Before we can make any choice, we must gather information from the environment about what our options are. This information-gathering process is critically mediated by attention, and our attention is, in turn, shaped by our previous experiences with-and learning about-stimuli and their consequences. In this review, we highlight studies demonstrating a rapid and automatic influence of reward learning on attentional capture and argue that these findings provide a human analog of sign-tracking behavior observed in nonhuman animals-wherein signals of reward gain incentive salience and become attractive targets for attention (and overt behavior) in their own right. We then consider the implications of this idea for understanding the drivers of cue-controlled behavior, with focus on addiction as a case in which choices with regard to reward-related stimuli can become injurious to health. We argue that motivated behavior in general-and addiction in particular-can be understood within a "biased competition" framework: Different options and outcomes compete for attentional priority as a function of top-down goals, bottom-up salience, and prior experience, and the winner of this competition becomes the target for subsequent outcome-directed and flexible behavior. Finally, we outline the implications of the biased-competition framework for cognitive, behavioral, and socioeconomic interventions for addiction. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
There is a growing number of studies investigating discriminatory fear conditioning and conditioned inhibition of fear to assess safety learning, in addition to extinction of cued fear. Despite all of these paradigms resulting in a reduction in fear expression, there are nuanced differences among them, which could be mediated through distinct behavioral and neural mechanisms. These differences could impact how we approach potential treatment options in clinical disorders with dysregulated fear responses. The objective of this review is to give an overview of the conditional discrimination and inhibition findings reported in both animal models and human neuropsychiatric disorders. Both behavioral and neural findings are reviewed among human and rodent studies that include conditional fear discrimination via conditional stimuli with and without reinforcement (CS+ vs. CS-, respectively) and/or conditional inhibition of fear through assessment of the fear response to a compound CS-/CS+ cue versus CS+. There are several parallels across species in behavioral fear expression as well as neural circuits promoting fear reduction in response to a CS- and/or CS-/CS+ compound cue. Continued and increased efforts to compare similar behavioral fear inhibition paradigms across species are needed to make breakthrough advances in our understanding and treatment approaches to individuals with fear disorders. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Psychopathology is vast and diverse. Across distinct disease states, individuals exhibit symptoms that appear counter to the standard view of rationality (expected utility maximization). We argue that some aspects of psychopathology can be described as resource-rational, reflecting a rational trade-off between reward and cognitive resources. We review work on two theories of this kind: rational inattention, where a capacity limit applies to perceptual channels, and policy compression, where the capacity limit applies to action channels. We show how these theories can parsimoniously explain many forms of psychopathology, including affective, primary psychotic, and neurodevelopmental disorders, as well as many effects of psychoactive medications on these disorders. While there are important disorder-specific differences and the theories are by no means universal, we argue that resource rationality offers a useful new perspective on psychopathology. By emphasizing the role of cognitive resource constraints, this approach offers a more inclusive picture of rationality. Some aspects of psychopathology may reflect rational trade-offs rather than the breakdown of rationality. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Here, we describe the efforts we dedicated to the challenge of modifying entrenched emotionally laden memories. In recent years, through a number of collaborations and using a combination of behavioral, molecular, and computational approaches, we: (a) developed novel approaches to fear attenuation that engage mechanisms that differ from those engaged during extinction (Monfils), (b) examined whether our approaches can generalize to other reinforcers (Lee, Gonzales, Chaudhri, Cofresi, and Monfils), (c) derived principled explanations for the differential outcomes of our approaches (Niv, Gershman, Song, and Monfils), (d) developed better assessment metrics to evaluate outcome success (Shumake and Monfils), (e) identified biomarkers that can explain significant variance in our outcomes of interest (Shumake and Monfils), and (f) developed better basic research assays and translated efforts to the clinic (Smits, Telch, Otto, Shumake, and Monfils). We briefly highlight each of these milestones and conclude with final remarks and extracted principles. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
In recent years, there have been significant advances in our understanding of the positive symptoms of schizophrenia, such as hallucinations and delusions. This progress has been significantly aided by the use of associative learning-based approaches in human subjects and preclinical animal models. Here, we first review experimental research focusing on the abnormal processing of absent stimuli using three different conditioning phenomena: conditioned hallucinations, mediated conditioning, and trace conditioning. We then review studies investigating the ability to reduce focal processing of physically present but informationally redundant stimuli using habituation, latent inhibition, and blocking. The results of these different lines of research are then summarized within the framework of Wagner's (1981) standard operating procedures model, an associative learning model with explicit reference to the internal representations of both present and absent stimuli. Within this framework, the central deficit associated with positive symptoms can be described as a failure to suppress the focal processing of both absent stimuli and present but irrelevant stimuli. This can explain the wide range of results obtained in different experimental settings. Finally, we briefly discuss the role of the hippocampus and its interaction with dopaminergic transmission in the emergence of such abnormal stimulus representations and learning. Overall, we hope that the theoretical framework and empirical findings offered by the associative learning approach will continue to facilitate and integrate analyses of schizophrenia conducted at the psychological and behavioral levels on the one hand, and at the neural and molecular levels on the other, by serving as a useful interface between them. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
A growing body of literature indicates that mediated learning techniques have specific utility for tapping into reality testing in animal models of neuropsychiatric illness. In particular, recent work has shown that animal models that recapitulate various endophenotypes of schizophrenia are particularly vulnerable to impairments in reality testing when undergoing mediated learning. Multiple studies have indicated that these effects are dopamine receptor 2-dependent and correlated with aberrant insular cortex (IC) activity. However, until now, the connection between dopamine and the IC had not been investigated. Here, we utilized a novel intersectional approach to label mesencephalic dopamine cells that specifically project to the insular cortex in both wild-type controls and transgenic mice expressing the dominant-negative form of the Disrupted-in-Schizophrenia-1 (DISC-1) gene. Using these techniques, we identified a population of cells that project from the ventral tegmental area (VTA) to the IC. Afterward, we conducted multiple studies to test the necessity of this circuit in behaviors ranging from gustatory detection to the maintenance of effort and, finally, mediated performance. Our results indicate that perturbations of the DISC-1 genetic locus lead to a reduction in the number of cells in the VTA → IC circuit. Behaviorally, VTA → IC circuitry does not influence gustatory detection or motivation to acquire sucrose reward; however, inactivation of this circuit differentially suppresses Pavlovian approach behavior in wild-type and DISC-1 transgenic mice during mediated performance testing. Moreover, under these testing conditions, inactivation of this circuit predisposes wild-type (but not DISC-1) mice to display impaired reality testing. (PsycInfo Database Record (c) 2024 APA, all rights reserved).