Psilocybe cubensis is a species of psilocybin mushroom (magic mushroom) of moderate potency whose principal active compounds are psilocybin and psilocin. Recent studies have shown the significant procognitive and mood-enhancer effects of Psilocybe cubensis. However, evidence is so limited, especially in preclinical studies. We aimed to investigate the effect of Psilocybe cubensis extract on posttraumatic stress disorder (PTSD)-like behavior, pain perception, locomotor activity, and anxiety in a rat model of PTSD. Male rats were exposed to three consecutive shocks (0.8 mA, 3 s interval) paired with three sounds broadcasted 3 s before delivering shocks (75 dB, 3 s). After 1, 3, or 21 days, freezing rate was measured in the fear-conditioning apparatus. Open filed test and hot plate were used to assess locomotor activity and anxiety, and pain subthreshold, respectively. Psilocybe cubensis was injected intraperitoneal at the dose of 25 mg/kg (single administration) before (pretrain) or after (posttrain) shocks, or before the test (pretest). Results showed psilocybin potently alleviated PTSD symptom is short- but not long-term after the induction of PTSD. Psilocybe cubensis decreased locomotor activity only in a short period after administration. Psilocybe cubensis also increased pain subthreshold and decreased anxiety. In conclusion, Psilocybe cubensis effects on PTSD-like behavior and locomotor activity seem to be remained in short-term, while Psilocybe cubensis effects on pain subthreshold and anxiety remained long-term. This is the first study evaluating the effect of Psilocybe cubensis on PTSD-like behavior in rats in three different time protocols (1, 3, and 21 days after fear conditioning). (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Previous studies have shown that low doses of ketamine, an N-methyl-D-aspartate receptor antagonist, produce aberrantly strong internal representations of associatively activated but absent stimuli in humans and nonhuman animals, suggesting the validity of ketamine treatment as a preclinical model of the positive symptoms of schizophrenia, including hallucinations and delusions. However, whether acute ketamine treatment also impairs the ability to ignore present but informationally redundant stimuli, which is another hallmark of schizophrenia, remains unclear. Accordingly, the present study investigated whether injections of low-dose ketamine attenuate Kamin blocking in an appetitive conditioning preparation in mice. Mice in the blocking group were initially trained with A+ conditioning (i.e., conditioned stimulus A paired with a sucrose solution), followed by compound AX+ training, before the conditioned responses to the cue X were tested in extinction. The animals in the control group received B+ training before the AX+ training. Half of the mice in each group received an injection of 16 mg/kg ketamine before each compound conditioning session and the extinction test, whereas the other half received saline. The results showed a reliable blocking effect in the saline-treated mice, whereas the blocking effect was absent in the ketamine-treated mice. Specifically, the absence of blocking was due to the ketamine-treated mice learning about the blocked cues. This finding further validates the use of low-dose ketamine as a preclinical model of schizophrenia. It also suggests a possible link between hallucination-like aberrant processing of absent events and a reduced ability to suppress attentional processing of task-irrelevant stimuli. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Human infants and nonhuman animals respond to surprising events by looking longer at unexpected than expected situations. These looking responses provide core cognitive evidence that nonverbal minds make predictions about possible outcomes and detect when these predictions fail to match reality. We propose that this phenomenon has crucial parallels with the processes of reward prediction error, indexing the difference between expected and actual reward outcomes. Most work on reward prediction errors to date involves neurobiological techniques that cannot be implemented in many relevant populations, so we developed a novel behavioral task to assess monkeys' predictions about reward outcomes using looking time responses. In Study 1, we tested how semi-free-ranging monkeys (n = 210) responded to positive error (more rewards than expected), negative error (less rewards than expected), and a number control. We found that monkeys looked longer at a given reward when it was unexpectedly large or small, compared to when the same quantity was expected. In Study 2, we compared responses in the positive error condition in monkeys ranging from infancy to old age (n = 363), to assess lifespan changes in sensitivity to reward predictions. We found that adolescent monkeys showed heightened responses to unexpected rewards, similar to patterns seen in humans, but showed no changes during aging. These results suggest that monkeys' looking responses can be used to track their predictions about rewards, and that monkeys share some developmental signatures of reward sensitivity with humans, providing a new approach to access cognitive processes underlying reward-based decision making. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
The temporal resolution power (TRP) hypothesis states that individuals with higher TRP, as reflected by a higher performance on several psychophysical timing tasks, perform better on intelligence tests due to their ability to process information faster and coordinate their mental operations more effectively. It is proposed that these differences in TRP are related to the rate of a master clock based on neural oscillations. The present study aimed to investigate whether the peak alpha frequency (PAF) measured via electroencephalography (EEG) reflects a psychophysiological measure of this rate and its potential role in explaining the relationship between TRP and psychometric intelligence. A sample of 129 young adults (M = 23.0, SD = 3.1) completed a short version of Raven's Advanced Progressives Matrices and three timing tasks. PAF was measured using EEG before each timing task during two resting states with eyes closed (EC) and eyes open (EO), respectively. From these PAF measurements, four latent PAF variables were extracted, differing in resting state (EC, EO) and electrode cluster (frontal/central, parietal/occipital). The results confirmed a strong association between TRP and psychometric intelligence (r = .56, p < .01), as previously reported in other studies. Additionally, we found a positive association between intelligence and a latent PAF variable extracted from frontal/central electrodes in the EO resting state conditions (r = .27, p < .05). However, there was no association between TRP and PAF. This indicates that PAF does not reflect the underlying psychophysiological mechanism that links TRP to intelligence. (PsycInfo Database Record (c) 2024 APA, all rights reserved).