Pub Date : 2025-02-01Epub Date: 2024-11-07DOI: 10.1037/bne0000610
Sarah A Lechner, Cynthia A Kelm-Nelson, Michelle R Ciucci
Prodromal signs of Parkinson's disease (PD), including vocal communication deficits, are poorly understood and do not respond adequately to current pharmacologic treatments. Norepinephrine dysfunction is involved early in PD; thus, drug therapies targeting norepinephrine may be useful as a treatment of prodromal signs. This study used a validated, translational rodent model of prodromal PD, the male Pink1-/- rat, which exhibits ultrasonic vocalization (USV) deficits as early as 2 months of age. The purpose of this preclinical study was to investigate a dose-dependent (2.5, 5.0, 7.5, 10 mg/kg) response of methylphenidate on USV parameters with the hypothesis that methylphenidate would increase vocalization output. Because methylphenidate is a psychostimulant with known adverse side effects, we also hypothesized that potential side effects including anxietylike behavior and spontaneous activity would be increased in a dose-dependent manner. To accomplish this, wild-type (WT) and Pink1-/- rats were administered a dose of a vehicle (saline) and a methylphenidate dose in a randomized within-subjects design and then assessed for USVs, anxiety behavior (open field), and limb motor (cylinder) activity. The results suggest that methylphenidate does not alter USV emissions in Pink1-/- rats; however, methylphenidate increased the total number of vocalizations and duration of frequency-modulated calls in WT rats. Methylphenidate dose dependently influenced spontaneous movements in both WT and Pink1-/- rats, as expected, while methylphenidate increased anxiety in Pink1-/- rats and not WT rats. This study demonstrates a difference in response to a psychostimulant between Pink1-/- rats and WT rats. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
{"title":"Methylphenidate differentially affects the social ultrasonic vocalizations of wild-type and prodromal Parkinsonian rats.","authors":"Sarah A Lechner, Cynthia A Kelm-Nelson, Michelle R Ciucci","doi":"10.1037/bne0000610","DOIUrl":"10.1037/bne0000610","url":null,"abstract":"<p><p>Prodromal signs of Parkinson's disease (PD), including vocal communication deficits, are poorly understood and do not respond adequately to current pharmacologic treatments. Norepinephrine dysfunction is involved early in PD; thus, drug therapies targeting norepinephrine may be useful as a treatment of prodromal signs. This study used a validated, translational rodent model of prodromal PD, the male <i>Pink1</i>-/- rat, which exhibits ultrasonic vocalization (USV) deficits as early as 2 months of age. The purpose of this preclinical study was to investigate a dose-dependent (2.5, 5.0, 7.5, 10 mg/kg) response of methylphenidate on USV parameters with the hypothesis that methylphenidate would increase vocalization output. Because methylphenidate is a psychostimulant with known adverse side effects, we also hypothesized that potential side effects including anxietylike behavior and spontaneous activity would be increased in a dose-dependent manner. To accomplish this, wild-type (WT) and <i>Pink1</i>-/- rats were administered a dose of a vehicle (saline) and a methylphenidate dose in a randomized within-subjects design and then assessed for USVs, anxiety behavior (open field), and limb motor (cylinder) activity. The results suggest that methylphenidate does not alter USV emissions in <i>Pink1</i>-/- rats; however, methylphenidate increased the total number of vocalizations and duration of frequency-modulated calls in WT rats. Methylphenidate dose dependently influenced spontaneous movements in both WT and <i>Pink1</i>-/- rats, as expected, while methylphenidate increased anxiety in <i>Pink1</i>-/- rats and not WT rats. This study demonstrates a difference in response to a psychostimulant between <i>Pink1</i>-/- rats and WT rats. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"1-9"},"PeriodicalIF":1.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-23DOI: 10.1037/bne0000609
Vladimir P Nikitin, Svetlana V Solntseva, Pavel V Nikitin
The reconsolidation hypothesis posits that memory retrieval initiates a phase of memory destabilization, followed by restabilization through protein synthesis-dependent processes. The disruption of reconsolidation by amnestic agents can lead to memory loss. Yet, this hypothesis leaves unanswered questions regarding the mechanisms driving amnesia induction and reversal of molecular and structural changes underlying memory retention. Our previous work proposed that amnesia induction is an active process reliant on both translation and transcription. To test this hypothesis, we explored the role of N-methyl-D-aspartate (NMDA) glutamate receptors, as well as protein and RNA synthesis in amnesia induction mechanisms in grape snails trained with conditional food aversion, during the initial hours following memory reconsolidation disruption. Our results reveal that protein synthesis inhibitor administration before the conditioned reminder stimulus caused amnesia 3 hr after the reminder, whereas NMDA glutamate receptor antagonists resulted in amnesia less than 20 min following the first conditioned reminder stimulus. Concurrent administration of an NMDA receptor antagonist and a protein synthesis inhibitor before the reminder resulted in a rapid (less than 20 min) and complete prevention of amnesia, underscoring the pivotal role of protein synthesis in NMDA-dependent amnesia induction. Conversely, RNA synthesis inhibitors did not affect memory reconsolidation but inhibited amnesia triggered by an NMDA receptor antagonist. Moreover, our study demonstrates a significant difference in the dependency of memory reconsolidation and amnesia induction "time windows" on protein synthesis. These findings lend support to our hypothesis that memory reconsolidation and amnesia represent distinct processes, each characterized by unique developmental dynamics and molecular underpinnings. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
{"title":"Memory reconsolidation and amnesia induction: Separate processes dependent on specific protein and RNA synthesis.","authors":"Vladimir P Nikitin, Svetlana V Solntseva, Pavel V Nikitin","doi":"10.1037/bne0000609","DOIUrl":"10.1037/bne0000609","url":null,"abstract":"<p><p>The reconsolidation hypothesis posits that memory retrieval initiates a phase of memory destabilization, followed by restabilization through protein synthesis-dependent processes. The disruption of reconsolidation by amnestic agents can lead to memory loss. Yet, this hypothesis leaves unanswered questions regarding the mechanisms driving amnesia induction and reversal of molecular and structural changes underlying memory retention. Our previous work proposed that amnesia induction is an active process reliant on both translation and transcription. To test this hypothesis, we explored the role of N-methyl-D-aspartate (NMDA) glutamate receptors, as well as protein and RNA synthesis in amnesia induction mechanisms in grape snails trained with conditional food aversion, during the initial hours following memory reconsolidation disruption. Our results reveal that protein synthesis inhibitor administration before the conditioned reminder stimulus caused amnesia 3 hr after the reminder, whereas NMDA glutamate receptor antagonists resulted in amnesia less than 20 min following the first conditioned reminder stimulus. Concurrent administration of an NMDA receptor antagonist and a protein synthesis inhibitor before the reminder resulted in a rapid (less than 20 min) and complete prevention of amnesia, underscoring the pivotal role of protein synthesis in NMDA-dependent amnesia induction. Conversely, RNA synthesis inhibitors did not affect memory reconsolidation but inhibited amnesia triggered by an NMDA receptor antagonist. Moreover, our study demonstrates a significant difference in the dependency of memory reconsolidation and amnesia induction \"time windows\" on protein synthesis. These findings lend support to our hypothesis that memory reconsolidation and amnesia represent distinct processes, each characterized by unique developmental dynamics and molecular underpinnings. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"441-455"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-25DOI: 10.1037/bne0000592
Elizabeth A Virakorn, Rick Richardson, Kathryn D Baker
Adolescents, both human and nonhuman, exhibit impairments in the extinction of learned fear, an effect that is exacerbated, at least in rodents, by exposure to chronic stress. However, we have little understanding of the mechanisms underlying this effect. Therefore, here, we examined whether corticosterone exposure, a model of chronic stress, alters the expression of inhibitory neurons expressing parvalbumin (PV) in the basolateral amygdala and prefrontal cortex, two brain regions that have been implicated in fear extinction memories, in adolescent rats. We also examined the expression of perineuronal nets (PNNs), extracellular matrix structures that encompass inhibitory interneurons, in these two regions. These structures might render fear memories resistant to extinction by applying a structural "brake" on the plasticity of fear memories. Corticosterone-exposed adolescent rats exhibited poor extinction retention, as in past work, and were also found to have reduced percentage of PV-positive cells surrounded by PNNs in the basolateral amygdala. PV cells and PNNs were unaffected by corticosterone exposure in the prefrontal cortex. Our results suggest that the altered function of amygdala interneurons may be associated with the impaired extinction performance in stress-exposed adolescent rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
{"title":"Chronic stressor exposure impairs extinction of fear in adolescent rats and has associated effects on perineuronal nets and parvalbumin interneurons.","authors":"Elizabeth A Virakorn, Rick Richardson, Kathryn D Baker","doi":"10.1037/bne0000592","DOIUrl":"10.1037/bne0000592","url":null,"abstract":"<p><p>Adolescents, both human and nonhuman, exhibit impairments in the extinction of learned fear, an effect that is exacerbated, at least in rodents, by exposure to chronic stress. However, we have little understanding of the mechanisms underlying this effect. Therefore, here, we examined whether corticosterone exposure, a model of chronic stress, alters the expression of inhibitory neurons expressing parvalbumin (PV) in the basolateral amygdala and prefrontal cortex, two brain regions that have been implicated in fear extinction memories, in adolescent rats. We also examined the expression of perineuronal nets (PNNs), extracellular matrix structures that encompass inhibitory interneurons, in these two regions. These structures might render fear memories resistant to extinction by applying a structural \"brake\" on the plasticity of fear memories. Corticosterone-exposed adolescent rats exhibited poor extinction retention, as in past work, and were also found to have reduced percentage of PV-positive cells surrounded by PNNs in the basolateral amygdala. PV cells and PNNs were unaffected by corticosterone exposure in the prefrontal cortex. Our results suggest that the altered function of amygdala interneurons may be associated with the impaired extinction performance in stress-exposed adolescent rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"383-396"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-10DOI: 10.1037/bne0000601
Joëlle D Jagersma, Marleen Bakker, Jocelien D A Olivier, Sonja J Pyott
Slight and hidden hearing loss in children have been linked to cognitive and social difficulties, and yet the neurobiological mechanisms behind these issues remain poorly understood. Most animal models focus on severe hearing loss, leaving the effects of hidden or slight hearing loss largely unexplored. To uncover the neural mechanisms connecting slight/hidden hearing loss to cognitive and social challenges, we induced hearing loss in young (4-week-old) Wistar rats through noise exposure. We then examined cognitive function (object recognition test) and social behavior (juvenile play behavior and social interaction). Changes in brain anatomy were assessed using cortical thickness and hippocampal size measurements, while (immuno)histochemical staining investigated neuronal circuitry maturation (myelin basic protein, parvalbumin, and perineuronal nets) and neurogenesis (doublecortin). Noise-exposed rats displayed slight high-frequency hearing loss (around 20 dB) and hidden hearing loss at other tested frequencies. This slight/hidden hearing loss was associated with impaired object recognition but did not alter social behavior. Slight/hidden hearing loss was associated with reduced myelin basic protein expression in the corpus callosum but no other alterations in cortical thickness, hippocampal size, or other markers of maturation and neurogenesis were found. These findings show that even slight/hidden hearing loss can lead to subtle brain alterations tied to cognitive deficits. This study emphasizes the need for further research to fully understand the brain changes associated with slight/hidden hearing loss and to pinpoint the mechanisms connecting these changes to behavioral deficits. This information is crucial to develop interventions to prevent the cognitive and social consequences of hearing loss. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
儿童的轻微和隐性听力损失与认知和社交障碍有关,但人们对这些问题背后的神经生物学机制仍然知之甚少。大多数动物模型关注的是重度听力损失,而对隐性或轻度听力损失的影响基本上没有进行研究。为了揭示轻微/隐性听力损失与认知和社交障碍之间的神经机制,我们通过噪音暴露诱导幼年(4 周大)Wistar 大鼠出现听力损失。然后,我们检测了认知功能(物体识别测试)和社会行为(幼年游戏行为和社会互动)。通过测量皮层厚度和海马体大小来评估大脑解剖结构的变化,同时通过(免疫)组织化学染色来研究神经元回路的成熟(髓鞘碱性蛋白、副神经胶质蛋白和神经元周围网)和神经发生(双皮质素)。暴露于噪声的大鼠表现出轻微的高频听力损失(约 20 dB)和其他测试频率的隐性听力损失。这种轻微/隐性听力损失与物体识别能力受损有关,但不会改变社交行为。轻微/隐性听力损失与胼胝体中髓鞘碱性蛋白表达减少有关,但没有发现皮质厚度、海马大小或其他成熟和神经发生标志物的其他改变。这些研究结果表明,即使是轻微/隐性听力损失也会导致与认知障碍相关的微妙大脑改变。这项研究强调了进一步研究的必要性,以充分了解与轻微/隐性听力损失相关的大脑变化,并确定这些变化与行为缺陷之间的关联机制。这些信息对于制定干预措施以预防听力损失造成的认知和社会后果至关重要。(PsycInfo Database Record (c) 2024 APA,保留所有权利)。
{"title":"Slight and hidden hearing loss in young rats is associated with impaired recognition memory and reduced myelination in the corpus callosum.","authors":"Joëlle D Jagersma, Marleen Bakker, Jocelien D A Olivier, Sonja J Pyott","doi":"10.1037/bne0000601","DOIUrl":"10.1037/bne0000601","url":null,"abstract":"<p><p>Slight and hidden hearing loss in children have been linked to cognitive and social difficulties, and yet the neurobiological mechanisms behind these issues remain poorly understood. Most animal models focus on severe hearing loss, leaving the effects of hidden or slight hearing loss largely unexplored. To uncover the neural mechanisms connecting slight/hidden hearing loss to cognitive and social challenges, we induced hearing loss in young (4-week-old) Wistar rats through noise exposure. We then examined cognitive function (object recognition test) and social behavior (juvenile play behavior and social interaction). Changes in brain anatomy were assessed using cortical thickness and hippocampal size measurements, while (immuno)histochemical staining investigated neuronal circuitry maturation (myelin basic protein, parvalbumin, and perineuronal nets) and neurogenesis (doublecortin). Noise-exposed rats displayed slight high-frequency hearing loss (around 20 dB) and hidden hearing loss at other tested frequencies. This slight/hidden hearing loss was associated with impaired object recognition but did not alter social behavior. Slight/hidden hearing loss was associated with reduced myelin basic protein expression in the corpus callosum but no other alterations in cortical thickness, hippocampal size, or other markers of maturation and neurogenesis were found. These findings show that even slight/hidden hearing loss can lead to subtle brain alterations tied to cognitive deficits. This study emphasizes the need for further research to fully understand the brain changes associated with slight/hidden hearing loss and to pinpoint the mechanisms connecting these changes to behavioral deficits. This information is crucial to develop interventions to prevent the cognitive and social consequences of hearing loss. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"397-408"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keva Klamer, Joshua Craig, Christina Haines, KiAnna Sullivan, Chelsea Ekstrand
Somatic anxiety refers to the tendency to appraise situations as threatening, leading to heightened physiological arousal. Symptoms associated with higher levels of somatic anxiety that reflect autonomic arousal and perceptions of threat include elevated heartbeat perception, difficulty breathing, and palpitation. Somatic anxiety is generally associated with increased stimulus-driven attention; however, it is currently unknown how somatic anxiety modulates neural synchrony, measured by intersubject correlations (ISC), in response to complex audiovisual stimuli. The present study seeks to identify how differing levels of somatic anxiety are associated with neural synchrony during psychological processing of audiovisual stimuli, as measured by ISC and intersubject representational similarity analyses. We hypothesize that individuals with higher levels of somatic anxiety will show heightened ISC in response to an audiovisual stimulus in regions associated with stimulus-driven attention, including the superior parietal lobule, supplementary motor area, and precentral gyrus. Results from this study identified that higher levels of somatic anxiety are associated with widespread heightened ISC across the brain, including in regions associated with perceptual processing and stimulus-driven attention. Taken together, this research suggests that higher levels of somatic anxiety are associated with similar processing in brain regions involved in stimulus-driven attention and top-down processing, whereas lower levels of somatic anxiety are associated with similar processing in brain regions associated with higher level visual processing. These results collectively emphasize that somatic anxiety levels should be measured and controlled for during naturalistic functional magnetic resonance imaging paradigms, as this trait may have an influence on synchronous neurological activity. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
躯体焦虑指的是将情境视为威胁的倾向,从而导致生理觉醒的增强。与较高水平的躯体焦虑相关的症状反映了自主神经觉醒和威胁感知,包括心跳感知升高、呼吸困难和心悸。躯体焦虑通常与刺激驱动的注意力增加有关;然而,目前尚不清楚躯体焦虑如何通过主体间相关性(ISC)来调节神经同步,以应对复杂的视听刺激。本研究旨在通过ISC和主体间表征相似性分析来确定不同水平的躯体焦虑与视听刺激心理处理过程中的神经同步性之间的关系。我们假设,躯体焦虑水平较高的个体在与刺激驱动的注意力相关的区域(包括顶叶上小叶、辅助运动区和中央前回)受到视听刺激时,会表现出更高的ISC。这项研究的结果表明,较高水平的躯体焦虑与大脑中广泛存在的ISC升高有关,包括与感知处理和刺激驱动的注意力相关的区域。综上所述,这项研究表明,较高水平的躯体焦虑与大脑中涉及刺激驱动注意力和自上而下处理的区域的类似处理有关,而较低水平的躯体焦虑与大脑中涉及较高水平视觉处理的区域的类似处理有关。这些结果共同强调,在自然功能磁共振成像范式中,应该测量和控制躯体焦虑水平,因为这种特征可能对同步神经活动有影响。(PsycInfo Database Record (c) 2024 APA,版权所有)。
{"title":"Trait-level somatic anxiety modulates functional magnetic resonance imaging (fMRI) neural synchrony to naturalistic stimuli.","authors":"Keva Klamer, Joshua Craig, Christina Haines, KiAnna Sullivan, Chelsea Ekstrand","doi":"10.1037/bne0000615","DOIUrl":"10.1037/bne0000615","url":null,"abstract":"<p><p>Somatic anxiety refers to the tendency to appraise situations as threatening, leading to heightened physiological arousal. Symptoms associated with higher levels of somatic anxiety that reflect autonomic arousal and perceptions of threat include elevated heartbeat perception, difficulty breathing, and palpitation. Somatic anxiety is generally associated with increased stimulus-driven attention; however, it is currently unknown how somatic anxiety modulates neural synchrony, measured by intersubject correlations (ISC), in response to complex audiovisual stimuli. The present study seeks to identify how differing levels of somatic anxiety are associated with neural synchrony during psychological processing of audiovisual stimuli, as measured by ISC and intersubject representational similarity analyses. We hypothesize that individuals with higher levels of somatic anxiety will show heightened ISC in response to an audiovisual stimulus in regions associated with stimulus-driven attention, including the superior parietal lobule, supplementary motor area, and precentral gyrus. Results from this study identified that higher levels of somatic anxiety are associated with widespread heightened ISC across the brain, including in regions associated with perceptual processing and stimulus-driven attention. Taken together, this research suggests that higher levels of somatic anxiety are associated with similar processing in brain regions involved in stimulus-driven attention and top-down processing, whereas lower levels of somatic anxiety are associated with similar processing in brain regions associated with higher level visual processing. These results collectively emphasize that somatic anxiety levels should be measured and controlled for during naturalistic functional magnetic resonance imaging paradigms, as this trait may have an influence on synchronous neurological activity. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"138 6","pages":"409-419"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-19DOI: 10.1037/bne0000603
Rebecca M Hock, Naana Owusu-Amoah, Lauren Waite, Charlotte Muir, Carl W Stevenson, Charlotte Bonardi, Helen J Cassaday
Healthy cognition requires inhibitory modulation of associative learning; conversely, impaired inhibitory discrimination is implicated in behavioral disorders. The medial prefrontal cortex (mPFC) and its dopamine innervation are key to understanding inhibition and impulsivity. We therefore examined the role of prelimbic and infralimbic cortices in within-subjects appetitive feature-negative learning using microinfusions of (a) the gamma-aminobutyric acid-A receptor agonist muscimol (0.25 μg in 1.0 μl; N = 35), (b) the dopamine D1 receptor agonist SKF-81297 (0.1 μg in 1.0 μl; N = 33), and (c) the dopamine D1 receptor antagonist SCH-23390 (5 μg in 1.0 μl; N = 35). A conditioned stimulus (CS) was followed by food, but on trials on which the CS (A+) was compounded with the inhibitory cue (AX-), the food delivery was canceled. Difference scores (CS-preCS responding) were used to measure learning. All three experiments showed the feature-negative discrimination (A+/AX-), as decreased responding to AX- versus A+. This discrimination was reduced but preserved following muscimol infusions in Experiment 1. Similarly, in Experiments 2 and 3, infusions of SKF-81297 and SCH-23390 were both without effect on the acquisition of the discrimination. Like muscimol, SCH-23390 reduced difference score responding, consistent with nonspecific effects on the (expression of) learning. Thus, there was no evidence to suggest that inactivation of prelimbic or infralimbic cortices impaired feature-negative discrimination learning and no evidence for dopaminergic modulation of such learning in the medial prefrontal cortex either. These results are discussed in the context of the nonspecific effects of the infusions and the overall inconsistent performance in summation and retardation tests of conditioned inhibition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
{"title":"Effects of manipulating prefrontal activity and dopamine D1 receptor signaling in an appetitive feature-negative discrimination learning task.","authors":"Rebecca M Hock, Naana Owusu-Amoah, Lauren Waite, Charlotte Muir, Carl W Stevenson, Charlotte Bonardi, Helen J Cassaday","doi":"10.1037/bne0000603","DOIUrl":"10.1037/bne0000603","url":null,"abstract":"<p><p>Healthy cognition requires inhibitory modulation of associative learning; conversely, impaired inhibitory discrimination is implicated in behavioral disorders. The medial prefrontal cortex (mPFC) and its dopamine innervation are key to understanding inhibition and impulsivity. We therefore examined the role of prelimbic and infralimbic cortices in within-subjects appetitive feature-negative learning using microinfusions of (a) the gamma-aminobutyric acid-A receptor agonist muscimol (0.25 μg in 1.0 μl; <i>N</i> = 35), (b) the dopamine D1 receptor agonist SKF-81297 (0.1 μg in 1.0 μl; <i>N</i> = 33), and (c) the dopamine D1 receptor antagonist SCH-23390 (5 μg in 1.0 μl; <i>N</i> = 35). A conditioned stimulus (CS) was followed by food, but on trials on which the CS (A+) was compounded with the inhibitory cue (AX-), the food delivery was canceled. Difference scores (CS-preCS responding) were used to measure learning. All three experiments showed the feature-negative discrimination (A+/AX-), as decreased responding to AX- versus A+. This discrimination was reduced but preserved following muscimol infusions in Experiment 1. Similarly, in Experiments 2 and 3, infusions of SKF-81297 and SCH-23390 were both without effect on the acquisition of the discrimination. Like muscimol, SCH-23390 reduced difference score responding, consistent with nonspecific effects on the (expression of) learning. Thus, there was no evidence to suggest that inactivation of prelimbic or infralimbic cortices impaired feature-negative discrimination learning and no evidence for dopaminergic modulation of such learning in the medial prefrontal cortex either. These results are discussed in the context of the nonspecific effects of the infusions and the overall inconsistent performance in summation and retardation tests of conditioned inhibition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"420-432"},"PeriodicalIF":1.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-19DOI: 10.1037/bne0000605
Yuan J F Cai, Isabella B Allar, Joost X Maier
Foods that make up a typical diet are characterized by a rich set of sensory qualities that are perceived through multiple different modalities. It is well known that multisensory aspects of food are integrated to create our perception of flavor, which in turn affects our behavioral responses to food. However, the principles underlying multisensory integration of flavor-related sensory signals and how they inform perceptual judgments remain poorly understood, partly due to lack of control over flavor experience in human subjects. Here, we used rats as a model to overcome this limitation and tested the hypothesis that taste can enhance discriminability of retronasal odor cues. In a series of two-bottle tests, animals chose between two odorized solutions after learning to associate one of the odors with saccharin. When odors were highly similar, animals showed little preference for the saccharin-associated odor. When adding saccharin to both bottles-rendering one of the solutions' congruent-animals' preference for the saccharin-associated odor was significantly enhanced. No effect of taste was observed when using dissimilar odor pairs or novel taste stimuli. These findings suggest that congruent taste stimuli selectively enhance odor identity representations, aiding in the discriminability of perceptually similar flavors. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
一般饮食中的食物都具有丰富的感官特性,这些感官特性可通过多种不同方式感知。众所周知,食物的多种感官综合在一起会形成我们对味道的感知,进而影响我们对食物的行为反应。然而,人们对风味相关感官信号的多感官整合原理以及它们如何影响知觉判断仍然知之甚少,部分原因是人类缺乏对风味体验的控制。在这里,我们以大鼠为模型来克服这一局限性,并检验了味觉能增强反鼻腔气味线索的可辨别性这一假设。在一系列双瓶测试中,动物在学会将其中一种气味与糖精联系起来后,会在两种气味溶液中做出选择。当气味高度相似时,动物对与糖精相关的气味几乎没有表现出偏好。当在两瓶溶液中都添加糖精时,动物对糖精相关气味的偏好明显增强。在使用不同气味对或新的味觉刺激时,没有观察到味觉的影响。这些研究结果表明,一致的味觉刺激会选择性地增强气味特征表征,从而帮助辨别知觉上相似的味道。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
{"title":"Taste enhances the ability to express a preference for a congruent odor in rats.","authors":"Yuan J F Cai, Isabella B Allar, Joost X Maier","doi":"10.1037/bne0000605","DOIUrl":"10.1037/bne0000605","url":null,"abstract":"<p><p>Foods that make up a typical diet are characterized by a rich set of sensory qualities that are perceived through multiple different modalities. It is well known that multisensory aspects of food are integrated to create our perception of flavor, which in turn affects our behavioral responses to food. However, the principles underlying multisensory integration of flavor-related sensory signals and how they inform perceptual judgments remain poorly understood, partly due to lack of control over flavor experience in human subjects. Here, we used rats as a model to overcome this limitation and tested the hypothesis that taste can enhance discriminability of retronasal odor cues. In a series of two-bottle tests, animals chose between two odorized solutions after learning to associate one of the odors with saccharin. When odors were highly similar, animals showed little preference for the saccharin-associated odor. When adding saccharin to both bottles-rendering one of the solutions' congruent-animals' preference for the saccharin-associated odor was significantly enhanced. No effect of taste was observed when using dissimilar odor pairs or novel taste stimuli. These findings suggest that congruent taste stimuli selectively enhance odor identity representations, aiding in the discriminability of perceptually similar flavors. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"433-440"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-23DOI: 10.1037/bne0000593
Dong-Hyun Youn, Cheolmin Jo, Jin Mook Kim, Young-Ki Hong, Wonjong Lee, Seong Hye Park, Chan Hyeok Kwon, Sun-Ok Choi
An N-protected methylenedioxymethamphetamine (MDMA), N-tert-butoxycarbonyl-3,4-methylenedioxymethamphetamine (t-BOC-3,4-MDMA), contains tert-butoxycarbonyl and can remain undetected in the illicit drug market. It is a new type of precursor substance that is not a chemical intermediate and can be converted into a controlled substance, MDMA, by deprotection of the N-tert-butoxycarbonyl group. Categorization of this chemical into a precursor or psychotropic substance is an issue because it is an unprecedented precursor that could have misuse potential. Although MDMA causes rewarding and reinforcing effect through dopaminergic transmission, the misuse potential of t-BOC-3,4-MDMA has not yet been characterized. Here, we aim to evaluate the misuse potential of t-BOC-3,4-MDMA. The response to the drug at a dose of 5 mg/kg was determined by a climbing test, and its rewarding and reinforcing properties were assessed through conditioned place preference and self-administration tests. In the conditioned place preference test, intraperitoneal administration of t-BOC-3,4-MDMA (5 mg/kg) significantly altered place preference in mice. In the self-administration models, t-BOC-3,4-MDMA induced drug-taking behavior at the dose of 0.5 mg/kg/infusion (intravenous) during 2 hr sessions under fixed-ratio schedules in mice. In addition, microdialysis experiments verified that t-BOC-3,4-MDMA impacted the dopamine levels of the brain (striatum) of rats. These experimental results indicate that t-BOC-3,4-MDMA has a potential for misuse. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
{"title":"N-tert-butoxycarbonyl-methylenedioxymethamphetamine, an methylenedioxymethamphetamine derivative, exhibits rewarding and reinforcing effects by increasing dopamine levels.","authors":"Dong-Hyun Youn, Cheolmin Jo, Jin Mook Kim, Young-Ki Hong, Wonjong Lee, Seong Hye Park, Chan Hyeok Kwon, Sun-Ok Choi","doi":"10.1037/bne0000593","DOIUrl":"10.1037/bne0000593","url":null,"abstract":"<p><p>An N-protected methylenedioxymethamphetamine (MDMA), N-tert-butoxycarbonyl-3,4-methylenedioxymethamphetamine (t-BOC-3,4-MDMA), contains tert-butoxycarbonyl and can remain undetected in the illicit drug market. It is a new type of precursor substance that is not a chemical intermediate and can be converted into a controlled substance, MDMA, by deprotection of the N-tert-butoxycarbonyl group. Categorization of this chemical into a precursor or psychotropic substance is an issue because it is an unprecedented precursor that could have misuse potential. Although MDMA causes rewarding and reinforcing effect through dopaminergic transmission, the misuse potential of t-BOC-3,4-MDMA has not yet been characterized. Here, we aim to evaluate the misuse potential of t-BOC-3,4-MDMA. The response to the drug at a dose of 5 mg/kg was determined by a climbing test, and its rewarding and reinforcing properties were assessed through conditioned place preference and self-administration tests. In the conditioned place preference test, intraperitoneal administration of t-BOC-3,4-MDMA (5 mg/kg) significantly altered place preference in mice. In the self-administration models, t-BOC-3,4-MDMA induced drug-taking behavior at the dose of 0.5 mg/kg/infusion (intravenous) during 2 hr sessions under fixed-ratio schedules in mice. In addition, microdialysis experiments verified that t-BOC-3,4-MDMA impacted the dopamine levels of the brain (striatum) of rats. These experimental results indicate that t-BOC-3,4-MDMA has a potential for misuse. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"314-320"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Zarantonello, Sabrina Brigadoi, Sami Schiff, Patrizia Silvia Bisiacchi, Simone Cutini, Sara Montagnese, Piero Amodio
The n-back task has been widely used to study working memory. Previous studies investigating the electrophysiological (electroencephalogram [EEG]) and hemodynamic correlates (functional near-infrared spectroscopy [fNIRS]) of the n-back task have been generally based on verbal stimuli and only investigated EEG frequency bands. We simultaneously acquired the EEG and fNIRS in 35 participants (16 males; age = 26.4 ± 4.3 years; educational attainment = 18 ± 2 years) during a visuospatial n-back task. The task encompassed a control condition and a low (requiring to recall one previous stimulus) and a high (requiring to recall two previous stimuli) working memory load experimental conditions. Accuracy decreased and reaction times slowed in the high compared to both low load and control conditions. Regarding EEG, P3a showed higher amplitude in the experimental conditions compared to the control one, and P3b exhibited higher amplitude in the low compared to the high load condition. Regarding fNIRS, the high load condition showed higher deoxygenated hemoglobin compared to the control one. Moreover, the central frontopolar cortex showed higher activation compared with the left frontal cortex. Our study showed that working memory load during a visuospatial n-back task influenced behavioral and electrophysiological indices. Even if the load effect was only observed for deoxygenated hemoglobin on hemodynamic data, this was in line with previous studies and coherent with its electrophysiological correlates. Thus, our study confirms that EEG and fNIRS can be successfully used in multimodal acquisitions, but also highlights that future studies are needed to develop a novel version of the task. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
{"title":"Electrophysiological and hemodynamic mechanisms underlying load modulations in visuospatial working memory: A functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) study.","authors":"Lisa Zarantonello, Sabrina Brigadoi, Sami Schiff, Patrizia Silvia Bisiacchi, Simone Cutini, Sara Montagnese, Piero Amodio","doi":"10.1037/bne0000604","DOIUrl":"10.1037/bne0000604","url":null,"abstract":"<p><p>The n-back task has been widely used to study working memory. Previous studies investigating the electrophysiological (electroencephalogram [EEG]) and hemodynamic correlates (functional near-infrared spectroscopy [fNIRS]) of the n-back task have been generally based on verbal stimuli and only investigated EEG frequency bands. We simultaneously acquired the EEG and fNIRS in 35 participants (16 males; age = 26.4 ± 4.3 years; educational attainment = 18 ± 2 years) during a visuospatial n-back task. The task encompassed a control condition and a low (requiring to recall one previous stimulus) and a high (requiring to recall two previous stimuli) working memory load experimental conditions. Accuracy decreased and reaction times slowed in the high compared to both low load and control conditions. Regarding EEG, P3a showed higher amplitude in the experimental conditions compared to the control one, and P3b exhibited higher amplitude in the low compared to the high load condition. Regarding fNIRS, the high load condition showed higher deoxygenated hemoglobin compared to the control one. Moreover, the central frontopolar cortex showed higher activation compared with the left frontal cortex. Our study showed that working memory load during a visuospatial n-back task influenced behavioral and electrophysiological indices. Even if the load effect was only observed for deoxygenated hemoglobin on hemodynamic data, this was in line with previous studies and coherent with its electrophysiological correlates. Thus, our study confirms that EEG and fNIRS can be successfully used in multimodal acquisitions, but also highlights that future studies are needed to develop a novel version of the task. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":"138 5","pages":"331-341"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-16DOI: 10.1037/bne0000598
Hannah L Schoenberg, Samantha K Moriarty, Neil E Winterbauer, Sayamwong E Hammack, Donna J Toufexis, Travis P Todd
Pavlovian extinction reduces the performance of conditioned responses and occurs when the conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US). However, when the CS is experienced in a context that is different from the extinction context, there is a recovery of the conditioned response, a phenomenon known as renewal. There is some evidence that the renewal of appetitive conditioning is influenced by sex, with females failing to exhibit renewed responding. Further, there is recent evidence that renewal of fear might also not occur in female rats. In both appetitive and fear preparations, the lack of renewal in females has been postulated to be related to cycling ovarian hormones. Therefore, in Experiments 1 and 2, we directly compared fear renewal in males and females (Experiment 1) as well as ovariectomized (OVX) females (Experiment 2) when conditioning occurred in Context A, extinction in B, and testing in A (ABA renewal). Experiments 3 and 4 examined renewal when conditioning and extinction occurred in A and testing occurred in B (AAB renewal). In all experiments, renewal was not significantly different between male and female rats. Further, in Experiments 2 and 4, renewal did not differ between males, intact females, and OVX females. Additionally, in each experiment, there was no evidence that context excitation and/or inhibition contributed to renewal; instead suggesting that renewal was controlled by an occasion-setting mechanism. Overall, these results suggest little evidence for the role of sex in renewal of conditioned freezing and also indicate that cycling ovarian hormones have little role in the strength of renewal in female rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
当条件刺激(CS)在没有非条件刺激(US)的情况下重复出现时,巴甫洛夫的条件消除会降低条件反射的表现。然而,当条件刺激在不同于消退的情境中出现时,条件反射就会恢复,这种现象被称为条件反射的恢复。有证据表明,食欲条件反射的恢复受性别影响,雌性动物不会表现出恢复反应。此外,最近有证据表明,雌性大鼠也可能不会出现恐惧更新。在食欲条件反射和恐惧条件反射中,雌性大鼠缺乏更新反应被认为与卵巢激素的周期性变化有关。因此,在实验 1 和 2 中,我们直接比较了雄性大鼠和雌性大鼠(实验 1)以及卵巢切除(OVX)雌性大鼠(实验 2)在 A 情境中发生条件反射、在 B 情境中消失以及在 A 情境中进行测试(ABA 更新)时的恐惧更新情况。实验 3 和 4 考察了在 A 情境中进行条件反射和绝育,在 B 情境中进行测试(AAB 更新)时的更新情况。在所有实验中,雄性大鼠和雌性大鼠的更新没有明显差异。此外,在实验 2 和 4 中,雄性大鼠、完整雌性大鼠和卵巢切除雌性大鼠的更新没有差异。此外,在每个实验中,都没有证据表明情境兴奋和/或抑制有助于更新;相反,这表明更新是由场合设置机制控制的。总之,这些结果几乎没有证据表明性别在条件冻结的更新中起作用,也表明周期性卵巢激素对雌性大鼠的更新强度几乎没有作用。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
{"title":"Renewal of conditioned fear in male and female rats.","authors":"Hannah L Schoenberg, Samantha K Moriarty, Neil E Winterbauer, Sayamwong E Hammack, Donna J Toufexis, Travis P Todd","doi":"10.1037/bne0000598","DOIUrl":"10.1037/bne0000598","url":null,"abstract":"<p><p>Pavlovian extinction reduces the performance of conditioned responses and occurs when the conditioned stimulus (CS) is repeatedly presented in the absence of the unconditioned stimulus (US). However, when the CS is experienced in a context that is different from the extinction context, there is a recovery of the conditioned response, a phenomenon known as renewal. There is some evidence that the renewal of appetitive conditioning is influenced by sex, with females failing to exhibit renewed responding. Further, there is recent evidence that renewal of fear might also not occur in female rats. In both appetitive and fear preparations, the lack of renewal in females has been postulated to be related to cycling ovarian hormones. Therefore, in Experiments 1 and 2, we directly compared fear renewal in males and females (Experiment 1) as well as ovariectomized (OVX) females (Experiment 2) when conditioning occurred in Context A, extinction in B, and testing in A (ABA renewal). Experiments 3 and 4 examined renewal when conditioning and extinction occurred in A and testing occurred in B (AAB renewal). In all experiments, renewal was not significantly different between male and female rats. Further, in Experiments 2 and 4, renewal did not differ between males, intact females, and OVX females. Additionally, in each experiment, there was no evidence that context excitation and/or inhibition contributed to renewal; instead suggesting that renewal was controlled by an occasion-setting mechanism. Overall, these results suggest little evidence for the role of sex in renewal of conditioned freezing and also indicate that cycling ovarian hormones have little role in the strength of renewal in female rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":"366-381"},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}