Hydrogen sulfide and carbon dioxide are widespread substances in epithermal endogenous fluids. When the gas of one of these substances is filtered through the condensate of the other, abiogenic hydrocarbon synthesis can result. The direction of such a synthesis is a result of the absorption of the filtering gas by condensate and the formation of hydrocarbons and native sulfur in the condensate. The spatial position of the abiogenic synthesis zones is controlled by isosurfaces of critical temperatures and partial saturation pressures for CO2 and H2S. Abiogenic synthesis of hydrocarbons ensures the occurrence of prebiological states. Since the condensation of CO2 and H2S is controlled by the physical properties of these substances, it is possible to assess the conditions for the emergence of prebiological states on other planets. Venus demonstrates an example of an "overheated" planet on which the occurrence of prebiological states is unlikely in the past and impossible at the present time. Mars shows us a hypothetical example of a possible migration of prebiological states and protolife arising on their basis into the depths of a celestial body. Jupiter demonstrates an example of the localization of hydrocarbon synthesis zones and prebiological states in the gas envelope of the planet.