Background: Cutibacterium acnes(C. acnes), a Gram-positive anaerobe and a dominant bacterium species in the sebaceous follicles of the face was detected in the brain of Alzheimer's disease (AD) patients. It has been found that C. acnes activates non-specifically the innate immune system by producing proinflammatory cytokines and can participate in brain inflammation. We hypothesise that C. acnes could influence the brain through the structural alteration in axons and dendrites of neurons.
Methods: In this regard, the hippocampus of rats was infected with C. acnes, and memory retention, amyloid-β (Aβ1-42) deposition, hyperphosphorylated tau protein (p-Tau) formation, and expression levels of MAP2 and β-tubulin proteins in the hippocampus tissues were investigated.
Results: C. acnes-infected rats displayed memory deficits and Aβ1-42 deposits were detected in their hippocampus tissue up to 7 days post-infection. C. acnes was neurotoxic and exerted detrimental effects on MAP2 and β-tubulin proteins, which are required for normal neuronal function. An elevated level of p-Tau was also identified in infected animals.
Conclusion: Based on these results, we propose that C. acnes infection of the brain participates in the initiation of the pathogenesis of sporadic AD through degeneration of axons and dendrites.
{"title":"Cutibacterium Acnes induces Alzheimer's disease-like pathology in brains of wistar rats through structural changes associated with microtubules.","authors":"Morteza Aliashrafi, Mohammad Nasehi, Seyed Davar Siadat, Mohammad-Hossein Mohammadi-Mahdiabadi-Hasani, Hakimeh Zali, Zahra Niknam","doi":"10.1186/s12993-024-00257-8","DOIUrl":"10.1186/s12993-024-00257-8","url":null,"abstract":"<p><strong>Background: </strong>Cutibacterium acnes(C. acnes), a Gram-positive anaerobe and a dominant bacterium species in the sebaceous follicles of the face was detected in the brain of Alzheimer's disease (AD) patients. It has been found that C. acnes activates non-specifically the innate immune system by producing proinflammatory cytokines and can participate in brain inflammation. We hypothesise that C. acnes could influence the brain through the structural alteration in axons and dendrites of neurons.</p><p><strong>Methods: </strong>In this regard, the hippocampus of rats was infected with C. acnes, and memory retention, amyloid-β (Aβ<sub>1-42</sub>) deposition, hyperphosphorylated tau protein (p-Tau) formation, and expression levels of MAP2 and β-tubulin proteins in the hippocampus tissues were investigated.</p><p><strong>Results: </strong>C. acnes-infected rats displayed memory deficits and Aβ<sub>1-42</sub> deposits were detected in their hippocampus tissue up to 7 days post-infection. C. acnes was neurotoxic and exerted detrimental effects on MAP2 and β-tubulin proteins, which are required for normal neuronal function. An elevated level of p-Tau was also identified in infected animals.</p><p><strong>Conclusion: </strong>Based on these results, we propose that C. acnes infection of the brain participates in the initiation of the pathogenesis of sporadic AD through degeneration of axons and dendrites.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"30"},"PeriodicalIF":4.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12993-024-00256-9
Sonia Burgaz, Elisa Navarro, Santiago Rodríguez-Carreiro, Carmen Navarrete, Martin Garrido-Rodríguez, Isabel Lastres-Becker, Julia Chocarro, José L Lanciego, Eduardo Muñoz, Javier Fernández-Ruiz
Background: The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis.
Methods: To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc.
Results: Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling.
Conclusion: Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.
{"title":"Investigation in the cannabigerol derivative VCE-003.2 as a disease-modifying agent in a mouse model of experimental synucleinopathy.","authors":"Sonia Burgaz, Elisa Navarro, Santiago Rodríguez-Carreiro, Carmen Navarrete, Martin Garrido-Rodríguez, Isabel Lastres-Becker, Julia Chocarro, José L Lanciego, Eduardo Muñoz, Javier Fernández-Ruiz","doi":"10.1186/s12993-024-00256-9","DOIUrl":"10.1186/s12993-024-00256-9","url":null,"abstract":"<p><strong>Background: </strong>The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis.</p><p><strong>Methods: </strong>To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc.</p><p><strong>Results: </strong>Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling.</p><p><strong>Conclusion: </strong>Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"28"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1186/s12993-024-00253-y
Sunghyun Kim, Sumin Sohn, Eun Sang Choe
Background: Nicotine dependence is associated with glutamatergic neurotransmission in the caudate and putamen (CPu) of the forebrain which includes alterations in the structure of dendritic spines at glutamate synapses. These changes after nicotine exposure can lead to the development of habitual behaviors such as smoking. The present study investigated the hypothesis that cofilin, an actin-binding protein that is linked to the GluN2B subunits of N-methyl-D-aspartate (NMDA) receptors regulates the morphology of dendritic spines in the neurons of the CPu after repeated exposure to nicotine.
Results: Adult male rats received subcutaneous injections of nicotine (0.3 mg/kg/day) or vehicle for seven consecutive days. DiI staining was conducted to observe changes in dendritic spine morphology. Repeated subcutaneous injections of nicotine decreased the phosphorylation of cofilin while increasing the formation of thin spines and filopodia in the dendrites of medium spiny neurons (MSN) in the CPu of rats. Bilateral intra-CPu infusion of the cofilin inhibitor, cytochalasin D (12.5 µg/µL/side), restored the thin spines and filopodia from mushroom types after repeated exposure to nicotine. Similar results were obtained from the bilateral intra-CPu infusion of the selective GluN2B subunit antagonist, Ro 25-6981 (4 µM/µL/side). Bilateral intra-CPu infusion of cytochalasin D that interferes with the actin-cofilin interaction attenuated the repeated nicotine-induced increase in locomotor sensitization in rats.
Conclusions: These findings suggest that active cofilin alters the structure of spine heads from mushroom to thin spine/filopodia by potentiating actin turnover, contributing to behavioral sensitization after nicotine exposure.
{"title":"Cofilin linked to GluN2B subunits of NMDA receptors is required for behavioral sensitization by changing the dendritic spines of neurons in the caudate and putamen after repeated nicotine exposure.","authors":"Sunghyun Kim, Sumin Sohn, Eun Sang Choe","doi":"10.1186/s12993-024-00253-y","DOIUrl":"https://doi.org/10.1186/s12993-024-00253-y","url":null,"abstract":"<p><strong>Background: </strong>Nicotine dependence is associated with glutamatergic neurotransmission in the caudate and putamen (CPu) of the forebrain which includes alterations in the structure of dendritic spines at glutamate synapses. These changes after nicotine exposure can lead to the development of habitual behaviors such as smoking. The present study investigated the hypothesis that cofilin, an actin-binding protein that is linked to the GluN2B subunits of N-methyl-D-aspartate (NMDA) receptors regulates the morphology of dendritic spines in the neurons of the CPu after repeated exposure to nicotine.</p><p><strong>Results: </strong>Adult male rats received subcutaneous injections of nicotine (0.3 mg/kg/day) or vehicle for seven consecutive days. DiI staining was conducted to observe changes in dendritic spine morphology. Repeated subcutaneous injections of nicotine decreased the phosphorylation of cofilin while increasing the formation of thin spines and filopodia in the dendrites of medium spiny neurons (MSN) in the CPu of rats. Bilateral intra-CPu infusion of the cofilin inhibitor, cytochalasin D (12.5 µg/µL/side), restored the thin spines and filopodia from mushroom types after repeated exposure to nicotine. Similar results were obtained from the bilateral intra-CPu infusion of the selective GluN2B subunit antagonist, Ro 25-6981 (4 µM/µL/side). Bilateral intra-CPu infusion of cytochalasin D that interferes with the actin-cofilin interaction attenuated the repeated nicotine-induced increase in locomotor sensitization in rats.</p><p><strong>Conclusions: </strong>These findings suggest that active cofilin alters the structure of spine heads from mushroom to thin spine/filopodia by potentiating actin turnover, contributing to behavioral sensitization after nicotine exposure.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"27"},"PeriodicalIF":4.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1186/s12993-024-00250-1
Eman A E Farrag, Mona H Askar, Zienab Abdallah, Safinaz M Mahmoud, Eman A Abdulhai, Eman Abdelrazik, Eman Mohamad El Nashar, Faten Mohammed Alasiri, Asma Nasser Saeed Alqahtani, Mamdouh Eldesoqui, Ali M Eldib, Alshimaa Magdy
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism.
Methods: On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed.
Results: Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group.
Conclusions: The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.
{"title":"Comparative effect of atorvastatin and risperidone on modulation of TLR4/NF-κB/NOX-2 in a rat model of valproic acid-induced autism.","authors":"Eman A E Farrag, Mona H Askar, Zienab Abdallah, Safinaz M Mahmoud, Eman A Abdulhai, Eman Abdelrazik, Eman Mohamad El Nashar, Faten Mohammed Alasiri, Asma Nasser Saeed Alqahtani, Mamdouh Eldesoqui, Ali M Eldib, Alshimaa Magdy","doi":"10.1186/s12993-024-00250-1","DOIUrl":"10.1186/s12993-024-00250-1","url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is significantly increasing, resulting in severe distress. The approved treatment for ASD only partially improves the sympoms, but it does not entirely reverse the symptoms. Developing novel disease-modifying drugs is essential for the continuous improvement of ASD. Because of its pleiotropic effect, atorvastatin has been garnered attention for treating neuronal degeneration. The present study aimed to investigate the therapeutic effects of atorvastatin in autism and compare it with an approved autism drug (risperidone) through the impact of these drugs on TLR4/NF-κB/NOX-2 and the apoptotic pathway in a valproic acid (VPA) induced rat model of autism.</p><p><strong>Methods: </strong>On gestational day 12.5, pregnant rats received a single IP injection of VPA (500 mg/kg), for VPA induced autism, risperidone and atorvastatin groups, or saline for control normal group. At postnatal day 21, male offsprings were randomly divided into four groups (n = 6): control, VPA induced autism, risperidone, and atorvastatin. Risperidone and atorvastatin were administered from postnatal day 21 to day 51. The study evaluated autism-like behaviors using the three-chamber test, the dark light test, and the open field test at the end of the study. Biochemical analysis of TLR4, NF-κB, NOX-2, and ROS using ELISA, RT-PCR, WB, histological examination with hematoxylin and eosin and immunohistochemical study of CAS-3 were performed.</p><p><strong>Results: </strong>Male offspring of prenatal VPA-exposed female rats exhibited significant autism-like behaviors and elevated TLR4, NF-κB, NOX-2, ROS, and caspase-3 expression. Histological analysis revealed structural alterations. Both risperidone and atorvastatin effectively mitigated the behavioral, biochemical, and structural changes associated with VPA-induced rat model of autism. Notably, atorvastatin group showed a more significant improvement than risperidone group.</p><p><strong>Conclusions: </strong>The research results unequivocally demonstrated that atorvastatin can modulate VPA-induced autism by suppressing inflammation, oxidative stress, and apoptosis through TLR4/NF-κB/NOX-2 signaling pathway. Atorvastatin could be a potential treatment for ASD.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"26"},"PeriodicalIF":4.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s12993-024-00252-z
Guangyuan Fan, Tao Pan, Xingyu Ji, Changyou Jiang, Feifei Wang, Xing Liu, Lan Ma, Qiumin Le
Background: Recent research has indicated that parental use of central nervous system-targeting medications during periconceptional periods may affect offspring across various developmental and behavioral domains. The present study sought to investigate the potential influence of paternal use of donepezil, a specific reversible central acetylcholinesterase inhibitor that activates the cholinergic system to promote cognition, on offspring.
Results: In this study, male rats were bred after 21 days of oral donepezil administration at a dose of 4 mg/kg to generate F1 offspring. Both male and female F₁ offspring displayed enhanced performance in learning and short-term memory tests, including novel object recognition, Y maze, and operant learning. Transcriptomic analysis revealed notable alterations in genes associated with the extracellular matrix in the hippocampal tissue of the F1 generation. Integration with genes related to intelligence identified potential core genes that may be involved in the observed behavioral enhancements.
Conclusions: These findings indicate that prolonged paternal exposure to donepezil may enhance the learning and memory abilities of offspring, possibly by targeting nonneural, extracellular regions. Further research is required to fully elucidate any potential transgenerational effects.
背景:最近的研究表明,父母在围孕期使用中枢神经系统靶向药物可能会影响后代的各个发育和行为领域。多奈哌齐是一种特异性可逆中枢乙酰胆碱酯酶抑制剂,可激活胆碱能系统以促进认知,本研究试图探讨父亲使用多奈哌齐对后代的潜在影响:在这项研究中,雄性大鼠在口服剂量为 4 毫克/千克的多奈哌齐 21 天后进行繁殖,以产生 F1 后代。雄性和雌性F₁后代在学习和短期记忆测试(包括新物体识别、Y迷宫和操作性学习)中的表现均有所提高。转录组分析显示,F1 代海马组织中与细胞外基质相关的基因发生了显著变化。与智力相关基因的整合确定了可能参与观察到的行为增强的潜在核心基因:这些研究结果表明,父亲长期暴露于多奈哌齐可能会增强后代的学习和记忆能力,这可能是通过靶向非神经和细胞外区域实现的。要充分阐明任何潜在的代际效应,还需要进一步的研究。
{"title":"Paternal preconception donepezil exposure enhances learning in offspring.","authors":"Guangyuan Fan, Tao Pan, Xingyu Ji, Changyou Jiang, Feifei Wang, Xing Liu, Lan Ma, Qiumin Le","doi":"10.1186/s12993-024-00252-z","DOIUrl":"https://doi.org/10.1186/s12993-024-00252-z","url":null,"abstract":"<p><strong>Background: </strong>Recent research has indicated that parental use of central nervous system-targeting medications during periconceptional periods may affect offspring across various developmental and behavioral domains. The present study sought to investigate the potential influence of paternal use of donepezil, a specific reversible central acetylcholinesterase inhibitor that activates the cholinergic system to promote cognition, on offspring.</p><p><strong>Results: </strong>In this study, male rats were bred after 21 days of oral donepezil administration at a dose of 4 mg/kg to generate F1 offspring. Both male and female F₁ offspring displayed enhanced performance in learning and short-term memory tests, including novel object recognition, Y maze, and operant learning. Transcriptomic analysis revealed notable alterations in genes associated with the extracellular matrix in the hippocampal tissue of the F1 generation. Integration with genes related to intelligence identified potential core genes that may be involved in the observed behavioral enhancements.</p><p><strong>Conclusions: </strong>These findings indicate that prolonged paternal exposure to donepezil may enhance the learning and memory abilities of offspring, possibly by targeting nonneural, extracellular regions. Further research is required to fully elucidate any potential transgenerational effects.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"25"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1186/s12993-024-00251-0
Jakub Szabó, Emese Renczés, Veronika Borbélyová, Daniela Ostatníková, Peter Celec
Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with heterogeneous symptomatology. Arguably, the most pervasive shortfall of ASD are the deficits in sociability and the animal models of the disorder are expected to exhibit such impairments. The most widely utilized behavioral task for assessing sociability in rodents is the Three-Chamber Social Interaction Test (SIT). However, SIT has been yielding inconsistent results in social interaction behavior across different rodent models of ASD, which could be pointing to the suboptimal methodology of the task. Here, we compared social behavior assessed in SIT and in another prominent sociability behavioral assay, Reciprocal Interaction Test (RCI), in a SH3 and multiple ankyrin repeated domains 3 (SHANK3) mouse model of ASD. Head-to-head comparison showed no association (p = 0.15, 0.25, 0.43) and a fixed bias (p = 0.01, < 0.001, < 0.001) in sociability assessment between the behavioral assays in both wild-type (WT) controls and Shank3B(-/-) mice. Adult Shank3B(-/-) mice of both sexes displayed normative sociability in SIT when compared to the WT controls (p = 0.74) but exhibited less than half of social interaction (p < 0.001) and almost three times more social disinterest (p < 0.001) when compared to WT mice in RCI. At least in the Shank3B(-/-) mouse model of ASD, we presume RCI could be a preferable way of assessing social interaction compared to SIT. Considering the variability of animal models of ASD and the wide palette of tools available for the assessment of their behavior, a consensus approach would be needed for observational and interventional analyses.
{"title":"Assessing sociability using the Three-Chamber Social Interaction Test and the Reciprocal Interaction Test in a genetic mouse model of ASD.","authors":"Jakub Szabó, Emese Renczés, Veronika Borbélyová, Daniela Ostatníková, Peter Celec","doi":"10.1186/s12993-024-00251-0","DOIUrl":"https://doi.org/10.1186/s12993-024-00251-0","url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with heterogeneous symptomatology. Arguably, the most pervasive shortfall of ASD are the deficits in sociability and the animal models of the disorder are expected to exhibit such impairments. The most widely utilized behavioral task for assessing sociability in rodents is the Three-Chamber Social Interaction Test (SIT). However, SIT has been yielding inconsistent results in social interaction behavior across different rodent models of ASD, which could be pointing to the suboptimal methodology of the task. Here, we compared social behavior assessed in SIT and in another prominent sociability behavioral assay, Reciprocal Interaction Test (RCI), in a SH3 and multiple ankyrin repeated domains 3 (SHANK3) mouse model of ASD. Head-to-head comparison showed no association (p = 0.15, 0.25, 0.43) and a fixed bias (p = 0.01, < 0.001, < 0.001) in sociability assessment between the behavioral assays in both wild-type (WT) controls and Shank3B<sup>(-/-)</sup> mice. Adult Shank3B<sup>(-/-)</sup> mice of both sexes displayed normative sociability in SIT when compared to the WT controls (p = 0.74) but exhibited less than half of social interaction (p < 0.001) and almost three times more social disinterest (p < 0.001) when compared to WT mice in RCI. At least in the Shank3B<sup>(-/-)</sup> mouse model of ASD, we presume RCI could be a preferable way of assessing social interaction compared to SIT. Considering the variability of animal models of ASD and the wide palette of tools available for the assessment of their behavior, a consensus approach would be needed for observational and interventional analyses.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"24"},"PeriodicalIF":4.7,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1186/s12993-024-00249-8
Xiaotian Zhao, Rong Zhang, Tingyong Feng
<p><b>Correction to: Behavioral and Brain Functions (2024) 20:11</b></p><p><b>https://doi.org/10.1186/s12993-024-00236-z</b></p><p>Following publication of the original article [1], the author noticed an error in Results section. The correlation results for the influence of age on various variables were incorrectly provided. This error has occurred during the transcription of result which has been corrected with this correction.</p><p>In Results section under the heading “Behavioral results”, the sentence should read, “The findings indicated that age was not significantly correlated with any variables (<i>r</i><sub>FSC</sub>=.087, <i>p</i> = .360; <i>r</i><sub>PA</sub>=-.117, <i>p</i> = .215; <i>r</i><sub>PE</sub>=-.123, <i>p</i> = .193; <i>r</i><sub>PO</sub>=.078, <i>p</i> = .409; <i>r</i><sub>NE</sub>=.132, <i>p</i> = .162; <i>r</i><sub>NO</sub>=.153, <i>p</i> = .105)” instead of “The findings indicated that age was not significantly correlated with any variables (<i>r</i><sub>FSC</sub>=0.051, <i>p</i> = 0.590; <i>r</i><sub>PA</sub>=0.017, <i>p</i> = 0.856; <i>r</i><sub>PE</sub> = − 0.017, <i>p</i> = 0.854; <i>r</i><sub>PO</sub> =0.036, <i>p</i> = 0.700; <i>r</i><sub>NE</sub> =0.034, <i>p</i> = 0.718; <i>r</i><sub>NO</sub>=0.039, <i>p</i> = 0.682)”.</p><ol data-track-component="outbound reference" data-track-context="references section"><li data-counter="1."><p>Zhao X, Zhang R, Feng T. The vmPFC-IPL functional connectivity as the neural basis of future self-continuity impacted procrastination: the mediating role of anticipated positive outcomes. Behav Brain Funct. 2024;20:11. https://doi.org/10.1186/s12993-024-00236-z.</p><p>Article PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Faculty of Psychology, Southwest University, No. 2, Tian Sheng RD., Beibei, Chongqing, 400715, China</p><p>Xiaotian Zhao, Rong Zhang & Tingyong Feng</p></li><li><p>Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China</p><p>Tingyong Feng</p></li></ol><span>Authors</span><ol><li><span>Xiaotian Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Rong Zhang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Tingyong Feng</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Tingyong Feng.</p><h3>Publisher’s note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p>The online version of the original article can be
更正:行为与脑功能(2024)20:11https://doi.org/10.1186/s12993-024-00236-zFollowing 发表原文[1]时,作者注意到结果部分有一处错误。文中错误地提供了年龄对各种变量影响的相关结果。结果部分 "行为结果 "标题下的句子应为:"研究结果表明,年龄与任何变量均无显著相关性(rFSC=.087,p = .360;rPA=-.117,p = .215;rPE=-.123,p = .193;rPO=.078,p = .409;rNE=.132,p = .162;rNO=.153,p = .105)"改为 "研究结果表明,年龄与任何变量均无明显相关性(rFSC=0.051,p=0.590;rPA=0.017,p=0.856;rPE=-0.017,p=0.854;rPO=0.036,p=0.700;rNE=0.034, p = 0.718; rNO=0.039, p = 0.682)".Zhao X, Zhang R, Feng T. The vmPFC-IPL functional connectivity as the neural basis of future self-continuity impacted procrastination: the mediating role of anticipated positive outcomes.Behav Brain Funct.2024;20:11. https://doi.org/10.1186/s12993-024-00236-z.Article PubMed PubMed Central Google Scholar Download references作者及单位西南大学心理学院,重庆市北碚区天圣路2号、重庆市北碚区天圣路 2 号西南大学心理学院 邮编:400715 赵晓天 张蓉 &;冯廷勇教育部认知与人格重点实验室,重庆,中国冯廷勇作者:赵小田查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者张蓉查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者冯廷勇查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者通讯作者:冯廷勇。出版者注释Springer Nature对出版地图中的管辖权主张和机构隶属关系保持中立。原文的在线版本可在以下网址找到:https://doi.org/10.1186/s12993-024-00236-z.Open Access 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,则您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则知识共享公共领域专用免责声明(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文提供的数据。转载与许可引用本文Zhao, X., Zhang, R. & Feng, T. Correction to:vmPFC-IPL功能连接作为未来自我连续性影响拖延的神经基础:预期积极结果的中介作用》。Behav Brain Funct 20, 23 (2024). https://doi.org/10.1186/s12993-024-00249-8Download citationPublished: 11 September 2024DOI: https://doi.org/10.1186/s12993-024-00249-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Correction to: The vmPFC-IPL functional connectivity as the neural basis of future self-continuity impacted procrastination: the mediating role of anticipated positive outcomes","authors":"Xiaotian Zhao, Rong Zhang, Tingyong Feng","doi":"10.1186/s12993-024-00249-8","DOIUrl":"https://doi.org/10.1186/s12993-024-00249-8","url":null,"abstract":"<p><b>Correction to: Behavioral and Brain Functions (2024) 20:11</b></p><p><b>https://doi.org/10.1186/s12993-024-00236-z</b></p><p>Following publication of the original article [1], the author noticed an error in Results section. The correlation results for the influence of age on various variables were incorrectly provided. This error has occurred during the transcription of result which has been corrected with this correction.</p><p>In Results section under the heading “Behavioral results”, the sentence should read, “The findings indicated that age was not significantly correlated with any variables (<i>r</i><sub>FSC</sub>=.087, <i>p</i> = .360; <i>r</i><sub>PA</sub>=-.117, <i>p</i> = .215; <i>r</i><sub>PE</sub>=-.123, <i>p</i> = .193; <i>r</i><sub>PO</sub>=.078, <i>p</i> = .409; <i>r</i><sub>NE</sub>=.132, <i>p</i> = .162; <i>r</i><sub>NO</sub>=.153, <i>p</i> = .105)” instead of “The findings indicated that age was not significantly correlated with any variables (<i>r</i><sub>FSC</sub>=0.051, <i>p</i> = 0.590; <i>r</i><sub>PA</sub>=0.017, <i>p</i> = 0.856; <i>r</i><sub>PE</sub> = − 0.017, <i>p</i> = 0.854; <i>r</i><sub>PO</sub> =0.036, <i>p</i> = 0.700; <i>r</i><sub>NE</sub> =0.034, <i>p</i> = 0.718; <i>r</i><sub>NO</sub>=0.039, <i>p</i> = 0.682)”.</p><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>Zhao X, Zhang R, Feng T. The vmPFC-IPL functional connectivity as the neural basis of future self-continuity impacted procrastination: the mediating role of anticipated positive outcomes. Behav Brain Funct. 2024;20:11. https://doi.org/10.1186/s12993-024-00236-z.</p><p>Article PubMed PubMed Central Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Faculty of Psychology, Southwest University, No. 2, Tian Sheng RD., Beibei, Chongqing, 400715, China</p><p>Xiaotian Zhao, Rong Zhang & Tingyong Feng</p></li><li><p>Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China</p><p>Tingyong Feng</p></li></ol><span>Authors</span><ol><li><span>Xiaotian Zhao</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Rong Zhang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Tingyong Feng</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Tingyong Feng.</p><h3>Publisher’s note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p>The online version of the original article can be ","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"36 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1186/s12993-024-00248-9
Hong Li, Geraldine Rodríguez-Nieto, Sima Chalavi, Caroline Seer, Mark Mikkelsen, Richard A E Edden, Stephan P Swinnen
Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.
{"title":"MRS-assessed brain GABA modulation in response to task performance and learning.","authors":"Hong Li, Geraldine Rodríguez-Nieto, Sima Chalavi, Caroline Seer, Mark Mikkelsen, Richard A E Edden, Stephan P Swinnen","doi":"10.1186/s12993-024-00248-9","DOIUrl":"10.1186/s12993-024-00248-9","url":null,"abstract":"<p><p>Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"22"},"PeriodicalIF":4.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The Duchenne and Becker muscular dystrophies (DMD, BMD) are neuromuscular disorders commonly associated with diverse cognitive and behavioral comorbidities. Genotype-phenotype studies suggest that severity and risk of central defects in DMD patients increase with cumulative loss of different dystrophins produced in CNS from independent promoters of the DMD gene. Mutations affecting all dystrophins are nevertheless rare and therefore the clinical evidence on the contribution of the shortest Dp71 isoform to cognitive and behavioral dysfunctions is limited. In this study, we evaluated social, emotional and locomotor functions, and fear-related learning in the Dp71-null mouse model specifically lacking this short dystrophin.
Results: We demonstrate the presence of abnormal social behavior and ultrasonic vocalization in Dp71-null mice, accompanied by slight changes in exploratory activity and anxiety-related behaviors, in the absence of myopathy and alterations of learning and memory of aversive cue-outcome associations.
Conclusions: These results support the hypothesis that distal DMD gene mutations affecting Dp71 may contribute to the emergence of social and emotional problems that may relate to the autistic traits and executive dysfunctions reported in DMD. The present alterations in Dp71-null mice may possibly add to the subtle social behavior problems previously associated with the loss of the Dp427 dystrophin, in line with the current hypothesis that risk and severity of behavioral problems in patients increase with cumulative loss of several brain dystrophin isoforms.
{"title":"Social and emotional alterations in mice lacking the short dystrophin-gene product, Dp71.","authors":"Rubén Miranda, Léa Ceschi, Delphine Le Verger, Flora Nagapin, Jean-Marc Edeline, Rémi Chaussenot, Cyrille Vaillend","doi":"10.1186/s12993-024-00246-x","DOIUrl":"10.1186/s12993-024-00246-x","url":null,"abstract":"<p><strong>Background: </strong>The Duchenne and Becker muscular dystrophies (DMD, BMD) are neuromuscular disorders commonly associated with diverse cognitive and behavioral comorbidities. Genotype-phenotype studies suggest that severity and risk of central defects in DMD patients increase with cumulative loss of different dystrophins produced in CNS from independent promoters of the DMD gene. Mutations affecting all dystrophins are nevertheless rare and therefore the clinical evidence on the contribution of the shortest Dp71 isoform to cognitive and behavioral dysfunctions is limited. In this study, we evaluated social, emotional and locomotor functions, and fear-related learning in the Dp71-null mouse model specifically lacking this short dystrophin.</p><p><strong>Results: </strong>We demonstrate the presence of abnormal social behavior and ultrasonic vocalization in Dp71-null mice, accompanied by slight changes in exploratory activity and anxiety-related behaviors, in the absence of myopathy and alterations of learning and memory of aversive cue-outcome associations.</p><p><strong>Conclusions: </strong>These results support the hypothesis that distal DMD gene mutations affecting Dp71 may contribute to the emergence of social and emotional problems that may relate to the autistic traits and executive dysfunctions reported in DMD. The present alterations in Dp71-null mice may possibly add to the subtle social behavior problems previously associated with the loss of the Dp427 dystrophin, in line with the current hypothesis that risk and severity of behavioral problems in patients increase with cumulative loss of several brain dystrophin isoforms.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"21"},"PeriodicalIF":4.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1186/s12993-024-00247-w
Nasrin Shahbazi, Ali Heirani, Ehsan Amiri, Daniel Gomes da Silva Machado
Background: This study investigated the effects of repetitive unihemispheric concurrent dual-site anodal transcranial direct current stimulation (a-tDCSUHCDS) associated with the use of virtual reality games (VR) on the motor coordination of sedentary adolescent girls.
Methods: Thirty-six inactive adolescent girls were randomly assigned into 3 groups (n = 12 per group): (1) VR + a-tDCSUHCDS, (2) VR + sham-tDCSUHCDS, and (3) Control. The VR + a-tDCSUHCDS and VR + s-tDCSUHCDS groups received the intervention three times a week for four weeks. In each experimental session, participants first received either 20 min of a-tDCSUHCDS (2 mA at each anodal electrode) targeting the primary motor cortex (M1) and the left dorsolateral prefrontal cortex (DLPFC) or sham and then performed VR for 1 h. The control group received no intervention. Eye-hand coordination (EHC) and bimanual coordination (BC) were measured at baseline, post-intervention, and two weeks later (retention test) using the automatic scoring mirror tracer and continuous two-arm coordination test, respectively.
Results: Results showed that the EHC was significantly higher in the VR + a-tDCS and VR + s-tDCS groups at post-intervention (all ps< 0.001) and the retention test (all ps< 0.001) compared to the control group. Moreover, the EHC was significantly higher in the VR + a-tDCS group compared to the VR + s-tDCS group (p = 0.024) at the retention. Similarly, VR + a-tDCS and VR + s-tDCS improved BC compared to the control group at post-intervention (all ps< 0.001) and retention test (all ps< 0.001). In addition, higher BC was observed in the VR + a-tDCS group compared to the VR + s-tDCS group (p< 0.001) at the retention test.
Conclusions: Our results suggest that adding a-tDCSUHCDS to VR over 12 sessions may have an additional effect on VR training for improving and retaining motor coordination in sedentary adolescent girls.
{"title":"Effects of repeated unihemispheric concurrent dual-site tDCS and virtual reality games on motor coordination of sedentary adolescent girls.","authors":"Nasrin Shahbazi, Ali Heirani, Ehsan Amiri, Daniel Gomes da Silva Machado","doi":"10.1186/s12993-024-00247-w","DOIUrl":"10.1186/s12993-024-00247-w","url":null,"abstract":"<p><strong>Background: </strong>This study investigated the effects of repetitive unihemispheric concurrent dual-site anodal transcranial direct current stimulation (a-tDCS<sub>UHCDS</sub>) associated with the use of virtual reality games (VR) on the motor coordination of sedentary adolescent girls.</p><p><strong>Methods: </strong>Thirty-six inactive adolescent girls were randomly assigned into 3 groups (n = 12 per group): (1) VR + a-tDCS<sub>UHCDS</sub>, (2) VR + sham-tDCS<sub>UHCDS</sub>, and (3) Control. The VR + a-tDCS<sub>UHCDS</sub> and VR + s-tDCS<sub>UHCDS</sub> groups received the intervention three times a week for four weeks. In each experimental session, participants first received either 20 min of a-tDCS<sub>UHCDS</sub> (2 mA at each anodal electrode) targeting the primary motor cortex (M1) and the left dorsolateral prefrontal cortex (DLPFC) or sham and then performed VR for 1 h. The control group received no intervention. Eye-hand coordination (EHC) and bimanual coordination (BC) were measured at baseline, post-intervention, and two weeks later (retention test) using the automatic scoring mirror tracer and continuous two-arm coordination test, respectively.</p><p><strong>Results: </strong>Results showed that the EHC was significantly higher in the VR + a-tDCS and VR + s-tDCS groups at post-intervention (all ps< 0.001) and the retention test (all ps< 0.001) compared to the control group. Moreover, the EHC was significantly higher in the VR + a-tDCS group compared to the VR + s-tDCS group (p = 0.024) at the retention. Similarly, VR + a-tDCS and VR + s-tDCS improved BC compared to the control group at post-intervention (all ps< 0.001) and retention test (all ps< 0.001). In addition, higher BC was observed in the VR + a-tDCS group compared to the VR + s-tDCS group (p< 0.001) at the retention test.</p><p><strong>Conclusions: </strong>Our results suggest that adding a-tDCS<sub>UHCDS</sub> to VR over 12 sessions may have an additional effect on VR training for improving and retaining motor coordination in sedentary adolescent girls.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"20"},"PeriodicalIF":4.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}