Pub Date : 2025-02-01Epub Date: 2024-08-19DOI: 10.1007/s00395-024-01076-8
Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
{"title":"Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3.","authors":"Lan Wu, Zhi-Zheng Li, Hao Yang, Li-Zhi Cao, Xiao-Ying Wang, Dong-Liang Wang, Emeli Chatterjee, Yan-Fei Li, Gang Huang","doi":"10.1007/s00395-024-01076-8","DOIUrl":"10.1007/s00395-024-01076-8","url":null,"abstract":"<p><p>Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"113-131"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-02-03DOI: 10.1007/s00395-025-01097-x
Tienush Rassaf
{"title":"Bridging cardiology and oncology in the era of precision medicine.","authors":"Tienush Rassaf","doi":"10.1007/s00395-025-01097-x","DOIUrl":"10.1007/s00395-025-01097-x","url":null,"abstract":"","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"120 1","pages":"1-2"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-09-09DOI: 10.1007/s00395-024-01078-6
Andrea Moreno-Arciniegas, Laura Cádiz, Carlos Galán-Arriola, Agustín Clemente-Moragón, Borja Ibáñez
Thanks to the fantastic progress in cancer therapy options, there is a growing population of cancer survivors. This success has resulted in a need to focus much effort into improving the quality of life of this population. Cancer and cardiovascular disease share many common risk factors and have an interplay between them, with one condition mechanistically affecting the other and vice versa. Furthermore, widely prescribed cancer therapies have known toxic effects in the cardiovascular system. Anthracyclines are the paradigm of efficacious cancer therapy widely prescribed with a strong cardiotoxic potential. While some cancer therapies cardiovascular toxicities are transient, others are irreversible. There is a growing need to develop cardioprotective therapies that, when used in conjunction with cancer therapies, can prevent cardiovascular toxicity and thus improve long-term quality of life in survivors. The field has three main challenges: (i) identification of the ultimate mechanisms leading to cardiotoxicity to (ii) identify specific therapeutic targets, and (iii) more sensible diagnostic tools to early identify these conditions. In this review we will focus on the cardioprotective strategies tested and under investigation. We will focus this article into anthracycline cardiotoxicity since it is still the agent most widely prescribed, the one with higher toxic effects on the heart, and the most widely studied.
{"title":"Cardioprotection strategies for anthracycline cardiotoxicity.","authors":"Andrea Moreno-Arciniegas, Laura Cádiz, Carlos Galán-Arriola, Agustín Clemente-Moragón, Borja Ibáñez","doi":"10.1007/s00395-024-01078-6","DOIUrl":"10.1007/s00395-024-01078-6","url":null,"abstract":"<p><p>Thanks to the fantastic progress in cancer therapy options, there is a growing population of cancer survivors. This success has resulted in a need to focus much effort into improving the quality of life of this population. Cancer and cardiovascular disease share many common risk factors and have an interplay between them, with one condition mechanistically affecting the other and vice versa. Furthermore, widely prescribed cancer therapies have known toxic effects in the cardiovascular system. Anthracyclines are the paradigm of efficacious cancer therapy widely prescribed with a strong cardiotoxic potential. While some cancer therapies cardiovascular toxicities are transient, others are irreversible. There is a growing need to develop cardioprotective therapies that, when used in conjunction with cancer therapies, can prevent cardiovascular toxicity and thus improve long-term quality of life in survivors. The field has three main challenges: (i) identification of the ultimate mechanisms leading to cardiotoxicity to (ii) identify specific therapeutic targets, and (iii) more sensible diagnostic tools to early identify these conditions. In this review we will focus on the cardioprotective strategies tested and under investigation. We will focus this article into anthracycline cardiotoxicity since it is still the agent most widely prescribed, the one with higher toxic effects on the heart, and the most widely studied.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"71-90"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-09-03DOI: 10.1007/s00395-024-01077-7
Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
免疫疗法是利用人体免疫监视系统进行抗癌治疗的新兴异类疗法,包括免疫检查点抑制剂单克隆抗体(mAbs)、嵌合抗原受体 T 细胞(CAR-T)疗法、癌症疫苗和淋巴细胞活化基因-3(LAG-3)疗法。虽然这些疗法对多种恶性肿瘤有显著疗效,但往往与其他癌症疗法联合使用,会产生不可预见的毒性,包括心血管并发症。在过去 10 年中,免疫介导不良反应(irAEs)的发生率不断上升。免疫介导不良反应的严重程度范围很广,从自限性的到危及生命的都有。尽管最近的心脏病肿瘤学指南为管理癌症治疗提供了重要依据,但这些指南往往包含一般性方法。然而,由于免疫疗法的特殊病因、独特风险因素和相关副作用,需要特别关注。本综述旨在加深对接受免疫疗法的患者心血管问题的普遍性和性质的了解,为风险分层和管理策略提供真知灼见。
{"title":"Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients.","authors":"Giuseppe Panuccio, Pierpaolo Correale, Maria d'Apolito, Luciano Mutti, Rocco Giannicola, Luigi Pirtoli, Antonio Giordano, Demetrio Labate, Sebastiano Macheda, Nicole Carabetta, Youssef S Abdelwahed, Ulf Landmesser, Pierfrancesco Tassone, Pierosandro Tagliaferri, Salvatore De Rosa, Daniele Torella","doi":"10.1007/s00395-024-01077-7","DOIUrl":"10.1007/s00395-024-01077-7","url":null,"abstract":"<p><p>Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"153-169"},"PeriodicalIF":7.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1007/s00395-024-01095-5
Kazutaka Miyamoto, Xaviar M. Jones, Shukuro Yamaguchi, Alessandra Ciullo, Chang Li, Joshua Godoy Coto, Kara Tsi, Jessica Anderson, Ashley Morris, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim
TY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss. The effects of TY1 were specific, insofar as they were not reproduced by a control RNA of the same nucleotide content but in scrambled order. TY1 consistently suppressed myocardial stress-induced MAP kinase signaling, as well as downstream inflammatory, fibrotic, and hypertrophic gene pathways in heart tissue. TY1 not only prevented but actually reversed key pathological processes underlying HFpEF, with no evidence of toxicity. Most noteworthy from a practical perspective, the effects of intravenous TY1 were reproduced by feeding HFpEF mice an oral micellar formulation of TY1. As the prototype for a novel class of ncRNA drugs which target cell stress, TY1 exhibits exceptional disease-modifying bioactivity in HFpEF.
{"title":"Intravenous and oral administration of the synthetic RNA drug, TY1, reverses heart failure with preserved ejection fraction in mice","authors":"Kazutaka Miyamoto, Xaviar M. Jones, Shukuro Yamaguchi, Alessandra Ciullo, Chang Li, Joshua Godoy Coto, Kara Tsi, Jessica Anderson, Ashley Morris, Eduardo Marbán, Ahmed Gamal-Eldin Ibrahim","doi":"10.1007/s00395-024-01095-5","DOIUrl":"https://doi.org/10.1007/s00395-024-01095-5","url":null,"abstract":"<p>TY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss. The effects of TY1 were specific, insofar as they were not reproduced by a control RNA of the same nucleotide content but in scrambled order. TY1 consistently suppressed myocardial stress-induced MAP kinase signaling, as well as downstream inflammatory, fibrotic, and hypertrophic gene pathways in heart tissue. TY1 not only prevented but actually reversed key pathological processes underlying HFpEF, with no evidence of toxicity. Most noteworthy from a practical perspective, the effects of intravenous TY1 were reproduced by feeding HFpEF mice an oral micellar formulation of TY1. As the prototype for a novel class of ncRNA drugs which target cell stress, TY1 exhibits exceptional disease-modifying bioactivity in HFpEF.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"1 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1007/s00395-024-01093-7
Giuditta Benincasa, Mark E. Pepin, Vincenzo Russo, Francesco Cacciatore, Michele D’Alto, Paola Argiento, Emanuele Romeo, Rosaria Chiappetti, Nunzia Laezza, Adam R. Wende, Gabriele G. Schiattarella, Enrico Coscioni, Antonietta La Montagna, Cristiano Amarelli, Ciro Maiello, Paolo Golino, Gianluigi Condorelli, Claudio Napoli
Novel biomarkers are needed to better identify—and distinguish—heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented genome-wide DNA methylation study of circulating CD4+ T lymphocytes isolated from peripheral blood using reduced representation bisulfite sequencing (RRBS) in two cohorts (i.e., discovery/validation) each of both male and female patients with HFpEF (n = 12/10), HF with reduced EF (HFrEF; n = 7/5), and volunteers lacking clinical evidence of HF (CON; n = 7/5). RRBS is the gold-standard platform for measuring genome-wide DNA methylation changes at single-cytosine resolution in hypothesis-generating studies. We identified three hypomethylated HFpEF-specific differentially methylated positions (DMPs) associated with FOXB1, ELMOD1, and DGKH genes wherein ROC curve analysis revealed that increased expression levels had a reasonable diagnostic performance in predicting HFpEF (AUC ≥ 0.8, p < 0.05). Network analysis identified additional three genes including JUNB (p = 0.037), SETD7 (p = 0.003), and MEF2D (p = 0.0001) which were significantly higher in HFpEF vs. HFrEF patients. ROC curve analysis showed that integrating the functional H2FPEF classification with the expression levels of the FOXB1, ELMOD1, and DGKH as well as the JUNB, SETD7, and MEF2D genes improved diagnostic accuracy, with AUC = 0.8 (p < 0.0001) as compared to H2FPEF score alone (p > 0.05). Besides, increased expression levels of SETD7-RELA-IL6 axis significantly discriminated overweight/obese HFpEF vs. HFrEF patients (AUC = 1; p = 0.001, p = 0.006, p = 0.006, respectively). We support an emerging dogma that indirect epigenetic testing via high-resolution RRBS methylomics represents a non-invasive tool that may enable easier access to both diagnostic and mechanistic insights of HFpEF. An epigenetic-oriented dysregulation of network-derived SETD7-RELA-IL6 axis in circulating CD4+ T lymphocytes may drive pro-inflammatory responses which, in turn, may lead to cardiac remodeling in overweight/obese HFpEF.
{"title":"High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction","authors":"Giuditta Benincasa, Mark E. Pepin, Vincenzo Russo, Francesco Cacciatore, Michele D’Alto, Paola Argiento, Emanuele Romeo, Rosaria Chiappetti, Nunzia Laezza, Adam R. Wende, Gabriele G. Schiattarella, Enrico Coscioni, Antonietta La Montagna, Cristiano Amarelli, Ciro Maiello, Paolo Golino, Gianluigi Condorelli, Claudio Napoli","doi":"10.1007/s00395-024-01093-7","DOIUrl":"https://doi.org/10.1007/s00395-024-01093-7","url":null,"abstract":"<p>Novel biomarkers are needed to better identify—and distinguish—heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented genome-wide DNA methylation study of circulating CD4<sup>+</sup> T lymphocytes isolated from peripheral blood using reduced representation bisulfite sequencing (RRBS) in two cohorts (i.e., discovery/validation) each of both male and female patients with HFpEF (<i>n</i> = 12/10), HF with reduced EF (HFrEF; <i>n</i> = 7/5), and volunteers lacking clinical evidence of HF (CON; <i>n</i> = 7/5). RRBS is the gold-standard platform for measuring genome-wide DNA methylation changes at single-cytosine resolution in hypothesis-generating studies. We identified three hypomethylated HFpEF-specific differentially methylated positions (DMPs) associated with <i>FOXB1</i>, <i>ELMOD1</i>, and <i>DGKH</i> genes wherein ROC curve analysis revealed that increased expression levels had a reasonable diagnostic performance in predicting HFpEF (AUC ≥ 0.8, <i>p</i> < 0.05). Network analysis identified additional three genes including <i>JUNB</i> (<i>p</i> = 0.037)<i>, SETD7</i> (<i>p</i> = 0.003)<i>,</i> and <i>MEF2D</i> (<i>p</i> = 0.0001) which were significantly higher in HFpEF <i>vs</i>. HFrEF patients. ROC curve analysis showed that integrating the functional H<sub>2</sub>FPEF classification with the expression levels of the <i>FOXB1</i>, <i>ELMOD1</i>, and <i>DGKH</i> as well as the <i>JUNB</i>, <i>SETD7</i>, and <i>MEF2D</i> genes improved diagnostic accuracy, with AUC = 0.8 (<i>p</i> < 0.0001) as compared to H<sub>2</sub>FPEF score alone (<i>p</i> > 0.05). Besides, increased expression levels of <i>SETD7-RELA-IL6</i> axis significantly discriminated overweight/obese HFpEF vs. HFrEF patients (AUC = 1; <i>p</i> = 0.001, <i>p</i> = 0.006, <i>p</i> = 0.006, respectively). We support an emerging dogma that indirect epigenetic testing via high-resolution RRBS methylomics represents a non-invasive tool that may enable easier access to both diagnostic and mechanistic insights of HFpEF. An epigenetic-oriented dysregulation of network-derived <i>SETD7-RELA-IL6</i> axis in circulating CD4<sup>+</sup> T lymphocytes may drive pro-inflammatory responses which, in turn, may lead to cardiac remodeling in overweight/obese HFpEF.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"15 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1007/s00395-024-01094-6
L. Pearce, C. Galán-Arriola, R. M. Bell, R. D. Carr, J. Cunningham, S. M. Davidson, A. K. Ghosh, S. Giesz, P. Golforoush, A. V. Gourine, D. M. Hermann, G. Heusch, B. Ibanez, S. Beikoghli Kalkhoran, S. Lecour, K. Lukhna, M. Ntsekhe, M. N. Sack, R. J. Unwin, G. Vilahur, J. M. Walker, D. M. Yellon
A long-standing aim in the setting of various pathologies including acute myocardial infarction, chronic kidney disease (CKD), and ischaemic stroke, has been to identify successful approaches to augment cellular and organ protection. Although the continual evolution and refinement of ideas over the past few decades has allowed the field to progress, we are yet to realise successful clinical translation of this concept. The 12th Hatter Cardiovascular Workshop identified a number of important points and key questions for future research relating to cardio- and neuro-protection and interorgan communication. Specific topics that were discussed include the ‘cardio-metabolic-renal’ axis of organ protection, the parasympathetic signalling hypothesis, the role of the coronary microvasculature in myocardial infarction, the RISK pathway of cardioprotection, extracellular vesicles and the way forward, the future for clinical studies of remote ischaemic conditioning, and new experimental models for cardio-oncology investigations.
{"title":"Inter-organ communication: pathways and targets to cardioprotection and neuro-protection. A report from the 12th Hatter Cardiovascular Institute workshop","authors":"L. Pearce, C. Galán-Arriola, R. M. Bell, R. D. Carr, J. Cunningham, S. M. Davidson, A. K. Ghosh, S. Giesz, P. Golforoush, A. V. Gourine, D. M. Hermann, G. Heusch, B. Ibanez, S. Beikoghli Kalkhoran, S. Lecour, K. Lukhna, M. Ntsekhe, M. N. Sack, R. J. Unwin, G. Vilahur, J. M. Walker, D. M. Yellon","doi":"10.1007/s00395-024-01094-6","DOIUrl":"https://doi.org/10.1007/s00395-024-01094-6","url":null,"abstract":"<p>A long-standing aim in the setting of various pathologies including acute myocardial infarction, chronic kidney disease (CKD), and ischaemic stroke, has been to identify successful approaches to augment cellular and organ protection. Although the continual evolution and refinement of ideas over the past few decades has allowed the field to progress, we are yet to realise successful clinical translation of this concept. The 12th Hatter Cardiovascular Workshop identified a number of important points and key questions for future research relating to cardio- and neuro-protection and interorgan communication. Specific topics that were discussed include the ‘cardio-metabolic-renal’ axis of organ protection, the parasympathetic signalling hypothesis, the role of the coronary microvasculature in myocardial infarction, the RISK pathway of cardioprotection, extracellular vesicles and the way forward, the future for clinical studies of remote ischaemic conditioning, and new experimental models for cardio-oncology investigations.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"30 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1007/s00395-024-01092-8
Anna-Sophia Leven, Natalie Wagner, Stephan Nienaber, Daniel Messiha, Alpaslan Tasdogan, Selma Ugurel
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
{"title":"Changes in tumor and cardiac metabolism upon immune checkpoint","authors":"Anna-Sophia Leven, Natalie Wagner, Stephan Nienaber, Daniel Messiha, Alpaslan Tasdogan, Selma Ugurel","doi":"10.1007/s00395-024-01092-8","DOIUrl":"https://doi.org/10.1007/s00395-024-01092-8","url":null,"abstract":"<p>Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"47 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s00395-024-01090-w
J. Brauer, M. Tumani, N. Frey, L. H. Lehmann
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
{"title":"The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models","authors":"J. Brauer, M. Tumani, N. Frey, L. H. Lehmann","doi":"10.1007/s00395-024-01090-w","DOIUrl":"https://doi.org/10.1007/s00395-024-01090-w","url":null,"abstract":"<p>Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"16 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-05DOI: 10.1007/s00395-024-01058-w
Guangze Zhao, Huifang M Zhang, Ali Reza Nasseri, Fione Yip, Nikita Telkar, Yankuan T Chen, Sana Aghakeshmiri, Christoph Küper, Wan Lam, Wenli Yang, James Zhao, Honglin Luo, Bruce M McManus, Decheng Yang
Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon β1 (IFNβ1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.
{"title":"Heart-specific NFAT5 knockout suppresses type I interferon signaling and aggravates coxsackievirus-induced myocarditis.","authors":"Guangze Zhao, Huifang M Zhang, Ali Reza Nasseri, Fione Yip, Nikita Telkar, Yankuan T Chen, Sana Aghakeshmiri, Christoph Küper, Wan Lam, Wenli Yang, James Zhao, Honglin Luo, Bruce M McManus, Decheng Yang","doi":"10.1007/s00395-024-01058-w","DOIUrl":"10.1007/s00395-024-01058-w","url":null,"abstract":"<p><p>Nuclear factor of activated T cells 5 (NFAT5) is an osmosensitive transcription factor that is well-studied in renal but rarely explored in cardiac diseases. Although the association of Coxsackievirus B3 (CVB3) with viral myocarditis is well-established, the role of NFAT5 in this disease remains largely unexplored. Previous research has demonstrated that NFAT5 restricts CVB3 replication yet is susceptible to cleavage by CVB3 proteases. Using an inducible cardiac-specific Nfat5-knockout mouse model, we uncovered that NFAT5-deficiency exacerbates cardiac pathology, worsens cardiac function, elevates viral load, and reduces survival rates. RNA-seq analysis of CVB3-infected mouse hearts revealed the significant impact of NFAT5-deficiency on gene pathways associated with cytokine signaling and inflammation. Subsequent in vitro and in vivo investigation validated the disruption of the cytokine signaling pathway in response to CVB3 infection, evidenced by reduced expression of key cytokines such as interferon β1 (IFNβ1), C-X-C motif chemokine ligand 10 (CXCL10), interleukin 6 (IL6), among others. Furthermore, NFAT5-deficiency hindered the formation of stress granules, leading to a reduction of important stress granule components, including plakophilin-2, a pivotal protein within the intercalated disc, thereby impacting cardiomyocyte structure and function. These findings unveil a novel mechanism by which NFAT5 inhibits CVB3 replication and pathogenesis through the promotion of antiviral type I interferon signaling and the formation of cytoplasmic stress granules, collectively identifying NFAT5 as a new cardio protective protein.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"1075-1092"},"PeriodicalIF":7.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}