 9","pages":"856-880"},"PeriodicalIF":3.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil. 从巴西佩鲁斯富铀矿物中分离出的微生物的抗紫外线能力
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 Epub Date: 2024-06-10 DOI: 10.1089/ast.2022.0125
Bárbara Poletto, Gabriel Gonçalves Silva, Ana Carolina Souza Ramos de Carvalho, Roberta Almeida Vincenzi, Eiji Yamassaki de Almeida, Douglas Galante, Amanda Gonçalves Bendia, Fabio Rodrigues

The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, Nocardioides sp. O4R and Nocardioides sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism Deinococcus radiodurans. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.

位于巴西圣保罗市的佩鲁斯地区因其风化花岗岩-伟晶岩岩块而闻名,这些岩块中蕴藏着大量的含铀矿物,导致电离辐射水平比本底水平高出 20 倍。在这项研究中,利用从该地区无菌采集的矿物样本分离出 15 种微生物,并对这些微生物进行了紫外线-C 和紫外线-B 辐射预筛选测试。筛选出对紫外线(UV)辐射具有最强抵抗力的微生物,用于构建抗 UV-C、宽带 UV-B 和太阳模拟测试的存活曲线。随后,选择了在紫外线辐射下生存能力较强的四种菌株进行 16S rRNA 基因测序。其中,Nocardioides sp. O4R 和 Nocardioides sp. MA2R 在紫外线辐射抗性评估中表现出最有希望的结果,其表现可与成熟的抗辐射模式生物 Deinococcus radiodurans 相媲美。这些发现强调了天然高辐射环境作为研究抗紫外线微生物的宝贵资源的潜力。
{"title":"Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil.","authors":"Bárbara Poletto, Gabriel Gonçalves Silva, Ana Carolina Souza Ramos de Carvalho, Roberta Almeida Vincenzi, Eiji Yamassaki de Almeida, Douglas Galante, Amanda Gonçalves Bendia, Fabio Rodrigues","doi":"10.1089/ast.2022.0125","DOIUrl":"10.1089/ast.2022.0125","url":null,"abstract":"<p><p>The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, <i>Nocardioides</i> sp. O4R and <i>Nocardioides</i> sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism <i>Deinococcus radiodurans</i>. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"783-794"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Polyextremophilic Bacteria in Al Wahbah Crater, Saudi Arabia: A Terrestrial Model for Life on Saturn's Moon Enceladus. 调查沙特阿拉伯 Al Wahbah 环形山的多嗜极端细菌:土星卫星恩克拉多斯上的地球生命模型。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1089/ast.2024.0017
Alef Dos Santos, Júnia Schultz, Marilia Almeida Trapp, Fluvio Modolon, Andrii Romanenko, Arun Kumar Jaiswal, Lucas Gomes, Edson Rodrigues-Filho, Alexandre Soares Rosado

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.

对嗜极微生物的研究激发了人们了解地外微生物生命的兴趣。这类生物是研究土星冰卫星(如土卫二)上生命形式的基础,土卫二的特点是可能适宜居住的盐碱地。我们的研究重点是沙特阿拉伯 Al Wahbah 环形山的盐碱土壤,在那里我们发现了一些微生物,它们可以作为生物模型来了解土卫二上的潜在生命。这项研究包括分离 48 个细菌菌株,对两个热卤嗜碱性菌株的基因组进行测序,并确定它们在天体生物学应用方面的特征。通过深入了解两株新型卤化卤烷基杆菌的基因组成和功能能力,我们对它们的生存策略以及是否存在与适应环境胁迫有关的编码基因和途径有了宝贵的认识。我们还利用分子网络方法进行质谱分析,突出了磷脂和非蛋白氨基酸等各类分子的潜在生物特征。这些都是了解生命在极端条件下适应性的基本特征,可以作为即将进行的探索土卫二轨道任务的生物特征目标。此外,我们的研究加强了研究地球上新的极端环境的必要性,这些环境可能有助于天体生物学领域的研究。
{"title":"Investigating Polyextremophilic Bacteria in Al Wahbah Crater, Saudi Arabia: A Terrestrial Model for Life on Saturn's Moon Enceladus.","authors":"Alef Dos Santos, Júnia Schultz, Marilia Almeida Trapp, Fluvio Modolon, Andrii Romanenko, Arun Kumar Jaiswal, Lucas Gomes, Edson Rodrigues-Filho, Alexandre Soares Rosado","doi":"10.1089/ast.2024.0017","DOIUrl":"https://doi.org/10.1089/ast.2024.0017","url":null,"abstract":"<p><p>The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of <i>Halalkalibacterium halodurans</i> provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"824-838"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. 生物特征分子在蒸发盐水中累积并持久存在:对行星探索的影响
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1089/ast.2023.0122
Chad Pozarycki, Kenneth M Seaton, Emily C Vincent, Carlie Novak Sanders, Nickie Nuñez, Mariah Castillo, Ellery Ingall, Benjamin Klempay, Alexandra Pontefract, Luke A Fisher, Emily R Paris, Steffen Buessecker, Nikolas B Alansson, Christopher E Carr, Peter T Doran, Jeff S Bowman, Britney E Schmidt, Amanda M Stockton

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.

太阳系中存在大量潜在宜居的超盐环境,这迫使我们了解高盐基质和盐水动力学对生物特征探测工作的影响。我们对南湾盐厂(SBSW)盐水中的有机化合物进行了鉴定和定量,海水的蒸发浓缩使我们能够探索以氯化钠和氯化镁为主的盐水对潜在生物特征分子检测的影响。在 SBSW 中,有机生物特征的丰度和分布可能受到蒸发富集、渗透溶质积累和保存效应的影响。生物发光测定显示,富含 NaCl、水活度(aw)低的样本(如过去实验室研究中所述的 aw)中三磷酸腺苷(ATP)浓度较高。我们使用微芯片毛细管电泳法和高分辨率质谱法(µCE-HRMS)测定了水溶性小有机分子的存量。我们采用最新开发的定量方法,利用 CE 分离和激光诱导荧光(LIF)检测超盐度盐水中的氨基酸,分析了蛋白质氨基酸的相对分布。溶解游离氨基酸的盐度变化趋势与根据元基因组数据预测的微生物群落蛋白质组确定的氨基酸残留丰度一致。这凸显了在不断变化的地球化学条件下,"组学 "阶梯上下的实际联系。在浓盐水中检测到水溶性有机化合物,特别是高丰度(>7 mM)的蛋白质氨基酸,表明潜在的有机生物标志物在高盐度地点积聚,并提示了长期保存的可能性。利用适合航天器的多种分析工具检测到高丰度的此类分子表明,在超盐水环境(如火星蒸发物和海洋世界木卫二的表面或地下盐水)中检测到生命是可信的,并认为此类环境应成为未来探索的重点。关键字盐类-分析化学-氨基酸-生物特征-毛细管电泳-保存。天体生物学 24,795-812。
{"title":"Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration.","authors":"Chad Pozarycki, Kenneth M Seaton, Emily C Vincent, Carlie Novak Sanders, Nickie Nuñez, Mariah Castillo, Ellery Ingall, Benjamin Klempay, Alexandra Pontefract, Luke A Fisher, Emily R Paris, Steffen Buessecker, Nikolas B Alansson, Christopher E Carr, Peter T Doran, Jeff S Bowman, Britney E Schmidt, Amanda M Stockton","doi":"10.1089/ast.2023.0122","DOIUrl":"https://doi.org/10.1089/ast.2023.0122","url":null,"abstract":"<p><p>The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl<sub>2</sub>-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (<i>a</i><sub>w</sub>) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low <i>a</i><sub>w</sub> as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the \"-omics\" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"795-812"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Astrobiological Potential of the Uranian Moon System. 天王星月球系统的天体生物学潜力。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1089/ast.2024.0045
Jessica M Weber, Erin J Leonard

The 2023-2032 Planetary Science and Astrobiology Decadal Survey prioritized the Uranus Orbiter and Probe (UOP) mission concept as the next priority flagship mission. The UOP concept includes scientific studies of the Uranian moon system. Although the Uranian moons differ greatly from the ocean worlds in the Jovian and Saturnian systems, the emerging hypothesis is that some of them could at least sustain thin, potentially concentrated, oceans. Herein, we make a case that these moons are important and interesting targets of astrobiological research. Studying these worlds would provide critical astrobiological data related to their habitability, including origin, evolution, and potential death, as well as the formation and evolution of ocean worlds more broadly. There is a strong need for research that connects astrobiology to modeling and experimentation to better characterize the possible conditions of these worlds, and this will be critical in formulating and maximizing the potential science that could be done by a Uranus flagship mission.

2023-2032 年行星科学和天体生物学十年调查将天王星轨道器和探测器(UOP)任务概念作为下一个优先旗舰任务。UOP 概念包括对天王星卫星系统进行科学研究。虽然天王星卫星与木卫二和土星系统中的海洋世界有很大不同,但新出现的假设是,其中一些卫星至少可以维持薄薄的、可能集中的海洋。在此,我们提出一个理由,说明这些卫星是天体生物学研究的重要而有趣的目标。对这些世界的研究将提供与它们的宜居性有关的重要天体生物学数据,包括起源、演化和潜在的死亡,以及更广泛的海洋世界的形成和演化。目前亟需开展将天体生物学与建模和实验相结合的研究,以更好地描述这些世界的可能状况,这对于制定和最大限度地发挥天王星旗舰飞行任务的潜在科学作用至关重要。
{"title":"The Astrobiological Potential of the Uranian Moon System.","authors":"Jessica M Weber, Erin J Leonard","doi":"10.1089/ast.2024.0045","DOIUrl":"https://doi.org/10.1089/ast.2024.0045","url":null,"abstract":"<p><p>The 2023-2032 Planetary Science and Astrobiology Decadal Survey prioritized the Uranus Orbiter and Probe (UOP) mission concept as the next priority flagship mission. The UOP concept includes scientific studies of the Uranian moon system. Although the Uranian moons differ greatly from the ocean worlds in the Jovian and Saturnian systems, the emerging hypothesis is that some of them could at least sustain thin, potentially concentrated, oceans. Herein, we make a case that these moons are important and interesting targets of astrobiological research. Studying these worlds would provide critical astrobiological data related to their habitability, including origin, evolution, and potential death, as well as the formation and evolution of ocean worlds more broadly. There is a strong need for research that connects astrobiology to modeling and experimentation to better characterize the possible conditions of these worlds, and this will be critical in formulating and maximizing the potential science that could be done by a Uranus flagship mission.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"839-844"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. 贝叶斯分析法分析每个有利于生物发生的地点的生命起源概率。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1089/ast.2024.0037
Manasvi Lingam, Ruth Nichols, Amedeo Balbi

The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.

生命从非生命中产生,或称生物起源,仍然是科学探索中的一个基本问题。在本文中,我们通过对地球环境的深入了解,研究了生命起源(每个有利地点)的概率。如果生命起源于地球上的内生环境,那么它的存在确实具有信息价值,尽管对相应意义的解释关键取决于先验假设。通过采用贝叶斯框架,对于不可知先验假设,我们在地球上潜在的生物起源地点数量与每个地点出现生命的概率之间建立了直接联系。我们的研究结果表明,对地球上生命起源的合适环境可用性的限制,可能会对宇宙中的非生物发生概率和生命频率提供有价值的启示。
{"title":"A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis.","authors":"Manasvi Lingam, Ruth Nichols, Amedeo Balbi","doi":"10.1089/ast.2024.0037","DOIUrl":"https://doi.org/10.1089/ast.2024.0037","url":null,"abstract":"<p><p>The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"813-823"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memoriam: David Hochberg February 3, 1957-December 30, 2023. 悼念戴维-霍赫伯格(David Hochberg),1957 年 2 月 3 日--2023 年 12 月 30 日。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI: 10.1089/ast.2024.0030
Celia Blanco, Thomas Buhse, Pedro Cintas, Isabel Herreros, Jean-Claude Micheau, Federico Morán, Juan Pérez-Mercader, Josep M Ribó, Michael Stich, Cristóbal Viedma
{"title":"In Memoriam: David Hochberg February 3, 1957-December 30, 2023.","authors":"Celia Blanco, Thomas Buhse, Pedro Cintas, Isabel Herreros, Jean-Claude Micheau, Federico Morán, Juan Pérez-Mercader, Josep M Ribó, Michael Stich, Cristóbal Viedma","doi":"10.1089/ast.2024.0030","DOIUrl":"https://doi.org/10.1089/ast.2024.0030","url":null,"abstract":"","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"765-766"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. 评估作为生物特征的色素:行星环境中色素和色素模拟物的非生物/前生物合成。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI: 10.1089/ast.2023.0006
Laura E Rodriguez, Jessica M Weber, Laura M Barge

Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.

色素在生物学中具有多种功能,包括光合作用采光、辐射防护、膜支持和防御。色素无处不在,特别是在高辐射、高盐度和干燥环境中的嗜极生物中,而且可以通过任务就绪技术进行检测,这使得这些分子成为寻找其他地方生命证据的有希望的目标。此外,色素的检测被认为是地外生命的 "烟枪",因为有人认为这些分子不可能在非生物环境中产生。然而,尽管色素可能有望成为一种生物特征,但目前对其可能的前生物起源的了解仍然不足且不确定。更好地了解色素的非生物合成对于评估任务期间(包括 "坚毅 "号火星探测器或从返回的样本中)检测到的任何色素的生物起源性至关重要。使这种不确定性更加复杂的是色素的定义过于宽泛,因为它包括任何能够吸收可见光的化合物,而且其本身并不指定特定的化学结构。虽然未经实验验证,但有希望通过前生物途径生成色素,包括庚烷、叶绿素和类胡萝卜素。在此,我们回顾了色素的生物化学、在实地寻找这些分子时的固有假设、它们在工业中的非生物合成和益生反应、可模仿其光谱特征的益生相关分子,以及对未来工作的影响/建议。
{"title":"Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments.","authors":"Laura E Rodriguez, Jessica M Weber, Laura M Barge","doi":"10.1089/ast.2023.0006","DOIUrl":"10.1089/ast.2023.0006","url":null,"abstract":"<p><p>Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a \"smoking gun\" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"767-782"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exoplanet Innovators Interview: Sara Seager Interviews Dave Charbonneau. 系外行星创新者访谈:Sara Seager 采访 Dave Charbonneau。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-08-01 DOI: 10.1089/ast.2024.0101
Sara Seager
{"title":"Exoplanet Innovators Interview: Sara Seager Interviews Dave Charbonneau.","authors":"Sara Seager","doi":"10.1089/ast.2024.0101","DOIUrl":"https://doi.org/10.1089/ast.2024.0101","url":null,"abstract":"","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 8","pages":"845-854"},"PeriodicalIF":3.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building Identity and Community for Early Career Professionals in the Emerging Field of Astrobiology. 在新兴的天体生物学领域为早期职业专业人员建立身份和社区。
IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-01 DOI: 10.1089/ast.2023.0066
Bradford Davey, Hilarie Davis, Melissa Kirven-Brooks

To support training and foster retention in the emerging field of astrobiology, NASA has funded opportunities for graduate students and early career scientists to develop a community, foster interdisciplinarity, increase confidence, and showcase career options. The design of these opportunities builds on research on factors that increase retention, including feeling competent, having autonomy and a sense of purpose, having a sense of identity, and being connected to others in the field. Findings are reported from retrospective studies of two NASA career-building opportunities, the Astrobiology Graduate Conference and the International Astrobiology Summer School held in Santander, Spain. We present evidence that attendees gain confidence by presenting to, and working with, their peers, and feel competent to express their ideas and interests and build relationships in the field that continue after the experiences. Many say that they feel less isolated and go on to present or publish with colleagues they meet. Their career options also expand by meeting potential colleagues from different disciplines. Based on the findings, participating in either of these long-running programs shows clear positive impact on early career astrobiology professionals.

为了支持天体生物学这一新兴领域的培训和留住人才,美国国家航空航天局资助为研究生和早期职业科学家提供机会,以发展社区、促进跨学科、增强信心和展示职业选择。这些机会的设计建立在对提高留用率因素的研究基础之上,这些因素包括感觉有能力、有自主权和目标感、有认同感以及与该领域的其他人有联系。我们报告了对美国国家航空航天局(NASA)两个职业建设机会--天体生物学研究生会议和在西班牙桑坦德举办的国际天体生物学暑期学校--的回顾性研究结果。我们提供的证据表明,参加者通过向同行介绍情况并与他们合作,获得了自信,感到有能力表达自己的想法和兴趣,并在该领域建立了关系,这种关系在经历之后仍在继续。许多人表示,他们不再感到孤立无援,并继续与他们结识的同事一起做报告或发表论文。通过结识不同学科的潜在同事,他们的职业选择也得到了扩展。根据研究结果,参加这些长期项目中的任何一个都会对早期职业天体生物学专业人员产生明显的积极影响。
{"title":"Building Identity and Community for Early Career Professionals in the Emerging Field of Astrobiology.","authors":"Bradford Davey, Hilarie Davis, Melissa Kirven-Brooks","doi":"10.1089/ast.2023.0066","DOIUrl":"https://doi.org/10.1089/ast.2023.0066","url":null,"abstract":"<p><p>To support training and foster retention in the emerging field of astrobiology, NASA has funded opportunities for graduate students and early career scientists to develop a community, foster interdisciplinarity, increase confidence, and showcase career options. The design of these opportunities builds on research on factors that increase retention, including feeling competent, having autonomy and a sense of purpose, having a sense of identity, and being connected to others in the field. Findings are reported from retrospective studies of two NASA career-building opportunities, the Astrobiology Graduate Conference and the International Astrobiology Summer School held in Santander, Spain. We present evidence that attendees gain confidence by presenting to, and working with, their peers, and feel competent to express their ideas and interests and build relationships in the field that continue after the experiences. Many say that they feel less isolated and go on to present or publish with colleagues they meet. Their career options also expand by meeting potential colleagues from different disciplines. Based on the findings, participating in either of these long-running programs shows clear positive impact on early career astrobiology professionals.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 7","pages":"754-763"},"PeriodicalIF":3.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Astrobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1