Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen
Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.
{"title":"Unravelling controls on multi-source-to-sink systems: A stratigraphic forward model of the early–middle Cenozoic of the SW Barents Sea","authors":"Amando P. E. Lasabuda, Domenico Chiarella, Tor O. Sømme, Sten-Andreas Grundvåg, Anthony G. Doré, Grandika Primadani, Tom Arne Rydningen, Jan Sverre Laberg, Alfred Hanssen","doi":"10.1111/bre.12883","DOIUrl":"https://doi.org/10.1111/bre.12883","url":null,"abstract":"<p>Source-to-sink dynamics are subjected to complex interactions between erosion, sediment transfer and deposition, particularly in an evolving tectonic and climatic setting. Here we use stratigraphic forward modelling (SFM) to predict the basin-fill architecture of a multi-source-to-sink system based on a state-of-the-art numerical approach. The modelling processes consider key source-to-sink parameters such as water discharge, sediment load and grain size to simulate various sedimentary processes and transport mechanisms reflecting the dynamic interplay between erosion in the catchment area, subsidence, deposition and filling of the basin. The Cenozoic succession along the SW Barents Shelf margin provides a key area to examine controls on source-to-sink systems along a transform margin that developed during the opening of the North Atlantic when Greenland and Eurasian plates were separated (ca. 55 Ma onwards). Moreover, the gradual cooling which culminated in major glaciations in the northern hemisphere during the Quaternary (ca. 2.7 Ma), has affected the spatio-temporal evolution of the sediment routing along the western Barents Shelf margin. This study aims to characterize the relative importance of different source areas within the source-to-sink framework through SFM. In the early Eocene, the SW Barents Shelf experienced a relatively equal sediment delivery from three principal source areas: (i) Greenland to the north, (ii) the Stappen High to the east, representing a local source terrain, and (iii) a major southern source (Fennoscandia). In the middle Eocene, our best-fit modelling scenario suggests that the northern and the local eastern sources dominated over the southern source, collectively supplying large amounts of sand into the basin as evidenced by the submarine fans in Sørvestsnaget Basin. In the Oligocene (ca. 33 Ma) and Miocene (ca. 23 Ma), significant amounts of sediments were sourced from the east due to shelf-wide uplift. Finally, this study highlights the dynamic nature and controls of sediment transfer in multi-source-to-sink systems and demonstrates the potential of SFM to unravel tectonic and climatic signals in the stratigraphic record.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iain de Jonge-Anderson, Ana Widyanita, Andreas Busch, Florian Doster, Uisdean Nicholson
The Malay Basin is a mature hydrocarbon province currently being re-assessed for CO2 storage. Selecting an appropriate storage site requires a comprehensive understanding of the structural and stratigraphic history of the basin. However, previous studies have been limited to observations from either regional 2D seismic lines or individual 3D seismic volumes. In this study, we access and utilise a basin-wide (ca. 36,000 km2) 3D seismic and well database to describe the structural and stratigraphic features of the basin, particularly those within the uppermost ca. 4 km (Oligocene to Recent) and gain new insights into the basin's evolution. E–W transtensional rift basins first developed due to sinistral shear across an NW-SE strike-slip zone. The NW-SE basin morphology seen today was generated during the late Oligocene–early Miocene, during which time dextral motion across marginal hinge zones created en-echelon antithetic, extensional faults and pull-apart basins, especially well preserved along the western margin of the basin. Collisional forces to the southeast during the early to middle Miocene resulted in the shallowing of the basin, intermittent connection to the South China Sea and a cyclic depositional pattern. Around 8 Ma (late Miocene), a significant uplift of the basin resulted in a major unconformity with up to 4.2 km of erosion and exhumation in the southeast. In the centre and northwest of the basin, the inversion of deeper E–W rifts resulted in the folding of Miocene sequences and the formation of large anticlines parallel to the rift-bounding faults. The Pliocene to Pleistocene history is more tectonically quiescent, but some extensional faulting continued to affect the northwest part of the basin. Larger glacio-eustatic sea-level fluctuations during this time resulted in major changes in sedimentation and erosion on the Sunda Shelf, including the formation of a middle-Pliocene unconformity. These structural events have created a variety of hydrocarbon traps across the basin of different ages, including transpressional anticlines, rollover anticlines and tilted fault blocks. Each of these has discrete and distinct trap elements with important implications for their CO2 storage potential.
{"title":"New insights into the structural and stratigraphic evolution of the Malay Basin using 3D seismic data: Implications for regional carbon capture and storage potential","authors":"Iain de Jonge-Anderson, Ana Widyanita, Andreas Busch, Florian Doster, Uisdean Nicholson","doi":"10.1111/bre.12885","DOIUrl":"10.1111/bre.12885","url":null,"abstract":"<p>The Malay Basin is a mature hydrocarbon province currently being re-assessed for CO<sub>2</sub> storage. Selecting an appropriate storage site requires a comprehensive understanding of the structural and stratigraphic history of the basin. However, previous studies have been limited to observations from either regional 2D seismic lines or individual 3D seismic volumes. In this study, we access and utilise a basin-wide (ca. 36,000 km<sup>2</sup>) 3D seismic and well database to describe the structural and stratigraphic features of the basin, particularly those within the uppermost ca. 4 km (Oligocene to Recent) and gain new insights into the basin's evolution. E–W transtensional rift basins first developed due to sinistral shear across an NW-SE strike-slip zone. The NW-SE basin morphology seen today was generated during the late Oligocene–early Miocene, during which time dextral motion across marginal hinge zones created en-echelon antithetic, extensional faults and pull-apart basins, especially well preserved along the western margin of the basin. Collisional forces to the southeast during the early to middle Miocene resulted in the shallowing of the basin, intermittent connection to the South China Sea and a cyclic depositional pattern. Around 8 Ma (late Miocene), a significant uplift of the basin resulted in a major unconformity with up to 4.2 km of erosion and exhumation in the southeast. In the centre and northwest of the basin, the inversion of deeper E–W rifts resulted in the folding of Miocene sequences and the formation of large anticlines parallel to the rift-bounding faults. The Pliocene to Pleistocene history is more tectonically quiescent, but some extensional faulting continued to affect the northwest part of the basin. Larger glacio-eustatic sea-level fluctuations during this time resulted in major changes in sedimentation and erosion on the Sunda Shelf, including the formation of a middle-Pliocene unconformity. These structural events have created a variety of hydrocarbon traps across the basin of different ages, including transpressional anticlines, rollover anticlines and tilted fault blocks. Each of these has discrete and distinct trap elements with important implications for their CO<sub>2</sub> storage potential.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12885","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mapping ocean-continent transitions (OCTs) separating equivocal continental and oceanic crusts is fundamental to investigate breakup processes and define the age and location of initial seafloor spreading. However, proposed limits of OCTs are rarely consistent, do not use uniform criteria, and result in conflicting interpretations as shown for the case of the northern South China Sea (SCS). We review original datasets including reflection and refraction seismic sections, drilling and potential field data with the aim to develop a ‘drilling-constrained integrated geological-geophysical’ approach to define the OCT along the northern SCS, understand the breakup process, and to compare the OCT in the SCS with those at Atlantic type rifted margins. The result shows a narrow, 5–15 km wide OCT. It separates a segmented margin that rifted a former arc in the west and a forearc in the east, both facing a Penrose oceanic crust that thins from the west towards the east. Seafloor spreading may have first nucleated at two centres during magnetic anomaly C11 in the NE and central subbasins, which then locally propagated both W and E to break through salients and produce full breakup at 29 Ma (anomaly C10r). Breakup at the SCS shows many differences to Atlantic type margins, in part due to inheritance but also due to rift/spreading-related parameters such as strain/spreading rates.
{"title":"Characterization and mapping of continental breakup and seafloor spreading initiation: The example of the northern rifted margin of the South China Sea","authors":"Cuimei Zhang, Gianreto Manatschal, Brian Taylor, Zhen Sun, Minghui Zhao, Jiazheng Zhang","doi":"10.1111/bre.12882","DOIUrl":"10.1111/bre.12882","url":null,"abstract":"<p>Mapping ocean-continent transitions (OCTs) separating equivocal continental and oceanic crusts is fundamental to investigate breakup processes and define the age and location of initial seafloor spreading. However, proposed limits of OCTs are rarely consistent, do not use uniform criteria, and result in conflicting interpretations as shown for the case of the northern South China Sea (SCS). We review original datasets including reflection and refraction seismic sections, drilling and potential field data with the aim to develop a ‘drilling-constrained integrated geological-geophysical’ approach to define the OCT along the northern SCS, understand the breakup process, and to compare the OCT in the SCS with those at Atlantic type rifted margins. The result shows a narrow, 5–15 km wide OCT. It separates a segmented margin that rifted a former arc in the west and a forearc in the east, both facing a Penrose oceanic crust that thins from the west towards the east. Seafloor spreading may have first nucleated at two centres during magnetic anomaly C11 in the NE and central subbasins, which then locally propagated both W and E to break through salients and produce full breakup at 29 Ma (anomaly C10r). Breakup at the SCS shows many differences to Atlantic type margins, in part due to inheritance but also due to rift/spreading-related parameters such as strain/spreading rates.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alvar Braathen, Ivar Midtkandal, Per Terje Osmundsen
We analyse 498 faults identified in satellite imagery and interpret the height and width of associated footwall ranges with respect to co-seismic elastic rebound from tectonic and erosional unloading. The dynamics of footwall uplift link uplands to catchment patterns and interrelated hanging wall sedimentary fans. Height–length relations of some catchments and associated alluvial fans scale linearly whereas others, such as fault-slope catchments and related down-fault fans (building out from faults) show a significant scatter without an obvious trend. Perched basins abandoned in the footwalls of younger faults offer catchment-fan height–length relations like watergap and dipslope-related fans and, besides, hint at reduction of dip angle due to rollback of larger faults before abandonment. Analysis of the width-to-height ratio (W/h) of footwall ranges offer a robust linear statistical trend, h = 0.06 W and is identical between datasets. This trend is valid for both arid and tropical rifts, the latter offering smaller rebounds. Contributions of elastic rebound on fault throw in our data are simplistically considered through comparison to global trends on fault length versus throw. This allows consideration around maximum throw (Tmax) linked to the maximum height of footwall ranges (h) and to their width (W) above the reference level. Basic calculations indicate that co-seismic rebound contributes from <1% to 17% of extensional fault throw. Width-to-height ratios for large faults (L > c. 50 km) show less spread than smaller faults. Such large faults expectedly dissect the brittle crust, indicating that these large faults which root in the ductile–brittle transition approach a balanced, steady-state kinematic pattern. We speculate that significant crustal thinning associated with these large faults triggers the onset of isostatic adjustments that drive fault rotation, instigating fault abandonment and disconnected perched basins.
{"title":"Geomorphological traits of landscapes in continental rifts—From fault-elastic rebound to sedimentary sinks","authors":"Alvar Braathen, Ivar Midtkandal, Per Terje Osmundsen","doi":"10.1111/bre.12881","DOIUrl":"10.1111/bre.12881","url":null,"abstract":"<p>We analyse 498 faults identified in satellite imagery and interpret the height and width of associated footwall ranges with respect to co-seismic elastic rebound from tectonic and erosional unloading. The dynamics of footwall uplift link uplands to catchment patterns and interrelated hanging wall sedimentary fans. Height–length relations of some catchments and associated alluvial fans scale linearly whereas others, such as fault-slope catchments and related down-fault fans (building out from faults) show a significant scatter without an obvious trend. Perched basins abandoned in the footwalls of younger faults offer catchment-fan height–length relations like watergap and dipslope-related fans and, besides, hint at reduction of dip angle due to rollback of larger faults before abandonment. Analysis of the width-to-height ratio (<i>W</i>/<i>h</i>) of footwall ranges offer a robust linear statistical trend, <i>h</i> = 0.06 W and is identical between datasets. This trend is valid for both arid and tropical rifts, the latter offering smaller rebounds. Contributions of elastic rebound on fault throw in our data are simplistically considered through comparison to global trends on fault length versus throw. This allows consideration around maximum throw (<i>T</i><sub>max</sub>) linked to the maximum height of footwall ranges (<i>h</i>) and to their width (<i>W</i>) above the reference level. Basic calculations indicate that co-seismic rebound contributes from <1% to 17% of extensional fault throw. Width-to-height ratios for large faults (<i>L</i> > c. 50 km) show less spread than smaller faults. Such large faults expectedly dissect the brittle crust, indicating that these large faults which root in the ductile–brittle transition approach a balanced, steady-state kinematic pattern. We speculate that significant crustal thinning associated with these large faults triggers the onset of isostatic adjustments that drive fault rotation, instigating fault abandonment and disconnected perched basins.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anders Dahlin, Kasper H. Blinkenberg, Alvar Braathen, Snorre Olaussen, Kim Senger, Aleksandra Smyrak-Sikora, Lars Stemmerik
The transition from syn-rift to post-rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn-rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn-rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic-carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp-Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn-rift stage. We observe that during the transition towards rift termination (glacio-)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high-resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp-Hornsund basement high). On the larger scale (10s of m), the importance of glacio-eustatic sea-level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift-related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.
{"title":"Late syn-rift to early post-rift basin fill dynamics of a mixed siliciclastic-carbonate succession banked to a basement high, Hornsund, southwestern Spitsbergen, Arctic Norway","authors":"Anders Dahlin, Kasper H. Blinkenberg, Alvar Braathen, Snorre Olaussen, Kim Senger, Aleksandra Smyrak-Sikora, Lars Stemmerik","doi":"10.1111/bre.12880","DOIUrl":"10.1111/bre.12880","url":null,"abstract":"<p>The transition from syn-rift to post-rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn-rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn-rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic-carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp-Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn-rift stage. We observe that during the transition towards rift termination (glacio-)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high-resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp-Hornsund basement high). On the larger scale (10s of m), the importance of glacio-eustatic sea-level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift-related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xutong Guan, Chaodong Wu, Yan Xu, Marc Jolivet, Jinlei Xiu, Cong Lin
Aridification of Central Asia in the Late Mesozoic led to drastic environmental changes characterized by widespread aeolian deposits. We systematically investigated fluvial-aeolian deposits in the Middle Jurassic Toutunhe Formation, Upper Jurassic Kalazha Formation, and Lower Cretaceous Tugulu Group in the Junggar Basin to the north of the Tianshan Orogenic Belt via unmanned aerial vehicle-based photogrammetry, scanning electron microscope, grain-size analysis, and detrital zircon geochronology. Paludal and deltaic environments transitioned to a fluvial-aeolian environment from the late Middle Jurassic to the Late Jurassic. Fan delta and incisive braided river deposits accumulated in the earliest Cretaceous and evolved into a lacustrine environment with aeolian deposits in the lakeshore. Aeolian deposits are characterized by moderate- to well-sorted and subangular to subround sandstones with large-scale, high-dip cross-bedding, inversely graded lamination, dominant saltation grains, crescent-shaped, and dish-shaped impact structures. Aeolian deposits contain heavy minerals including more ilmenite, zircon, garnet, and, tourmaline and less magnetite and epidote than the fluvial deposits. The preserved aeolian sediments of the Kalazha Formation extend west–east for more than 100 km, suggesting a wide desert area during the latest Jurassic. The detrital zircon age patterns indicate that the provenance of the aeolian deposits was similar to that of coeval fluvial deposits. The cooccurrence of fluvial and aeolian deposits and the similar provenances but orthogonal flow directions indicate that the aeolian deposits were mainly sourced from the nearby fluvial material within the basin. The evolution of the fluvial-aeolian system responded to a complete base-level cycle controlled by the aridification and tectonics. Due to decreased sediment supply caused by aridification, the base level rose, leading to the change from braided rivers to meandering rivers, along with the deposition of aeolian sediments. Due to the tectonic reactivation in the Late Jurassic, the base level fell, causing the occurrence of alluvial fans and the expansion of the aeolian sediments. Previous studies revealed that the Tianshan in the Jurassic exhibited low relief. The fluvial-aeolian system played an important role in maintaining the limited relief in southern Central Asia.
{"title":"A fluvial-aeolian system in response to aridification during the Late Mesozoic, Junggar Basin, Central Asia","authors":"Xutong Guan, Chaodong Wu, Yan Xu, Marc Jolivet, Jinlei Xiu, Cong Lin","doi":"10.1111/bre.12879","DOIUrl":"10.1111/bre.12879","url":null,"abstract":"<p>Aridification of Central Asia in the Late Mesozoic led to drastic environmental changes characterized by widespread aeolian deposits. We systematically investigated fluvial-aeolian deposits in the Middle Jurassic Toutunhe Formation, Upper Jurassic Kalazha Formation, and Lower Cretaceous Tugulu Group in the Junggar Basin to the north of the Tianshan Orogenic Belt via unmanned aerial vehicle-based photogrammetry, scanning electron microscope, grain-size analysis, and detrital zircon geochronology. Paludal and deltaic environments transitioned to a fluvial-aeolian environment from the late Middle Jurassic to the Late Jurassic. Fan delta and incisive braided river deposits accumulated in the earliest Cretaceous and evolved into a lacustrine environment with aeolian deposits in the lakeshore. Aeolian deposits are characterized by moderate- to well-sorted and subangular to subround sandstones with large-scale, high-dip cross-bedding, inversely graded lamination, dominant saltation grains, crescent-shaped, and dish-shaped impact structures. Aeolian deposits contain heavy minerals including more ilmenite, zircon, garnet, and, tourmaline and less magnetite and epidote than the fluvial deposits. The preserved aeolian sediments of the Kalazha Formation extend west–east for more than 100 km, suggesting a wide desert area during the latest Jurassic. The detrital zircon age patterns indicate that the provenance of the aeolian deposits was similar to that of coeval fluvial deposits. The cooccurrence of fluvial and aeolian deposits and the similar provenances but orthogonal flow directions indicate that the aeolian deposits were mainly sourced from the nearby fluvial material within the basin. The evolution of the fluvial-aeolian system responded to a complete base-level cycle controlled by the aridification and tectonics. Due to decreased sediment supply caused by aridification, the base level rose, leading to the change from braided rivers to meandering rivers, along with the deposition of aeolian sediments. Due to the tectonic reactivation in the Late Jurassic, the base level fell, causing the occurrence of alluvial fans and the expansion of the aeolian sediments. Previous studies revealed that the Tianshan in the Jurassic exhibited low relief. The fluvial-aeolian system played an important role in maintaining the limited relief in southern Central Asia.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Clarens Formation is a widespread aeolianite deposited over southern Gondwana and represents the final phase of erg evolution in the main Karoo Basin during the Early Jurassic. Previous age assessments of the formation hinge on limited detrital zircon data, supplemented by relative ages from the biostratigraphy and geochronology of the adjacent Karoo units. This study refines the depositional history of the Clarens Formation, including its sediment source dynamics as well as basin-wide geochronological framework, based on U–Pb dating of detrital zircon grains, together with petrographic and sedimentological characterization. The abundant presence of heavy minerals like zircon, tourmaline and rutile suggests large-scale detritus recycling, while the uniform sandstone composition on a regional scale is an indication of sediment homogenisation across the basin. Based on the prominent detrital zircon age fractions, the sediments are interpreted as having been reworked from pre-existing rocks of the Karoo Supergroup (Permian), the Damara and Saldania Orogenic belts (650–490 Ma), whereas minor sources can be assigned to the Namaqua-Natal Mobile Belt (1.35–1.1 Ga) and the western Sierras Pampeanas (1.30–1.33 Ga). Unstable minerals (hornblende, garnet, titanite, feldspar) provide evidence for a nearby granitic source east and southeast of the basin, related to likely Grenvillian rocks (1.0–1.3 Ga). An Early Jurassic zircon age fraction is linked to volcanic activity in the Chon Aike Magmatic Province that, at the time, was situated south and southwest of the study area. Maximum depositional ages derived from these detrital zircon dates suggest that the sedimentation of the Clarens Formation spanned an interval of ~10 Ma during the Pliensbachian and early Toarcian. More specifically, the lower part of the formation is of early Pliensbachian age or younger (~191–192), while the upper part is of early Toarcian age or younger (~181–183 Ma). These age patterns are particularly prominent in the south of the basin that was situated closer to the volcanic source.
{"title":"Sedimentation tempo in an Early Jurassic erg system: Refined chronostratigraphy and provenance of the Clarens Formation of southern Africa","authors":"Howard V. Head, Emese M. Bordy, Robert Bolhar","doi":"10.1111/bre.12877","DOIUrl":"https://doi.org/10.1111/bre.12877","url":null,"abstract":"<p>The Clarens Formation is a widespread aeolianite deposited over southern Gondwana and represents the final phase of erg evolution in the main Karoo Basin during the Early Jurassic. Previous age assessments of the formation hinge on limited detrital zircon data, supplemented by relative ages from the biostratigraphy and geochronology of the adjacent Karoo units. This study refines the depositional history of the Clarens Formation, including its sediment source dynamics as well as basin-wide geochronological framework, based on U–Pb dating of detrital zircon grains, together with petrographic and sedimentological characterization. The abundant presence of heavy minerals like zircon, tourmaline and rutile suggests large-scale detritus recycling, while the uniform sandstone composition on a regional scale is an indication of sediment homogenisation across the basin. Based on the prominent detrital zircon age fractions, the sediments are interpreted as having been reworked from pre-existing rocks of the Karoo Supergroup (Permian), the Damara and Saldania Orogenic belts (650–490 Ma), whereas minor sources can be assigned to the Namaqua-Natal Mobile Belt (1.35–1.1 Ga) and the western Sierras Pampeanas (1.30–1.33 Ga). Unstable minerals (hornblende, garnet, titanite, feldspar) provide evidence for a nearby granitic source east and southeast of the basin, related to likely Grenvillian rocks (1.0–1.3 Ga). An Early Jurassic zircon age fraction is linked to volcanic activity in the Chon Aike Magmatic Province that, at the time, was situated south and southwest of the study area. Maximum depositional ages derived from these detrital zircon dates suggest that the sedimentation of the Clarens Formation spanned an interval of ~10 Ma during the Pliensbachian and early Toarcian. More specifically, the lower part of the formation is of early Pliensbachian age or younger (~191–192), while the upper part is of early Toarcian age or younger (~181–183 Ma). These age patterns are particularly prominent in the south of the basin that was situated closer to the volcanic source.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12877","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141326672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Dottore Stagna, Vittorio Maselli, David J. Reynolds, Djordje Grujic, David Iacopini, Pamela Reynolds, Sugandha Tewari, Arjan van Vliet
The distribution and timing of Neogene extensional structures along the offshore Tanzania margin and their influence on submarine sediment dispersal pathways remain poorly constrained. This knowledge gap limits understanding of the propagation of the East African Rift System (EARS) in the western Indian Ocean. In this study, we use 2D and 3D seismic reflection data to explore a portion of the upper slope region offshore the Rufiji River delta which led to the discovery of a new extensional structure. Horizon maps and seismic sections extracted from the 3D volume reveal that the slope was intersected by W-E-oriented turbidite channels during the Cenozoic until the early Pliocene (5.3 Ma). Since then, the opening of this graben, whose timing is also constrained by stratigraphic horizon flattening, has led to a southward reorientation of these channels, a pattern that persists today, as evidenced by the flow direction of the channels at the modern seafloor. 2D seismic profiles reaching depths of 10 s two-way travel time (TWT) indicate that the formation of this graben is not related to the reactivation of Mesozoic structures. In detail, seismic data show that the acoustic basement is intersected by extensional faults, likely related to the Jurassic rift tectonics, which is reactivated during the middle Cretaceous forming a gentle monocline. The lack of deformation in the post-Cretaceous suggests a period of tectonic quiescence which persists until the establishment of a new extensional regime responsible for the graben's opening, indicating a decoupling between Mesozoic and Neogene tectonics. Considering the similarity in kinematics, orientation and timing between the graben and other structures along the margin, onshore and offshore, we interpret this graben to be generated by a later tectonic phase of the EARS. These new results may indicate that tectonic stresses associated with the EARS migrated from the Tanzania craton, where the oldest rift structures are dated to ca. 25 Ma, to the western Indian Ocean, where the tectonic activity started during the middle-late Miocene to Pliocene.
{"title":"Re-routing of submarine channels by Plio-Quaternary extensional tectonics along the Tanzania margin and implications for an offshore branch of the East African Rift System","authors":"Marina Dottore Stagna, Vittorio Maselli, David J. Reynolds, Djordje Grujic, David Iacopini, Pamela Reynolds, Sugandha Tewari, Arjan van Vliet","doi":"10.1111/bre.12878","DOIUrl":"https://doi.org/10.1111/bre.12878","url":null,"abstract":"<p>The distribution and timing of Neogene extensional structures along the offshore Tanzania margin and their influence on submarine sediment dispersal pathways remain poorly constrained. This knowledge gap limits understanding of the propagation of the East African Rift System (EARS) in the western Indian Ocean. In this study, we use 2D and 3D seismic reflection data to explore a portion of the upper slope region offshore the Rufiji River delta which led to the discovery of a new extensional structure. Horizon maps and seismic sections extracted from the 3D volume reveal that the slope was intersected by W-E-oriented turbidite channels during the Cenozoic until the early Pliocene (5.3 Ma). Since then, the opening of this graben, whose timing is also constrained by stratigraphic horizon flattening, has led to a southward reorientation of these channels, a pattern that persists today, as evidenced by the flow direction of the channels at the modern seafloor. 2D seismic profiles reaching depths of 10 s two-way travel time (TWT) indicate that the formation of this graben is not related to the reactivation of Mesozoic structures. In detail, seismic data show that the acoustic basement is intersected by extensional faults, likely related to the Jurassic rift tectonics, which is reactivated during the middle Cretaceous forming a gentle monocline. The lack of deformation in the post-Cretaceous suggests a period of tectonic quiescence which persists until the establishment of a new extensional regime responsible for the graben's opening, indicating a decoupling between Mesozoic and Neogene tectonics. Considering the similarity in kinematics, orientation and timing between the graben and other structures along the margin, onshore and offshore, we interpret this graben to be generated by a later tectonic phase of the EARS. These new results may indicate that tectonic stresses associated with the EARS migrated from the Tanzania craton, where the oldest rift structures are dated to ca. 25 Ma, to the western Indian Ocean, where the tectonic activity started during the middle-late Miocene to Pliocene.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12878","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sequence architectures along the margins of rift basins are still poorly documented compared to passive continental margin settings. The Eocene Shahejie Formation on the rift margin of the Dongying Depression records a complex sequence stratigraphic distribution of conglomerate, sandy conglomerate, sandstone and mudstone. These facies have been mainly attributed to fan delta and marginal subaqueous fan depositional settings that developed during segmented fault activity along the rift margin. We utilize three-dimensional (3D) seismic data, conventional cores, and wireline log data to dissect the overall wedge-shaped upper sub-member strata of the Shahejie Formation's fourth member. The study interval is a third-order sequence formed between 45.4 and 42.5 Ma and contains a lowstand–transgressive systems tract (LST–TST) and a highstand systems tract–falling-stage systems tract (HST–FSST). We found that the LST–TST developed several huge amalgamated depocenters along the Chennan border fault; whereas, these depocenters gradually diminished or even disappeared during the HST–FSST period, illustrating less significant control by the border fault. Through calculations of strata growth rates, we confirmed that the segmented activity of the border fault influences the stratigraphic distribution and facies evolution during these two periods. Specifically, deep-water depositional systems, represented by marginal subaqueous fans were widely developed in the LST–TST period and were influenced by overall strong tectonic activity, including retrogradational (R) and aggradational (A) patterns. However, the aggradational to progradational (AP) deltas and progradational to degradational (PD) deltas dominated the generally muted tectonic activity setting during the HST–FSST. Additionally, influenced by localized segmented fault activity, these systems tracts exhibit incomplete vertical development, resulting in spatial variability in stratigraphic stacking patterns.
与被动大陆边缘环境相比,裂谷盆地边缘的层序构造记录仍然较少。东营凹陷断裂边缘的始新世沙河街地层记录了砾岩、砂砾岩、砂岩和泥岩的复杂层序分布。这些地层主要归因于裂谷边缘断块活动期间发育的扇三角洲和边缘水下扇沉积环境。我们利用三维地震数据、常规岩心和有线测井数据,对沙河街地层第四系楔形上亚元地层进行了整体剖析。研究区间为三阶层序,形成于 45.4 至 42.5 Ma 之间,包含低台-横断系地层(LST-TST)和高台系-阶降系地层(HST-FSST)。我们发现,LST-TST沿 Chennan边界断层发育了几个巨大的混合沉积中心;而在HST-FSST时期,这些沉积中心逐渐减少甚至消失,说明边界断层的控制作用并不明显。通过计算地层增长率,我们证实边界断层的分段活动影响了这两个时期的地层分布和地貌演化。具体而言,以边缘水下扇为代表的深水沉积系统在 LST-TST 时期广泛发育,并受到整体强烈构造活动的影响,包括逆变(R)和增生(A)模式。然而,在高海拔-低海拔地质年代,增生到顺生(AP)三角洲和顺生到退化(PD)三角洲在总体上较弱的构造活动环境中占主导地位。此外,受局部分段断层活动的影响,这些系统地带表现出不完全的垂直发育,导致地层堆积模式的空间变化。
{"title":"Variability of sequence architecture in a rift margin controlled by tectonic activity: The Eocene Dongying Depression, Bohai Bay Basin, China","authors":"Rongheng Tian, Benzhong Xian, Jianping Liu, Qianran Wu, Naveed Ur Rahman, Peng Chen, Qian Li, Zhen Wang, Sirui Chen, Jingqiang Yu, Yuzhi Li, Wenmiao Zhang","doi":"10.1111/bre.12876","DOIUrl":"https://doi.org/10.1111/bre.12876","url":null,"abstract":"<p>Sequence architectures along the margins of rift basins are still poorly documented compared to passive continental margin settings. The Eocene Shahejie Formation on the rift margin of the Dongying Depression records a complex sequence stratigraphic distribution of conglomerate, sandy conglomerate, sandstone and mudstone. These facies have been mainly attributed to fan delta and marginal subaqueous fan depositional settings that developed during segmented fault activity along the rift margin. We utilize three-dimensional (3D) seismic data, conventional cores, and wireline log data to dissect the overall wedge-shaped upper sub-member strata of the Shahejie Formation's fourth member. The study interval is a third-order sequence formed between 45.4 and 42.5 Ma and contains a lowstand–transgressive systems tract (LST–TST) and a highstand systems tract–falling-stage systems tract (HST–FSST). We found that the LST–TST developed several huge amalgamated depocenters along the Chennan border fault; whereas, these depocenters gradually diminished or even disappeared during the HST–FSST period, illustrating less significant control by the border fault. Through calculations of strata growth rates, we confirmed that the segmented activity of the border fault influences the stratigraphic distribution and facies evolution during these two periods. Specifically, deep-water depositional systems, represented by marginal subaqueous fans were widely developed in the LST–TST period and were influenced by overall strong tectonic activity, including retrogradational (R) and aggradational (A) patterns. However, the aggradational to progradational (AP) deltas and progradational to degradational (PD) deltas dominated the generally muted tectonic activity setting during the HST–FSST. Additionally, influenced by localized segmented fault activity, these systems tracts exhibit incomplete vertical development, resulting in spatial variability in stratigraphic stacking patterns.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Cenozoic India-Asia collision has elevated the Tibetan Plateau and produced large strike-slip faults in the interior and margins of the plateau, which profoundly influenced drainage reorganization and divide migration in Asia. Recent studies have revealed that the drainage divides between the major rivers in and around the Tibetan Plateau have been migrating for tens of millions of years, due to tectonic and/or climatic disturbance or river capture events. Drainage-divide stability analysis can provide new, independent insights into the Cenozoic evolution of the river systems. In this study, we focus on the Hanzhong Basin and the adjacent Micang Shan (Shan means Mountain(s)) at the tail of the Qingchuan strike-slip fault in the outskirts of eastern Tibet. We investigated the stability of the Micang Shan drainage divide, which separates the Han and Jialing rivers (two major tributaries of the Yangtze River), using two methods—χ-plot and Gilbert metrics. The results show that most segments of the Micang Shan drainage divide are either moving south or stable. We further calculated the predicted stable divide location and identified the abandoned river channels and residual planation surfaces. Based on these analyses, we suggest that (1) the migration of the Micang Shan drainage divide is driven by the tectonic subsidence of the Hanzhong Basin; and (2) the upper reaches of the Han River flowed southward to the Sichuan Basin before basin subsidence. This study supports the hypothesis that the Palaeo-Middle Yangtze River and its tributaries primarily flowed southward. Moreover, the flow direction of the Middle Yangtze River has been, and still is, transitioning from southward to eastward. The change in river network flow direction is driven by regional block tilting towards the east, surface deformation from strike-slip faulting, regional extension east of the Tibetan Plateau and/or increased influence from the summer monsoon.
{"title":"Drainage reorganization and divide migration driven by basin subsidence: An example from the Micang Shan, outskirts of eastern Tibet and its implications for Cenozoic evolution of the Yangtze River","authors":"Yijia Ye, Xibin Tan, Yiduo Liu, Shuang Bian, Chao Zhou, Xun Zeng, Feng Shi, Mingxing Gao","doi":"10.1111/bre.12875","DOIUrl":"10.1111/bre.12875","url":null,"abstract":"<p>The Cenozoic India-Asia collision has elevated the Tibetan Plateau and produced large strike-slip faults in the interior and margins of the plateau, which profoundly influenced drainage reorganization and divide migration in Asia. Recent studies have revealed that the drainage divides between the major rivers in and around the Tibetan Plateau have been migrating for tens of millions of years, due to tectonic and/or climatic disturbance or river capture events. Drainage-divide stability analysis can provide new, independent insights into the Cenozoic evolution of the river systems. In this study, we focus on the Hanzhong Basin and the adjacent Micang Shan (Shan means Mountain(s)) at the tail of the Qingchuan strike-slip fault in the outskirts of eastern Tibet. We investigated the stability of the Micang Shan drainage divide, which separates the Han and Jialing rivers (two major tributaries of the Yangtze River), using two methods—<i>χ</i>-plot and Gilbert metrics. The results show that most segments of the Micang Shan drainage divide are either moving south or stable. We further calculated the predicted stable divide location and identified the abandoned river channels and residual planation surfaces. Based on these analyses, we suggest that (1) the migration of the Micang Shan drainage divide is driven by the tectonic subsidence of the Hanzhong Basin; and (2) the upper reaches of the Han River flowed southward to the Sichuan Basin before basin subsidence. This study supports the hypothesis that the Palaeo-Middle Yangtze River and its tributaries primarily flowed southward. Moreover, the flow direction of the Middle Yangtze River has been, and still is, transitioning from southward to eastward. The change in river network flow direction is driven by regional block tilting towards the east, surface deformation from strike-slip faulting, regional extension east of the Tibetan Plateau and/or increased influence from the summer monsoon.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}