B. Beke, M. Fialowski, T. Müller, F. Schubert, R. Lukács, M. Guillong, Sz. Harangi, L. Fodor
Development of brittle fracture zones as passages for fluid migration within the shallow crust results in substantial petrophysical and rheological changes that strongly influence deformation localisation, promoting reactivation at evolved inhomogeneities in the host rock. A natural example of multi-stage fault zone evolution with different generations of deformation elements and mode of silica cementation was investigated using combined structural, burial, micropetrographic, geochemical and geochronological analyses in a sandstone predating the main rifting phase. Deformation mechanisms progressively evolved from proto-cataclasis, through advanced cataclasis connected with inhomogeneous silica cementation, to siliceous fluid-enhanced slip along discrete fault planes or vein formation; all of these processes are well correlated with burial and volcanic phases. The established relationships allowed reconstruction of the evolutionary steps within the fault zones as the initially porous sediment was structurally and diagenetically hardened and then softened, and the geometry of the fault system changed during rifting. The age of silica-associated fracture systems (syn-tectonic silica cementation) is constrained by early type deformation bands (having the same pattern as silica-associated fractures) occurring in the ~15.3 Ma pyroclastic rocks bordering the sandstone. Silica precipitation can be related primarily to structurally controlled fluid pulses and rapid cooling as fluids pass through the propagating syn-rift fractures in an initially good siliciclastic aquifer. Such large-scale hydrothermal fluid migration, resulting in tens of km2 siliceous cementation, was facilitated by the onset of volcanic activity. The accompanying general increase in fluid pressure may have led to the permutation of the maximum and the intermediate principal stress axes. As a result, the early syn-rift extension switched to a transtension during the main syn-rift phase. Meanwhile, vertical axis rotations also contributed to the change in the apparent stress field, resulting in the development of a fault pattern analogous to an oblique rift. The developed fault sets, with three characteristic orientations and frequent reactivation, may have formed in relation to an inherited structural weakness zone.
{"title":"Structurally Controlled Silica Precipitation Within Multi-Stage Fault Damage Zones During the Rifting of the Pannonian Basin","authors":"B. Beke, M. Fialowski, T. Müller, F. Schubert, R. Lukács, M. Guillong, Sz. Harangi, L. Fodor","doi":"10.1111/bre.70043","DOIUrl":"https://doi.org/10.1111/bre.70043","url":null,"abstract":"<p>Development of brittle fracture zones as passages for fluid migration within the shallow crust results in substantial petrophysical and rheological changes that strongly influence deformation localisation, promoting reactivation at evolved inhomogeneities in the host rock. A natural example of multi-stage fault zone evolution with different generations of deformation elements and mode of silica cementation was investigated using combined structural, burial, micropetrographic, geochemical and geochronological analyses in a sandstone predating the main rifting phase. Deformation mechanisms progressively evolved from proto-cataclasis, through advanced cataclasis connected with inhomogeneous silica cementation, to siliceous fluid-enhanced slip along discrete fault planes or vein formation; all of these processes are well correlated with burial and volcanic phases. The established relationships allowed reconstruction of the evolutionary steps within the fault zones as the initially porous sediment was structurally and diagenetically hardened and then softened, and the geometry of the fault system changed during rifting. The age of silica-associated fracture systems (syn-tectonic silica cementation) is constrained by early type deformation bands (having the same pattern as silica-associated fractures) occurring in the ~15.3 Ma pyroclastic rocks bordering the sandstone. Silica precipitation can be related primarily to structurally controlled fluid pulses and rapid cooling as fluids pass through the propagating syn-rift fractures in an initially good siliciclastic aquifer. Such large-scale hydrothermal fluid migration, resulting in tens of km<sup>2</sup> siliceous cementation, was facilitated by the onset of volcanic activity. The accompanying general increase in fluid pressure may have led to the permutation of the maximum and the intermediate principal stress axes. As a result, the early syn-rift extension switched to a transtension during the main syn-rift phase. Meanwhile, vertical axis rotations also contributed to the change in the apparent stress field, resulting in the development of a fault pattern analogous to an oblique rift. The developed fault sets, with three characteristic orientations and frequent reactivation, may have formed in relation to an inherited structural weakness zone.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"37 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.70043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144339310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Deiss, S. Rohais, V. Regard, J. J. Armitage, S. Carretier, S. Bonnet
Quantifying sediment fluxes is an essential part of the Source-to-Sink approach in the understanding of sedimentary systems. However, the transfer of sediment from the source to the sink and the factors controlling it are still poorly understood. We focus on a small catchment coupled with its offshore deep-sea fan: the Sithas system (Gulf of Corinth, Greece). We restore the volume of sediment eroded in the catchment using geomorphic constraints; quantify the volume of sediment deposited in the offshore basin, after revising the age model; and calculate erosional fluxes using the BQART model. This allows for the comparison of the reconstructed fluxes of sediment eroded and deposited since 800 ka across the entire source-to-sink system. For the Sithas coupled catchment-deep-sea fan system, we show an increase in sedimentary fluxes both in erosion and deposition since 800 ka and particularly since 400 ka, where cyclic variations of ~120 kyr are recorded in erosion and deposition compartments. We suggest that the overall increase in flux results from a change in the catchment size due to the tectonic evolution of the region. The record of cyclic variations from 400 kyr in fluxes matches with the maturity of the system and with the intensification of glacial cycles and tectonic constraints migration. We also suggest that the discrepancy between erosion and deposition reflects a temporary storage between source and sink areas, probably along the coast. This has changed since 30 ka, introducing the last phase of evolution characterised by phased source and sink dynamics, suggesting a lack of temporary storage and a connection between river outlet and submarine canyon head. This study shows that sediment fluxes are controlled by the catchment's size as well as by climatic and tectonic factors and that even a small sedimentary system can be affected by temporary sediment storage.
{"title":"Source-to-Sink Signal Propagation in a Small, Coupled Catchment-Deep-Sea Fan System: The Sithas Example From the Corinth Rift (Pleistocene, Greece)","authors":"N. Deiss, S. Rohais, V. Regard, J. J. Armitage, S. Carretier, S. Bonnet","doi":"10.1111/bre.70044","DOIUrl":"https://doi.org/10.1111/bre.70044","url":null,"abstract":"<p>Quantifying sediment fluxes is an essential part of the Source-to-Sink approach in the understanding of sedimentary systems. However, the transfer of sediment from the source to the sink and the factors controlling it are still poorly understood. We focus on a small catchment coupled with its offshore deep-sea fan: the Sithas system (Gulf of Corinth, Greece). We restore the volume of sediment eroded in the catchment using geomorphic constraints; quantify the volume of sediment deposited in the offshore basin, after revising the age model; and calculate erosional fluxes using the BQART model. This allows for the comparison of the reconstructed fluxes of sediment eroded and deposited since 800 ka across the entire source-to-sink system. For the Sithas coupled catchment-deep-sea fan system, we show an increase in sedimentary fluxes both in erosion and deposition since 800 ka and particularly since 400 ka, where cyclic variations of ~120 kyr are recorded in erosion and deposition compartments. We suggest that the overall increase in flux results from a change in the catchment size due to the tectonic evolution of the region. The record of cyclic variations from 400 kyr in fluxes matches with the maturity of the system and with the intensification of glacial cycles and tectonic constraints migration. We also suggest that the discrepancy between erosion and deposition reflects a temporary storage between source and sink areas, probably along the coast. This has changed since 30 ka, introducing the last phase of evolution characterised by phased source and sink dynamics, suggesting a lack of temporary storage and a connection between river outlet and submarine canyon head. This study shows that sediment fluxes are controlled by the catchment's size as well as by climatic and tectonic factors and that even a small sedimentary system can be affected by temporary sediment storage.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"37 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.70044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanny Nova, Mauricio Parra, Agustín Cardona, Brian K. Horton, Victor A. Valencia, Andrés Mora, Cleber Soares
The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi-proxy provenance signatures recorded in the adjacent retro-foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón-Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second-order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike-slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin.
{"title":"Latest Cretaceous to Cenozoic Exhumation Patterns in the Northern Andes From the Sedimentary Provenance Record on the Broken Retro-Foreland Putumayo Basin","authors":"Giovanny Nova, Mauricio Parra, Agustín Cardona, Brian K. Horton, Victor A. Valencia, Andrés Mora, Cleber Soares","doi":"10.1111/bre.70041","DOIUrl":"https://doi.org/10.1111/bre.70041","url":null,"abstract":"<p>The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi-proxy provenance signatures recorded in the adjacent retro-foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón-Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second-order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike-slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"37 3","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144323537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}