Pub Date : 2024-12-28DOI: 10.1186/s12993-024-00264-9
Can Cui, Yuan Yuan, Yingjie Jiang
Reward cues have long been considered to enhance creative performance; however, little is known about whether rewards can affect creative problem solving by manipulating states of flexibility and persistence. This study sought to elucidate the differential impacts of real versus hypothetical rewards on the creative process utilizing the Chinese compound remote association task. Behavioral analysis revealed a significantly enhanced solution rate and response times in scenarios involving real rewards, in contrast to those observed with hypothetical rewards. Electrophysiological findings indicated that hypothetical rewards led to more positive P200-600 amplitudes, in stark contrast to the amplitudes observed in the context of real rewards. These findings indicate a positive impact of real rewards on creative remote associations and contribute new insights into the relationship between rewards and creative problem solving, highlighting the crucial role of persistence/flexibility in the formation of creativity.
{"title":"Can rewards enhance creativity? Exploring the effects of real and hypothetical rewards on creative problem solving and neural mechanisms.","authors":"Can Cui, Yuan Yuan, Yingjie Jiang","doi":"10.1186/s12993-024-00264-9","DOIUrl":"10.1186/s12993-024-00264-9","url":null,"abstract":"<p><p>Reward cues have long been considered to enhance creative performance; however, little is known about whether rewards can affect creative problem solving by manipulating states of flexibility and persistence. This study sought to elucidate the differential impacts of real versus hypothetical rewards on the creative process utilizing the Chinese compound remote association task. Behavioral analysis revealed a significantly enhanced solution rate and response times in scenarios involving real rewards, in contrast to those observed with hypothetical rewards. Electrophysiological findings indicated that hypothetical rewards led to more positive P200-600 amplitudes, in stark contrast to the amplitudes observed in the context of real rewards. These findings indicate a positive impact of real rewards on creative remote associations and contribute new insights into the relationship between rewards and creative problem solving, highlighting the crucial role of persistence/flexibility in the formation of creativity.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"37"},"PeriodicalIF":4.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-28DOI: 10.1186/s12993-024-00262-x
Hiroyuki Ohta, Takashi Nozawa, Kohki Higuchi, Andrea L Meredith, Yuji Morimoto, Yasushi Satoh, Toshiaki Ishizuka
The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes. Using a 5-armed bandit task (5-ABT) and a novel Δrepeat rate analysis method that considers individual baseline choice tendencies, we investigated immediate trial-by-trial Win-Stay-Lose-Shift (WSLS) strategies and learning rates across multiple trials in KCNMA1 knockout (KCNMA1-/-) mice. Three key findings emerged: (1) Unlike wildtype mice, which showed increased Δrepeat rates after rewards and decreased rates after losses, KCNMA1-/- mice exhibited impaired WSLS behavior, (2) KCNMA1-/- mice displayed shortened response intervals after unrewarded trials, and (3) despite these short-term behavioral impairments, their learning rates and task accuracy remained comparable to wildtype mice, with significantly shorter task completion times. These results suggest that BK channel dysfunction primarily alters immediate behavioral responses to outcomes in the next trial rather than affecting long-term learning capabilities. These findings and our analytical method may help identify behavioral phenotypes in animal models of both BK channel-related and other neurodevelopmental disorders.
{"title":"Altered trial-to-trial responses to reward outcomes in KCNMA1 knockout mice during probabilistic learning tasks.","authors":"Hiroyuki Ohta, Takashi Nozawa, Kohki Higuchi, Andrea L Meredith, Yuji Morimoto, Yasushi Satoh, Toshiaki Ishizuka","doi":"10.1186/s12993-024-00262-x","DOIUrl":"10.1186/s12993-024-00262-x","url":null,"abstract":"<p><p>The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes. Using a 5-armed bandit task (5-ABT) and a novel Δrepeat rate analysis method that considers individual baseline choice tendencies, we investigated immediate trial-by-trial Win-Stay-Lose-Shift (WSLS) strategies and learning rates across multiple trials in KCNMA1 knockout (KCNMA1<sup>-/-</sup>) mice. Three key findings emerged: (1) Unlike wildtype mice, which showed increased Δrepeat rates after rewards and decreased rates after losses, KCNMA1<sup>-/-</sup> mice exhibited impaired WSLS behavior, (2) KCNMA1<sup>-/-</sup> mice displayed shortened response intervals after unrewarded trials, and (3) despite these short-term behavioral impairments, their learning rates and task accuracy remained comparable to wildtype mice, with significantly shorter task completion times. These results suggest that BK channel dysfunction primarily alters immediate behavioral responses to outcomes in the next trial rather than affecting long-term learning capabilities. These findings and our analytical method may help identify behavioral phenotypes in animal models of both BK channel-related and other neurodevelopmental disorders.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"36"},"PeriodicalIF":4.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1186/s12993-024-00258-7
Tina T Vo, Shandell Pahlen, Anqing Zheng, Sian Yu, Emery Lor, Nicholas D Bowman, Robin P Corley, Naomi P Friedman, Sally J Wadsworth, Chandra A Reynolds
Playing video games, especially games with action-based mechanics, is correlated with better cognitive performance, yet these performance advantages may originate from intrinsic factors such as earlier life cognitive differences. We investigated whether gaming-cognition associations in a sample past young adulthood remain robust after accounting for adolescent cognitive functioning. Using data from the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife; N = 1241, Mage = 33.3, %, age range = 28-51, Female = 52.9%), we compared cognitive performance of adult recreational gamers (40.6%) to non-gamers (59.4%) and between different types of gamers. Measures included processing speed, spatial reasoning, and working memory cognitive tasks, gaming status, and gameplay type engagement. The majority of gamer participants reported exclusively playing puzzle/strategy/life simulation games (53.0%) or action type games (33.1%); a smaller proportion reported playing both types of games (10.3%). Overall, gamers significantly outperformed non-gamers across most cognitive tasks (Cohen's d = 0.17-0.25), with limited evidence of a differential gameplay mechanic effect across tasks. Selection effects were evident whereby after adolescent IQ adjustment, gamer cognitive effects diminished by over 35% but persisted for spatial performance. Adolescent IQ predicted puzzle/strategy/life simulation preference but not action-type games, suggesting a selection effect. Our study replicates prior gaming findings and reveals that earlier life functioning contributes to adult gaming-cognition associations. Gamer-spatial associations are not fully attributable to intrinsic factors, and playing video games, regardless of a specific gameplay mechanic or genre, may represent a cognitively engaging lifestyle behavior that may benefit cognitive functioning, with implications for preserved cognition.
{"title":"From controllers to cognition: the importance of selection factors on video game and gameplay mechanic-derived cognitive differences.","authors":"Tina T Vo, Shandell Pahlen, Anqing Zheng, Sian Yu, Emery Lor, Nicholas D Bowman, Robin P Corley, Naomi P Friedman, Sally J Wadsworth, Chandra A Reynolds","doi":"10.1186/s12993-024-00258-7","DOIUrl":"10.1186/s12993-024-00258-7","url":null,"abstract":"<p><p>Playing video games, especially games with action-based mechanics, is correlated with better cognitive performance, yet these performance advantages may originate from intrinsic factors such as earlier life cognitive differences. We investigated whether gaming-cognition associations in a sample past young adulthood remain robust after accounting for adolescent cognitive functioning. Using data from the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife; N = 1241, M<sub>age</sub> = 33.3, %, age range = 28-51, Female = 52.9%), we compared cognitive performance of adult recreational gamers (40.6%) to non-gamers (59.4%) and between different types of gamers. Measures included processing speed, spatial reasoning, and working memory cognitive tasks, gaming status, and gameplay type engagement. The majority of gamer participants reported exclusively playing puzzle/strategy/life simulation games (53.0%) or action type games (33.1%); a smaller proportion reported playing both types of games (10.3%). Overall, gamers significantly outperformed non-gamers across most cognitive tasks (Cohen's d = 0.17-0.25), with limited evidence of a differential gameplay mechanic effect across tasks. Selection effects were evident whereby after adolescent IQ adjustment, gamer cognitive effects diminished by over 35% but persisted for spatial performance. Adolescent IQ predicted puzzle/strategy/life simulation preference but not action-type games, suggesting a selection effect. Our study replicates prior gaming findings and reveals that earlier life functioning contributes to adult gaming-cognition associations. Gamer-spatial associations are not fully attributable to intrinsic factors, and playing video games, regardless of a specific gameplay mechanic or genre, may represent a cognitively engaging lifestyle behavior that may benefit cognitive functioning, with implications for preserved cognition.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"35"},"PeriodicalIF":4.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1186/s12993-024-00255-w
Shruthi S Sharma, Arun Sasidharan, D Yoganarasimha, T R Laxmi
Background: Early life stress (ELS) during the stress hypo-responsive period (SHRP) alters the curiosity-like behavior later during adolescence. Previous studies have shown maternal separation (MS) stress-induced heightened curiosity and associated risk-taking behavior in the object retrieval task (ORT). However, the neural correlates of curiosity in adolescent rats predisposed to early life stress remain unexplored. Hence, the present study aimed to investigate the neural oscillatory patterns and network characteristics in the regions implicated in curiosity behavior, such as the Prelimbic cortex (PL), Nucleus Accumbens (NAc), and CA1 of the Hippocampus. The local field potentials data were analysed to understand the neural activity patterns in these areas during the risky zone crossing and object retrieval phase of the ORT in MS rats and compared with the normal control (NC) group.
Results: In comparison to NC, MS rats showed a reduction in the theta power at 8-12 Hz, beta power at 12-20 Hz, and gamma power at 20-40 Hz range in the PL during risky zone crossing time. MS rats also showed reduced cross-correlation between PL-CA1 and reduced theta coherence between NAc-CA1 during risky zone crossing. During the object retrieval phase, the MS rats showed reduced peak cross-correlation between PL-CA1 and PL-NAc. Behaviourally, MS rats displayed an increased preference for the curiosity platform and retrieved more hidden objects, thus accounting for a higher curiosity index than controls.
Conclusion: In summary, a reduced synchronization between the PL, NAc, and CA1 during the object retrieval task indicates how early MS stress during a critical developmental period impacts the limbic circuit connectivity. This corresponded with enhanced curiosity index in adolescent MS rats, predicting an altered intrinsic motivation and hence a higher susceptibility to substance use disorders during adolescence.
{"title":"Characterization of neuronal oscillations in the prelimbic cortex, nucleus accumbens and CA1 hippocampus during object retrieval task in rats predisposed to early life stress.","authors":"Shruthi S Sharma, Arun Sasidharan, D Yoganarasimha, T R Laxmi","doi":"10.1186/s12993-024-00255-w","DOIUrl":"10.1186/s12993-024-00255-w","url":null,"abstract":"<p><strong>Background: </strong>Early life stress (ELS) during the stress hypo-responsive period (SHRP) alters the curiosity-like behavior later during adolescence. Previous studies have shown maternal separation (MS) stress-induced heightened curiosity and associated risk-taking behavior in the object retrieval task (ORT). However, the neural correlates of curiosity in adolescent rats predisposed to early life stress remain unexplored. Hence, the present study aimed to investigate the neural oscillatory patterns and network characteristics in the regions implicated in curiosity behavior, such as the Prelimbic cortex (PL), Nucleus Accumbens (NAc), and CA1 of the Hippocampus. The local field potentials data were analysed to understand the neural activity patterns in these areas during the risky zone crossing and object retrieval phase of the ORT in MS rats and compared with the normal control (NC) group.</p><p><strong>Results: </strong>In comparison to NC, MS rats showed a reduction in the theta power at 8-12 Hz, beta power at 12-20 Hz, and gamma power at 20-40 Hz range in the PL during risky zone crossing time. MS rats also showed reduced cross-correlation between PL-CA1 and reduced theta coherence between NAc-CA1 during risky zone crossing. During the object retrieval phase, the MS rats showed reduced peak cross-correlation between PL-CA1 and PL-NAc. Behaviourally, MS rats displayed an increased preference for the curiosity platform and retrieved more hidden objects, thus accounting for a higher curiosity index than controls.</p><p><strong>Conclusion: </strong>In summary, a reduced synchronization between the PL, NAc, and CA1 during the object retrieval task indicates how early MS stress during a critical developmental period impacts the limbic circuit connectivity. This corresponded with enhanced curiosity index in adolescent MS rats, predicting an altered intrinsic motivation and hence a higher susceptibility to substance use disorders during adolescence.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"34"},"PeriodicalIF":4.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1186/s12993-024-00263-w
Chih-Zen Chang, Shu-Chuan Wu, Aij-Lie Kwan, Chih-Lung Lin
{"title":"Retraction Note: 4'‑O‑β‑D‑glucosyl‑5‑O‑methylvisamminol, an active ingredient of Saposhnikovia divaricata, attenuates high‑mobility group box 1 and subarachnoid hemorrhage‑induced vasospasm in a rat model.","authors":"Chih-Zen Chang, Shu-Chuan Wu, Aij-Lie Kwan, Chih-Lung Lin","doi":"10.1186/s12993-024-00263-w","DOIUrl":"10.1186/s12993-024-00263-w","url":null,"abstract":"","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"33"},"PeriodicalIF":4.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1186/s12993-024-00260-z
Chih-Lin Lee, Yu-Shan Su, Chi-Yu Chang, Tzu-Yun Kung, Yu-Kai Ma, Pei-Yun Zeng, Ching-Chuan Cheng, Yu-Jen Chang, Yu-Ju Chou, Tsung-Han Kuo
Background: Animals exhibit a wide range of social behaviors, including positive actions that promote social cohesion and negative behaviors associated with asserting dominance. While these behaviors are often viewed as opposites, they can also exist independently or coexist in complex ways, necessitating further investigation into their interrelationships.
Results: To study the interplay between these two types of behaviors, we examined mouse social behaviors using resident-intruder assays and revealed a negative correlation between social aggression and prosocial allogrooming. Suppressing aggressive motivation through various manipulations, including social subordination, olfaction ablation, and inhibition of aggressive neural circuits, led to an increased display of allogrooming behavior. The mouse findings prompted us to further explore the relationship between aggression and prosocial behaviors in preschool children. Similarly, we observed a negative association between aggression and prosocial behaviors, which were potentially influenced by their inhibitory control abilities.
Conclusions: Through this cross-species study, we uncovered the inhibitory impact of aggressive neural circuits on mouse allogrooming and established a link between aggression and prosocial behaviors in children. These insights offer valuable implications for understanding and potentially influencing social interactions in both animal and human contexts, with potential applications in preschool education practices.
{"title":"Uncovering hidden prosocial behaviors underlying aggression motivation in mice and young children.","authors":"Chih-Lin Lee, Yu-Shan Su, Chi-Yu Chang, Tzu-Yun Kung, Yu-Kai Ma, Pei-Yun Zeng, Ching-Chuan Cheng, Yu-Jen Chang, Yu-Ju Chou, Tsung-Han Kuo","doi":"10.1186/s12993-024-00260-z","DOIUrl":"10.1186/s12993-024-00260-z","url":null,"abstract":"<p><strong>Background: </strong>Animals exhibit a wide range of social behaviors, including positive actions that promote social cohesion and negative behaviors associated with asserting dominance. While these behaviors are often viewed as opposites, they can also exist independently or coexist in complex ways, necessitating further investigation into their interrelationships.</p><p><strong>Results: </strong>To study the interplay between these two types of behaviors, we examined mouse social behaviors using resident-intruder assays and revealed a negative correlation between social aggression and prosocial allogrooming. Suppressing aggressive motivation through various manipulations, including social subordination, olfaction ablation, and inhibition of aggressive neural circuits, led to an increased display of allogrooming behavior. The mouse findings prompted us to further explore the relationship between aggression and prosocial behaviors in preschool children. Similarly, we observed a negative association between aggression and prosocial behaviors, which were potentially influenced by their inhibitory control abilities.</p><p><strong>Conclusions: </strong>Through this cross-species study, we uncovered the inhibitory impact of aggressive neural circuits on mouse allogrooming and established a link between aggression and prosocial behaviors in children. These insights offer valuable implications for understanding and potentially influencing social interactions in both animal and human contexts, with potential applications in preschool education practices.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"32"},"PeriodicalIF":4.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-24DOI: 10.1186/s12993-024-00254-x
Romi Sagi, Moumita Chakraborty, Milos Bogdanovic, Hila Asraf, Israel Sekler, Ora Kofman, Hagit Cohen, Michal Hershfinkel
Background: Mood disorders, particularly depression and anxiety, are associated with zinc dyshomeostasis and aberrant GABAergic signaling. Activation of ZnR/GPR39 by synaptic zinc in the hippocampus triggers phosphorylation of extracellular regulated kinase (ERK1/2), which regulates the K+/Cl- cotransporter (KCC2) and thereby GABAergic inhibitory neurotransmission and seizure activity. Therefore, we studied whether impaired ZnR/GPR39 signaling is linked to anxiety-related behavior in male or female mice.
Results: Using the acoustic startle response, elevated plus maze, and open field test, we found increased anxiety-related behavior in ZnR/GPR39 knockout (KO) mice. Despite a well-established sex difference, where females are typically more prone to anxiety, both male and female ZnR/GPR39 KO mice exhibited increased anxiety-related behavior compared to wildtype (WT) mice. Additionally, ZnR/GPR39 KO mice displayed impaired motor coordination in the pole and rotarod tests but did not show reduced muscle strength, as indicated by a grip test. Finally, we found intrinsic alterations in the expression level of KCC2, a major Cl- transporter regulating GABAergic signaling, in the amygdala of naïve ZnR/GPR39 KO mice compared to controls.
Conclusions: Our findings indicate that loss of ZnR/GPR39 enhances anxiety-related behavior in both male and female mice. Moreover, ZnR/GPR39 KO mice exhibit impaired motor coordination, which may be associated with increased anxiety. Finally, we demonstrate that loss of ZnR/GPR39 modulates the expression of KCC2 in the amygdala. Thus, we propose that ZnR/GPR39 can serve as a target for regulating GABAergic signaling in anxiety treatment.
背景:情绪障碍,尤其是抑郁和焦虑,与锌失衡和 GABA 能信号异常有关。海马突触锌激活 ZnR/GPR39 会引发细胞外调节激酶(ERK1/2)磷酸化,从而调节 K+/Cl- 共转运体(KCC2),进而调节 GABA 能抑制性神经传递和癫痫发作活动。因此,我们研究了ZnR/GPR39信号传导受损是否与雄性或雌性小鼠的焦虑相关行为有关:结果:通过声学惊吓反应、高架加迷宫和开阔地测试,我们发现 ZnR/GPR39 基因敲除(KO)小鼠的焦虑相关行为有所增加。雌性小鼠通常更容易焦虑,尽管性别差异已得到证实,但与野生型(WT)小鼠相比,雄性和雌性 ZnR/GPR39 KO 小鼠的焦虑相关行为均有所增加。此外,ZnR/GPR39 KO 小鼠在极点和转体测试中表现出运动协调性受损,但在握力测试中并未表现出肌肉力量下降。最后,与对照组相比,我们发现在天真 ZnR/GPR39 KO 小鼠的杏仁核中,调节 GABA 能信号转导的主要 Cl- 转运体 KCC2 的表达水平发生了内在改变:我们的研究结果表明,ZnR/GPR39缺失会增强雄性和雌性小鼠的焦虑相关行为。此外,ZnR/GPR39 KO 小鼠的运动协调能力受损,这可能与焦虑增加有关。最后,我们证明 ZnR/GPR39 的缺失会调节杏仁核中 KCC2 的表达。因此,我们认为 ZnR/GPR39 可以作为调节 GABA 能信号传导的靶点,用于焦虑症的治疗。
{"title":"Loss of the zinc receptor ZnR/GPR39 in mice enhances anxiety-related behavior and motor deficits, and modulates KCC2 expression in the amygdala.","authors":"Romi Sagi, Moumita Chakraborty, Milos Bogdanovic, Hila Asraf, Israel Sekler, Ora Kofman, Hagit Cohen, Michal Hershfinkel","doi":"10.1186/s12993-024-00254-x","DOIUrl":"10.1186/s12993-024-00254-x","url":null,"abstract":"<p><strong>Background: </strong>Mood disorders, particularly depression and anxiety, are associated with zinc dyshomeostasis and aberrant GABAergic signaling. Activation of ZnR/GPR39 by synaptic zinc in the hippocampus triggers phosphorylation of extracellular regulated kinase (ERK1/2), which regulates the K<sup>+</sup>/Cl<sup>-</sup> cotransporter (KCC2) and thereby GABAergic inhibitory neurotransmission and seizure activity. Therefore, we studied whether impaired ZnR/GPR39 signaling is linked to anxiety-related behavior in male or female mice.</p><p><strong>Results: </strong>Using the acoustic startle response, elevated plus maze, and open field test, we found increased anxiety-related behavior in ZnR/GPR39 knockout (KO) mice. Despite a well-established sex difference, where females are typically more prone to anxiety, both male and female ZnR/GPR39 KO mice exhibited increased anxiety-related behavior compared to wildtype (WT) mice. Additionally, ZnR/GPR39 KO mice displayed impaired motor coordination in the pole and rotarod tests but did not show reduced muscle strength, as indicated by a grip test. Finally, we found intrinsic alterations in the expression level of KCC2, a major Cl<sup>-</sup> transporter regulating GABAergic signaling, in the amygdala of naïve ZnR/GPR39 KO mice compared to controls.</p><p><strong>Conclusions: </strong>Our findings indicate that loss of ZnR/GPR39 enhances anxiety-related behavior in both male and female mice. Moreover, ZnR/GPR39 KO mice exhibit impaired motor coordination, which may be associated with increased anxiety. Finally, we demonstrate that loss of ZnR/GPR39 modulates the expression of KCC2 in the amygdala. Thus, we propose that ZnR/GPR39 can serve as a target for regulating GABAergic signaling in anxiety treatment.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"31"},"PeriodicalIF":4.7,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1186/s12993-024-00259-6
Maëlan Q Menétrey, David Pascucci
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.
{"title":"Spectral tuning and after-effects in neural entrainment.","authors":"Maëlan Q Menétrey, David Pascucci","doi":"10.1186/s12993-024-00259-6","DOIUrl":"10.1186/s12993-024-00259-6","url":null,"abstract":"<p><p>Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"29"},"PeriodicalIF":4.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cutibacterium acnes(C. acnes), a Gram-positive anaerobe and a dominant bacterium species in the sebaceous follicles of the face was detected in the brain of Alzheimer's disease (AD) patients. It has been found that C. acnes activates non-specifically the innate immune system by producing proinflammatory cytokines and can participate in brain inflammation. We hypothesise that C. acnes could influence the brain through the structural alteration in axons and dendrites of neurons.
Methods: In this regard, the hippocampus of rats was infected with C. acnes, and memory retention, amyloid-β (Aβ1-42) deposition, hyperphosphorylated tau protein (p-Tau) formation, and expression levels of MAP2 and β-tubulin proteins in the hippocampus tissues were investigated.
Results: C. acnes-infected rats displayed memory deficits and Aβ1-42 deposits were detected in their hippocampus tissue up to 7 days post-infection. C. acnes was neurotoxic and exerted detrimental effects on MAP2 and β-tubulin proteins, which are required for normal neuronal function. An elevated level of p-Tau was also identified in infected animals.
Conclusion: Based on these results, we propose that C. acnes infection of the brain participates in the initiation of the pathogenesis of sporadic AD through degeneration of axons and dendrites.
{"title":"Cutibacterium Acnes induces Alzheimer's disease-like pathology in brains of wistar rats through structural changes associated with microtubules.","authors":"Morteza Aliashrafi, Mohammad Nasehi, Seyed Davar Siadat, Mohammad-Hossein Mohammadi-Mahdiabadi-Hasani, Hakimeh Zali, Zahra Niknam","doi":"10.1186/s12993-024-00257-8","DOIUrl":"10.1186/s12993-024-00257-8","url":null,"abstract":"<p><strong>Background: </strong>Cutibacterium acnes(C. acnes), a Gram-positive anaerobe and a dominant bacterium species in the sebaceous follicles of the face was detected in the brain of Alzheimer's disease (AD) patients. It has been found that C. acnes activates non-specifically the innate immune system by producing proinflammatory cytokines and can participate in brain inflammation. We hypothesise that C. acnes could influence the brain through the structural alteration in axons and dendrites of neurons.</p><p><strong>Methods: </strong>In this regard, the hippocampus of rats was infected with C. acnes, and memory retention, amyloid-β (Aβ<sub>1-42</sub>) deposition, hyperphosphorylated tau protein (p-Tau) formation, and expression levels of MAP2 and β-tubulin proteins in the hippocampus tissues were investigated.</p><p><strong>Results: </strong>C. acnes-infected rats displayed memory deficits and Aβ<sub>1-42</sub> deposits were detected in their hippocampus tissue up to 7 days post-infection. C. acnes was neurotoxic and exerted detrimental effects on MAP2 and β-tubulin proteins, which are required for normal neuronal function. An elevated level of p-Tau was also identified in infected animals.</p><p><strong>Conclusion: </strong>Based on these results, we propose that C. acnes infection of the brain participates in the initiation of the pathogenesis of sporadic AD through degeneration of axons and dendrites.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"30"},"PeriodicalIF":4.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1186/s12993-024-00256-9
Sonia Burgaz, Elisa Navarro, Santiago Rodríguez-Carreiro, Carmen Navarrete, Martin Garrido-Rodríguez, Isabel Lastres-Becker, Julia Chocarro, José L Lanciego, Eduardo Muñoz, Javier Fernández-Ruiz
Background: The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis.
Methods: To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc.
Results: Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling.
Conclusion: Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.
{"title":"Investigation in the cannabigerol derivative VCE-003.2 as a disease-modifying agent in a mouse model of experimental synucleinopathy.","authors":"Sonia Burgaz, Elisa Navarro, Santiago Rodríguez-Carreiro, Carmen Navarrete, Martin Garrido-Rodríguez, Isabel Lastres-Becker, Julia Chocarro, José L Lanciego, Eduardo Muñoz, Javier Fernández-Ruiz","doi":"10.1186/s12993-024-00256-9","DOIUrl":"10.1186/s12993-024-00256-9","url":null,"abstract":"<p><strong>Background: </strong>The cannabigerol derivative VCE-003.2, which has activity at the peroxisome proliferator-activated receptor-γ has afforded neuroprotection in experimental models of Parkinson's disease (PD) based on mitochondrial dysfunction (6-hydroxydopamine-lesioned mice) and neuroinflammation (LPS-lesioned mice). Now, we aim to explore VCE-003.2 neuroprotective properties in a PD model that also involves protein dysregulation, other key event in PD pathogenesis.</p><p><strong>Methods: </strong>To this end, an adeno-associated viral vector serotype 9 coding for a mutated form of the α-synuclein gene (AAV9-SynA53T) was unilaterally delivered in the substantia nigra pars compacta (SNpc) of mice. This model leads to motor impairment and progressive loss of tyrosine hydroxylase-labelled neurons in the SNpc.</p><p><strong>Results: </strong>Oral administration of VCE-003.2 at 20 mg/kg for 14 days improved the performance of mice injected with AAV9-SynA53T in various motor tests, correlating with the preservation of tyrosine hydroxylase-labelled neurons in the SNpc. VCE-003.2 also reduced reactive microgliosis and astrogliosis in the SNpc. Furthermore, we conducted a transcriptomic analysis in the striatum of mice injected with AAV9-SynA53T and treated with either VCE-003.2 or vehicle, as well as control animals. This analysis aimed to identify gene families specifically altered by the pathology and/or VCE-003.2 treatment. Our data revealed pathology-induced changes in genes related to mitochondrial function, lysosomal cell pathways, immune responses, and lipid metabolism. In contrast, VCE-003.2 treatment predominantly affected the immune response through interferon signaling.</p><p><strong>Conclusion: </strong>Our study broadens the neuroprotective potential of VCE-003.2, previously described against mitochondrial dysfunction, oxidative stress, glial reactivity and neuroinflammation in PD. We now demonstrate its efficacy against another key pathogenic event in PD as α-synuclein dysregulation. Furthermore, our investigation sheds light on the molecular mechanisms underlying VCE-003.2 revealing its role in regulating interferon signaling. These findings, together with a favorable ADMET profile, enhance the preclinical interest of VCE-003.2 towards its future clinical development in PD.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"28"},"PeriodicalIF":4.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}