{"title":"Supplemental Material for The Effects of Time Horizon and Guided Choices on Explore–Exploit Decisions in Rodents","authors":"","doi":"10.1037/bne0000549.supp","DOIUrl":"https://doi.org/10.1037/bne0000549.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48000089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bailey Holt-Gosselin, Emily M Cohodes, Sarah McCauley, Jordan C Foster, Paola Odriozola, Sadie J Zacharek, Sahana Kribakaran, Jason T Haberman, H R Hodges, Dylan G Gee
The COVID-19 pandemic is an ongoing stressor that has resulted in the exacerbation of mental health problems worldwide. However, longitudinal studies that identify preexisting behavioral and neurobiological factors associated with mental health outcomes during the pandemic are lacking. Here, we examined associations between prepandemic coping strategy engagement and frontolimbic circuitry with internalizing symptoms during the pandemic. In 85 adults (71.8% female; age 18-30 years), we assessed prototypically adaptive coping strategies (Connor-Davidson Resilience Scale), resting-state functional magnetic resonance imaging functional connectivity (FC) of frontolimbic circuitry, and depression and anxiety symptoms (Beck Depression Inventory, Screen for Child Anxiety-Related Emotional Disorders-Adult, respectively). We conducted general linear models to test preregistered hypotheses that (1) lower coping engagement prepandemic and (2) weaker frontolimbic FC prepandemic would predict elevated symptoms during the pandemic; and (3) coping would interact with FC to predict symptoms during the pandemic. Depression and anxiety symptoms worsened during the pandemic (ps < .001). Prepandemic adaptive coping engagement and frontolimbic FC were not associated with depression or anxiety symptoms during the pandemic (uncorrected ps > .05). Coping interacted with insula-rostral anterior cingulate cortex (ACC) FC (p = .003, pFDR = .014) and with insula-ventral ACC FC (p < .001, pFDR < .001) to predict depression symptoms, but these findings did not survive FDR correction after removal of outliers. Findings from our preregistered study suggest that specific prepandemic factors, particularly adaptive coping and frontolimbic circuitry, are not robustly associated with emotional responses to the pandemic. Additional studies that identify preexisting neurobehavioral factors implicated in mental health outcomes during global health crises are needed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
{"title":"Lack of robust associations between prepandemic coping strategies and frontolimbic circuitry with depression and anxiety symptoms during the COVID-19 pandemic: A preregistered longitudinal study.","authors":"Bailey Holt-Gosselin, Emily M Cohodes, Sarah McCauley, Jordan C Foster, Paola Odriozola, Sadie J Zacharek, Sahana Kribakaran, Jason T Haberman, H R Hodges, Dylan G Gee","doi":"10.1037/bne0000534","DOIUrl":"10.1037/bne0000534","url":null,"abstract":"<p><p>The COVID-19 pandemic is an ongoing stressor that has resulted in the exacerbation of mental health problems worldwide. However, longitudinal studies that identify preexisting behavioral and neurobiological factors associated with mental health outcomes during the pandemic are lacking. Here, we examined associations between prepandemic coping strategy engagement and frontolimbic circuitry with internalizing symptoms during the pandemic. In 85 adults (71.8% female; age 18-30 years), we assessed prototypically adaptive coping strategies (Connor-Davidson Resilience Scale), resting-state functional magnetic resonance imaging functional connectivity (FC) of frontolimbic circuitry, and depression and anxiety symptoms (Beck Depression Inventory, Screen for Child Anxiety-Related Emotional Disorders-Adult, respectively). We conducted general linear models to test preregistered hypotheses that (1) lower coping engagement prepandemic and (2) weaker frontolimbic FC prepandemic would predict elevated symptoms during the pandemic; and (3) coping would interact with FC to predict symptoms during the pandemic. Depression and anxiety symptoms worsened during the pandemic (ps < .001). Prepandemic adaptive coping engagement and frontolimbic FC were not associated with depression or anxiety symptoms during the pandemic (uncorrected ps > .05). Coping interacted with insula-rostral anterior cingulate cortex (ACC) FC (p = .003, pFDR = .014) and with insula-ventral ACC FC (p < .001, pFDR < .001) to predict depression symptoms, but these findings did not survive FDR correction after removal of outliers. Findings from our preregistered study suggest that specific prepandemic factors, particularly adaptive coping and frontolimbic circuitry, are not robustly associated with emotional responses to the pandemic. Additional studies that identify preexisting neurobehavioral factors implicated in mental health outcomes during global health crises are needed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 6","pages":"528-540"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9200173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-06-30DOI: 10.1037/bne0000522
S Alex Marshall, Stacey L Robinson, Suzahn E Ebert, Michel A Companion, Todd E Thiele
Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption. The present study extends this research by assessing the effects of silencing CRF-producing neurons in CeA on binge-like ethanol drinking stemming from "Drinking in the Dark" (DID) procedures. CRF-ires-Cre mice underwent surgery to infuse Gi/o-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus or a control virus into either the CeA or basolateral amygdala (BLA). Gi/o-DREADD-induced CRF-neuronal inhibition in the CeA resulted in a 33% decrease in binge-like ethanol consumption. However, no effect on ethanol consumption was seen after DREADD manipulation in the BLA. Moreover, CeA CRF-neuronal inhibition had no effect on sucrose consumption. The effects of silencing CRF neurons in the CeA on ethanol consumption are not secondary to changes in motor function or anxiety-like behaviors as assessed in the open-field test (OFT). Finally, the DREADD construct's functional ability to inhibit CRF-neuronal activity was demonstrated by reduced ethanol-induced c-Fos following DREADD activation. Together, these data suggest that the CRF neurons in the CeA play an important role in binge ethanol consumption and that inhibition of the CRF-signaling pathway remains a viable target for manipulating binge-like ethanol consumption. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
反复的酗酒会导致神经可塑性事件,从而改变乙醇的药理作用,使过量饮酒永续下去。促肾上腺皮质激素释放因子(CRF)系统是乙醇诱导的神经适应驱动过量乙醇消耗的一个例子。我们的实验室之前已经证明,当注入中央杏仁核(CeA)时,CRF拮抗剂可以减少酗酒样的乙醇消耗。本研究通过评估沉默CeA中产生crf的神经元对“在黑暗中饮酒”(DID)过程中产生的酗酒样酒精饮酒的影响,扩展了这一研究。CRF-ires-Cre小鼠接受手术,将设计药物特异性激活的Gi/o偶联设计器受体(DREADD)病毒或对照病毒注入CeA或基底外侧杏仁核(BLA)。Gi/o- dreadd诱导的CeA中crf神经元抑制导致狂饮样乙醇消耗减少33%。然而,在BLA中进行DREADD操作后,对乙醇消耗量没有影响。此外,CeA crf神经元抑制对蔗糖消耗没有影响。在开放场试验(OFT)中评估,沉默CeA中CRF神经元对乙醇消耗的影响并非继发于运动功能或焦虑样行为的改变。最后,在DREADD激活后,通过减少乙醇诱导的c-Fos,证明了DREADD结构抑制crf神经元活性的功能能力。综上所述,这些数据表明,CeA中的CRF神经元在狂饮乙醇消费中起着重要作用,抑制CRF信号通路仍然是操纵狂饮乙醇消费的可行靶点。(PsycInfo Database Record (c) 2022 APA,版权所有)。
{"title":"Chemogenetic inhibition of corticotropin-releasing factor neurons in the central amygdala alters binge-like ethanol consumption in male mice.","authors":"S Alex Marshall, Stacey L Robinson, Suzahn E Ebert, Michel A Companion, Todd E Thiele","doi":"10.1037/bne0000522","DOIUrl":"10.1037/bne0000522","url":null,"abstract":"<p><p>Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption. The present study extends this research by assessing the effects of silencing CRF-producing neurons in CeA on binge-like ethanol drinking stemming from \"Drinking in the Dark\" (DID) procedures. CRF-ires-Cre mice underwent surgery to infuse G<sub>i/o</sub>-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus or a control virus into either the CeA or basolateral amygdala (BLA). G<sub>i/o</sub>-DREADD-induced CRF-neuronal inhibition in the CeA resulted in a 33% decrease in binge-like ethanol consumption. However, no effect on ethanol consumption was seen after DREADD manipulation in the BLA. Moreover, CeA CRF-neuronal inhibition had no effect on sucrose consumption. The effects of silencing CRF neurons in the CeA on ethanol consumption are not secondary to changes in motor function or anxiety-like behaviors as assessed in the open-field test (OFT). Finally, the DREADD construct's functional ability to inhibit CRF-neuronal activity was demonstrated by reduced ethanol-induced c-Fos following DREADD activation. Together, these data suggest that the CRF neurons in the CeA play an important role in binge ethanol consumption and that inhibition of the CRF-signaling pathway remains a viable target for manipulating binge-like ethanol consumption. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 6","pages":"541-550"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam W Lester, Gianna A Jordan, Colton J Blum, Zachary P Philpot, Carol A Barnes
Successful navigation depends critically upon two broad categories of spatial navigation strategies that include allocentric and egocentric reference frames, relying on external or internal spatial information, respectively. As with older adults, aged rats show robust impairments on a number of different spatial navigation tasks. There is some evidence that these navigation impairments are accompanied by a bias toward relying on egocentric over allocentric navigation strategies. To test the degree to which young and aged animals utilize these two navigation approaches, a novel behavioral arena was used in which rats are trained to traverse a circular track and to stop at a learned goal location that is fixed with respect to a panorama of visual cues projected onto the surrounding walls. By instantaneously rotating the cues, allocentric and egocentric reference frames were put in direct and immediate conflict and goal navigation performance was assessed with respect to how accurately young and aged animals were able to utilize the rotated cues. Behavioral data collected from nine young and eight aged animals revealed that both age groups were able to update their navigation performance following cue rotation. Contrary to what was expected, however, aged animals showed more accurate overall goal navigation performance, stronger allocentric strategy use, and more evident changes in behavior in response to cue rotation compared to younger animals. The young rats appeared to mix egocentric and allocentric strategies for ICR task solution. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
成功的导航主要依赖于两大类空间导航策略,分别依赖于外部或内部空间信息,包括非中心和自我中心参考框架。与老年人一样,老年大鼠在许多不同的空间导航任务上表现出明显的损伤。有一些证据表明,这些导航障碍伴随着依赖自我中心而不是非中心导航策略的偏见。为了测试幼龄和老年动物利用这两种导航方法的程度,研究人员使用了一个新的行为竞技场,在这个竞技场中,老鼠被训练穿过一个圆形轨道,并在一个习得的目标位置停下来,这个目标位置与投射到周围墙壁上的视觉线索的全景有关。通过即时旋转线索,将非中心和自我中心的参考框架置于直接和即时冲突中,并评估幼鼠和老年鼠利用旋转线索的准确程度。从9只年幼和8只年老的动物身上收集的行为数据显示,这两个年龄组都能够在线索旋转后更新他们的导航表现。然而,与预期相反,与年轻动物相比,老年动物表现出更准确的总体目标导航性能,更强的异中心策略使用,以及更明显的响应线索旋转的行为变化。年轻大鼠在ICR任务解决中表现出自我中心和非中心混合策略。(PsycInfo Database Record (c) 2022 APA,版权所有)。
{"title":"Differential effects in young and aged rats' navigational accuracy following instantaneous rotation of environmental cues.","authors":"Adam W Lester, Gianna A Jordan, Colton J Blum, Zachary P Philpot, Carol A Barnes","doi":"10.1037/bne0000536","DOIUrl":"10.1037/bne0000536","url":null,"abstract":"<p><p>Successful navigation depends critically upon two broad categories of spatial navigation strategies that include allocentric and egocentric reference frames, relying on external or internal spatial information, respectively. As with older adults, aged rats show robust impairments on a number of different spatial navigation tasks. There is some evidence that these navigation impairments are accompanied by a bias toward relying on egocentric over allocentric navigation strategies. To test the degree to which young and aged animals utilize these two navigation approaches, a novel behavioral arena was used in which rats are trained to traverse a circular track and to stop at a learned goal location that is fixed with respect to a panorama of visual cues projected onto the surrounding walls. By instantaneously rotating the cues, allocentric and egocentric reference frames were put in direct and immediate conflict and goal navigation performance was assessed with respect to how accurately young and aged animals were able to utilize the rotated cues. Behavioral data collected from nine young and eight aged animals revealed that both age groups were able to update their navigation performance following cue rotation. Contrary to what was expected, however, aged animals showed more accurate overall goal navigation performance, stronger allocentric strategy use, and more evident changes in behavior in response to cue rotation compared to younger animals. The young rats appeared to mix egocentric and allocentric strategies for ICR task solution. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 6","pages":"561-574"},"PeriodicalIF":1.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10220283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Material for Cognitive and Arginine Metabolic Correlates of Temporal Dysfunction in the MIA Rat Model of Schizophrenia Risk","authors":"","doi":"10.1037/bne0000540.supp","DOIUrl":"https://doi.org/10.1037/bne0000540.supp","url":null,"abstract":"","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44311778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
{"title":"Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol.","authors":"Alice Barros Câmara, Igor Augusto Brandão","doi":"10.1037/bne0000539.supp","DOIUrl":"https://doi.org/10.1037/bne0000539.supp","url":null,"abstract":"The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48465774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-03-07DOI: 10.1037/bne0000508
M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen
The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
{"title":"Sex and estrous cycle in memory for sequences of events in rats.","authors":"M Jayachandran, P Langius, F Pazos Rego, R P Vertes, T A Allen","doi":"10.1037/bne0000508","DOIUrl":"10.1037/bne0000508","url":null,"abstract":"<p><p>The ability to remember sequences of events is fundamental to episodic memory. While rodent studies have examined sex and estrous cycle in episodic-like spatial memory tasks, little is known about these biological variables in memory for sequences of events that depend on representations of temporal context. We investigated the role of sex and estrous cycle in rats during training and testing stages of a cross-species validated sequence memory task (Jayachandran et al., 2019). Rats were trained on a two four-odor sequence memory task delivered on opposite ends of a linear track. Training occurred in six successive stages starting with learning to poke in a nose-port for ≥ 1.2 s; eventually demonstrating sequence memory by holding their nose in the port ≥ 1 s for in-sequence odors and < 1 s for out-of-sequence odors. Performance was analyzed across sex and estrous cycle (proestrus, estrus, metestrus, and diestrus), the latter being determined by cellular composition of a daily vaginal lavage. We found no evidence of sex differences in asymptotic sequence memory performance, similar to humans performing an analogous task (Reeders et al., 2021). Likewise, no differences in sequence memory performance were found across the estrous cycle. Some caveats are that males acquired out-of-sequence trials faster during training with a 3-odor sequence, but this apparent advantage did not carry over to the 4-odor sequence. Additionally, males had shorter poke times overall which seem consistent with a decreased overall response inhibition because they occurred regardless of sequence demands. Together, these results suggest sex and estrous cycle are not major factors in sequence memory capacities. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"349-363"},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448822/pdf/nihms-1825637.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9497883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelsey A Heslin, Jessica R Purnell, Benjamin J De Corte, Krystal L Parker
The involvement of the cerebellum in suprasecond interval timing (i.e., timing in the seconds to minutes range) is controversial. A limited amount of evidence from humans, nonhuman primates, and rodents has shown that the lateral cerebellum, including the lateral cerebellar nucleus (LCN), may be necessary for successful suprasecond timing performance. However, many existing studies have pitfalls, such as limited timing outcome measures and confounded task demands. In addition, many existing studies relied on well-trained subjects. This approach may be a drawback, as the cerebellum is hypothesized to carry out ongoing error correction to limit timing variability. By using only experienced subjects, past timing studies may have missed a critical window of cerebellar involvement. In the experiments described here, we pharmacologically inactivated the rat LCN across three different peak interval timing tasks. We structured our tasks to address past confounds, collect timing variability measures, and characterize performance during target duration acquisition. Across these various tasks, we did not find strong support for cerebellar involvement in suprasecond interval timing. Our findings support the existing distinction of the cerebellum as a subsecond interval timing brain region. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
小脑参与超秒间隔计时(即秒到分钟范围内的计时)是有争议的。来自人类、非人类灵长类动物和啮齿动物的有限证据表明,外侧小脑,包括外侧小脑核(LCN),可能是成功的超秒计时性能所必需的。然而,许多现有的研究存在缺陷,如时间限制,结果测量和混淆的任务需求。此外,许多现有的研究依赖于训练有素的受试者。这种方法可能是一个缺点,因为假设小脑进行持续的错误纠正以限制时间变异性。由于只使用有经验的受试者,过去的时间研究可能错过了小脑参与的关键窗口。在这里描述的实验中,我们通过三种不同的峰间隔定时任务从药理学上灭活了大鼠LCN。我们组织了我们的任务,以解决过去的混乱,收集时间可变性测量,并在目标持续时间获取期间描述性能。在这些不同的任务中,我们没有发现小脑参与超秒间隔计时的有力支持。我们的发现支持小脑作为亚秒间隔计时脑区域的现有区别。(PsycInfo Database Record (c) 2022 APA,版权所有)。
{"title":"A limited cerebellar contribution to suprasecond timing across differing task demands.","authors":"Kelsey A Heslin, Jessica R Purnell, Benjamin J De Corte, Krystal L Parker","doi":"10.1037/bne0000531","DOIUrl":"https://doi.org/10.1037/bne0000531","url":null,"abstract":"<p><p>The involvement of the cerebellum in suprasecond interval timing (i.e., timing in the seconds to minutes range) is controversial. A limited amount of evidence from humans, nonhuman primates, and rodents has shown that the lateral cerebellum, including the lateral cerebellar nucleus (LCN), may be necessary for successful suprasecond timing performance. However, many existing studies have pitfalls, such as limited timing outcome measures and confounded task demands. In addition, many existing studies relied on well-trained subjects. This approach may be a drawback, as the cerebellum is hypothesized to carry out ongoing error correction to limit timing variability. By using only experienced subjects, past timing studies may have missed a critical window of cerebellar involvement. In the experiments described here, we pharmacologically inactivated the rat LCN across three different peak interval timing tasks. We structured our tasks to address past confounds, collect timing variability measures, and characterize performance during target duration acquisition. Across these various tasks, we did not find strong support for cerebellar involvement in suprasecond interval timing. Our findings support the existing distinction of the cerebellum as a subsecond interval timing brain region. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"479-494"},"PeriodicalIF":1.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10538789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-04-21DOI: 10.1037/bne0000515
Shanglin Zhou, Dean V Buonomano
The ability to predict and prepare for near- and far-future events is among the most fundamental computations the brain performs. Because of the importance of time for prediction and sensorimotor processing, the brain has evolved multiple mechanisms to tell and encode time across scales ranging from microseconds to days and beyond. Converging experimental and computational data indicate that, on the scale of seconds, timing relies on diverse neural mechanisms distributed across different brain areas. Among the different encoding mechanisms on the scale of seconds, we distinguish between neural population clocks and ramping activity as distinct strategies to encode time. One instance of neural population clocks, neural sequences, represents in some ways an optimal and flexible dynamic regime for the encoding of time. Specifically, neural sequences comprise a high-dimensional representation that can be used by downstream areas to flexibly generate arbitrarily simple and complex output patterns using biologically plausible learning rules. We propose that high-level integration areas may use high-dimensional dynamics such as neural sequences to encode time, providing downstream areas information to build low-dimensional ramp-like activity that can drive movements and temporal expectation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
{"title":"Neural population clocks: Encoding time in dynamic patterns of neural activity.","authors":"Shanglin Zhou, Dean V Buonomano","doi":"10.1037/bne0000515","DOIUrl":"10.1037/bne0000515","url":null,"abstract":"<p><p>The ability to predict and prepare for near- and far-future events is among the most fundamental computations the brain performs. Because of the importance of time for prediction and sensorimotor processing, the brain has evolved multiple mechanisms to tell and encode time across scales ranging from microseconds to days and beyond. Converging experimental and computational data indicate that, on the scale of seconds, timing relies on diverse neural mechanisms distributed across different brain areas. Among the different encoding mechanisms on the scale of seconds, we distinguish between neural population clocks and ramping activity as distinct strategies to encode time. One instance of neural population clocks, neural sequences, represents in some ways an optimal and flexible dynamic regime for the encoding of time. Specifically, neural sequences comprise a high-dimensional representation that can be used by downstream areas to flexibly generate arbitrarily simple and complex output patterns using biologically plausible learning rules. We propose that high-level integration areas may use high-dimensional dynamics such as neural sequences to encode time, providing downstream areas information to build low-dimensional ramp-like activity that can drive movements and temporal expectation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"374-382"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561006/pdf/nihms-1825634.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9295264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-04-28DOI: 10.1037/bne0000516
Vijay Mohan K Namboodiri
Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
{"title":"How do real animals account for the passage of time during associative learning?","authors":"Vijay Mohan K Namboodiri","doi":"10.1037/bne0000516","DOIUrl":"10.1037/bne0000516","url":null,"abstract":"<p><p>Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"136 5","pages":"383-391"},"PeriodicalIF":1.6,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561011/pdf/nihms-1825994.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41101858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}