Pub Date : 2024-05-14DOI: 10.3390/batteries10050162
Merlin Frank, Sebastian Preussner, Natalia Soldan Cattani, Moritz Frieges, Heiner Hans Heimes, Achim Kampker
The growing demand and market penetration of electric vehicles (EVs) have led to an expansion in the size of the market for used EVs, accompanied by a continuous increase in the return rate of aging battery systems. Consequently, a second-hand market for aged battery systems, known as second-life batteries, is slowly emerging. Understanding this market is crucial for enabling a functioning circular economy for batteries. This paper analyzes the market mechanisms influencing price formation for used goods, drawing parallels to the largest second-hand market, the used car market, and applies them to the second-life battery market. By examining these mechanisms, insights are provided into the dynamics of the second-life battery market, facilitating the development of strategies to optimize resource utilization and sustainability in the EV industry. Finally, the second-life battery price index is introduced, increasing the transparency of prices for lithium-ion batteries and the circular economy.
{"title":"Understanding the Economics of Aged Traction Batteries: Market Value and Dynamics","authors":"Merlin Frank, Sebastian Preussner, Natalia Soldan Cattani, Moritz Frieges, Heiner Hans Heimes, Achim Kampker","doi":"10.3390/batteries10050162","DOIUrl":"https://doi.org/10.3390/batteries10050162","url":null,"abstract":"The growing demand and market penetration of electric vehicles (EVs) have led to an expansion in the size of the market for used EVs, accompanied by a continuous increase in the return rate of aging battery systems. Consequently, a second-hand market for aged battery systems, known as second-life batteries, is slowly emerging. Understanding this market is crucial for enabling a functioning circular economy for batteries. This paper analyzes the market mechanisms influencing price formation for used goods, drawing parallels to the largest second-hand market, the used car market, and applies them to the second-life battery market. By examining these mechanisms, insights are provided into the dynamics of the second-life battery market, facilitating the development of strategies to optimize resource utilization and sustainability in the EV industry. Finally, the second-life battery price index is introduced, increasing the transparency of prices for lithium-ion batteries and the circular economy.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140978409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.3390/batteries10050160
Y. Sterzl, Wilhelm Pfleging
The most common pattern types for anode structuring, in particular the line, grid, and hexagonal-arranged hole pattern were evaluated in a comparable setup in full-cells and symmetrical cells. The cells with structured electrodes were compared to reference cells with unstructured anodes of similar areal capacity (4.3 mAh cm−2) and the onset of lithium plating during fast-charging was determined in situ by differential voltage analysis of the voltage relaxation and ex situ by post-mortem analysis. Furthermore, electrochemical impedance spectroscopy measurements on symmetrical cells were used to determine the ionic resistance of structured and unstructured electrodes of similar areal capacity. All cells with structured electrodes showed lower ionic resistances and an onset of lithium plating shifted to higher C-rates compared to cells with unstructured electrodes. The structure patterns with capillary structures, i.e., lines and grids, showed significant reduced lithium plating during fast-charging and a higher rate capability compared to reference cells with unstructured electrodes and cells with hole structured electrodes. The continuous rewetting of the electrode with liquid electrolyte by capillary forces and the reduced ionic resistance of the 3D electrode are identified as key factors in improving overall battery performance. The data of the studied cells were used to calculate the resulting energy and power densities of prospective commercial pouch cells and potential pitfalls in the comparison to cells with unstructured electrodes were identified.
在全电池和对称电池的可比设置中评估了阳极结构最常见的图案类型,特别是线条、网格和六边形排列孔图案。采用结构化电极的电池与采用非结构化阳极的参考电池进行了比较,两者的平均容量(4.3 mAh cm-2)相近,并通过电压弛豫的差分电压分析和死后分析确定了快速充电期间锂镀层的发生情况。此外,还对对称电池进行了电化学阻抗光谱测量,以确定类似面积容量的结构化电极和非结构化电极的离子电阻。与采用非结构化电极的电池相比,所有采用结构化电极的电池都显示出较低的离子电阻,并且锂镀层开始向较高的 C 速率转移。与采用非结构化电极的参比电池和采用孔状结构化电极的电池相比,采用毛细管结构(即线状和网格状)的结构模式在快速充电过程中明显减少了锂镀层,并具有更高的速率能力。三维电极通过毛细力使液体电解质不断重新润湿电极,并降低了离子电阻,这两点被认为是提高电池整体性能的关键因素。所研究电池的数据被用来计算未来商用袋装电池的能量和功率密度,并找出了与非结构化电极电池相比可能存在的缺陷。
{"title":"Optimizing Structural Patterns for 3D Electrodes in Lithium-Ion Batteries for Enhanced Fast-Charging Capability and Reduced Lithium Plating","authors":"Y. Sterzl, Wilhelm Pfleging","doi":"10.3390/batteries10050160","DOIUrl":"https://doi.org/10.3390/batteries10050160","url":null,"abstract":"The most common pattern types for anode structuring, in particular the line, grid, and hexagonal-arranged hole pattern were evaluated in a comparable setup in full-cells and symmetrical cells. The cells with structured electrodes were compared to reference cells with unstructured anodes of similar areal capacity (4.3 mAh cm−2) and the onset of lithium plating during fast-charging was determined in situ by differential voltage analysis of the voltage relaxation and ex situ by post-mortem analysis. Furthermore, electrochemical impedance spectroscopy measurements on symmetrical cells were used to determine the ionic resistance of structured and unstructured electrodes of similar areal capacity. All cells with structured electrodes showed lower ionic resistances and an onset of lithium plating shifted to higher C-rates compared to cells with unstructured electrodes. The structure patterns with capillary structures, i.e., lines and grids, showed significant reduced lithium plating during fast-charging and a higher rate capability compared to reference cells with unstructured electrodes and cells with hole structured electrodes. The continuous rewetting of the electrode with liquid electrolyte by capillary forces and the reduced ionic resistance of the 3D electrode are identified as key factors in improving overall battery performance. The data of the studied cells were used to calculate the resulting energy and power densities of prospective commercial pouch cells and potential pitfalls in the comparison to cells with unstructured electrodes were identified.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.3390/batteries10050159
David Beck, M. Dubarry
Blended electrodes are becoming increasingly more popular in lithium-ion batteries, yet most modeling approaches are still lacking the ability to separate the blend components. This is problematic because the different components are unlikely to degrade at the same pace. This work investigated a new approach towards the simulation of blended electrodes by replicating the complex current distributions within the electrodes using a paralleling model rather than the traditional constant-current method. In addition, a blending model was used to generate three publicly available datasets with more than 260,000 unique degradations for three exemplary blended cells. These datasets allowed us to showcase the necessity of considering all active components of the blend separately for diagnosis and prognosis.
{"title":"Electrode Blending Simulations Using the Mechanistic Degradation Modes Modeling Approach","authors":"David Beck, M. Dubarry","doi":"10.3390/batteries10050159","DOIUrl":"https://doi.org/10.3390/batteries10050159","url":null,"abstract":"Blended electrodes are becoming increasingly more popular in lithium-ion batteries, yet most modeling approaches are still lacking the ability to separate the blend components. This is problematic because the different components are unlikely to degrade at the same pace. This work investigated a new approach towards the simulation of blended electrodes by replicating the complex current distributions within the electrodes using a paralleling model rather than the traditional constant-current method. In addition, a blending model was used to generate three publicly available datasets with more than 260,000 unique degradations for three exemplary blended cells. These datasets allowed us to showcase the necessity of considering all active components of the blend separately for diagnosis and prognosis.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.3390/batteries10050158
Tero Niemi, Tero Kaarlela, Emilia Niittyviita, Ulla Lassi, J. Röning
Road transportation is a significant worldwide contributor to greenhouse gases, and electrifying the driveline of road vehicles is essential in overcoming the evident challenge of climate change. A sustainable transition to electric vehicles requires efficient and safe methods for recycling and repurposing used electric vehicle batteries. While various testing methods have been explored for assessing battery state of health and state of risk for recycling and reuse, a research gap exists concerning using data from integrated battery monitoring systems in the recycling process of electric vehicle batteries. This study addresses the research gap by presenting an approach to extract data from the monitoring system integrated into the battery using the automotive standard controller area network interface. In addition, methods to use this interface to ensure the optimal state of charge of the batteries for storage are presented. The benefits, challenges, and limitations set by the proprietary nature of the data to assess the state of risk and health of electric vehicle batteries for recycling and repurposing are presented, discussed, and evaluated. Finally, the influence of battery regulations and the battery passport proposal on electric vehicle battery recycling and repurposing are discussed to provide future perspectives.
{"title":"CAN Interface Insights for Electric Vehicle Battery Recycling","authors":"Tero Niemi, Tero Kaarlela, Emilia Niittyviita, Ulla Lassi, J. Röning","doi":"10.3390/batteries10050158","DOIUrl":"https://doi.org/10.3390/batteries10050158","url":null,"abstract":"Road transportation is a significant worldwide contributor to greenhouse gases, and electrifying the driveline of road vehicles is essential in overcoming the evident challenge of climate change. A sustainable transition to electric vehicles requires efficient and safe methods for recycling and repurposing used electric vehicle batteries. While various testing methods have been explored for assessing battery state of health and state of risk for recycling and reuse, a research gap exists concerning using data from integrated battery monitoring systems in the recycling process of electric vehicle batteries. This study addresses the research gap by presenting an approach to extract data from the monitoring system integrated into the battery using the automotive standard controller area network interface. In addition, methods to use this interface to ensure the optimal state of charge of the batteries for storage are presented. The benefits, challenges, and limitations set by the proprietary nature of the data to assess the state of risk and health of electric vehicle batteries for recycling and repurposing are presented, discussed, and evaluated. Finally, the influence of battery regulations and the battery passport proposal on electric vehicle battery recycling and repurposing are discussed to provide future perspectives.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.3390/batteries10050157
Tiago Afonso Salgueiro, R. C. Veloso, João Ventura, F. Danzi, Joana Oliveira
The global environmental crisis necessitates reliable, sustainable, and safe energy storage solutions. The current systems are nearing their capacity limits due to the reliance on conventional liquid electrolytes, which are fraught with stability and safety concerns, prompting the exploration of solid-state electrolytes, which enable the integration of metal electrodes. Solid-state sodium-ion batteries emerge as an appealing option by leveraging the abundance, low cost, and sustainability of sodium. However, low ionic conductivity and high interfacial resistance currently prevent their widespread adoption. This study explores polyvinyl-based polymers as wetting agents for the NASICON-type NZSP (Na3Zr2Si2PO12) solid electrolyte, resulting in a combined system with enhanced ionic conductivity suitable for Na-ion solid-state full cells. Electrochemical impedance spectroscopy (EIS) performed on symmetric cells employing NZSP paired with different wetting agent compositions demonstrates a significant reduction in interfacial resistance with the use of poly(vinyl acetate)—(PVAc-) based polymers, achieving an impressive ionic conductivity of 1.31 mS cm−1 at room temperature, 63.8% higher than the pristine material, notably reaching 7.36 mS cm−1 at 90 °C. These results offer valuable insights into the potential of PVAc-based polymers for advancing high-performance solid-state sodium-ion batteries by reducing their total internal resistance.
全球环境危机需要可靠、可持续和安全的能源储存解决方案。目前的系统由于依赖传统的液态电解质,其容量已接近极限,而液态电解质的稳定性和安全性令人担忧,这促使人们开始探索固态电解质,以整合金属电极。固态钠离子电池利用钠的丰富性、低成本和可持续性,成为一种极具吸引力的选择。然而,低离子电导率和高界面电阻目前阻碍了其广泛应用。本研究探索了聚乙烯基聚合物作为 NASICON 型 NZSP(Na3Zr2Si2PO12)固态电解质的润湿剂,从而产生了一种具有增强离子电导率的组合系统,适用于纳离子固态全电池。在采用 NZSP 和不同润湿剂成分的对称电池上进行的电化学阻抗谱(EIS)分析表明,使用聚(醋酸乙烯酯)-(PVAc-)聚合物后,界面电阻显著降低,室温下离子电导率达到 1.31 mS cm-1,比原始材料高出 63.8%,在 90 °C 时更是达到 7.36 mS cm-1。这些结果为了解 PVAc 基聚合物通过降低总内阻推进高性能固态钠离子电池的潜力提供了宝贵的见解。
{"title":"Ionic Conductivity Analysis of NASICON Solid Electrolyte Coated with Polyvinyl-Based Polymers","authors":"Tiago Afonso Salgueiro, R. C. Veloso, João Ventura, F. Danzi, Joana Oliveira","doi":"10.3390/batteries10050157","DOIUrl":"https://doi.org/10.3390/batteries10050157","url":null,"abstract":"The global environmental crisis necessitates reliable, sustainable, and safe energy storage solutions. The current systems are nearing their capacity limits due to the reliance on conventional liquid electrolytes, which are fraught with stability and safety concerns, prompting the exploration of solid-state electrolytes, which enable the integration of metal electrodes. Solid-state sodium-ion batteries emerge as an appealing option by leveraging the abundance, low cost, and sustainability of sodium. However, low ionic conductivity and high interfacial resistance currently prevent their widespread adoption. This study explores polyvinyl-based polymers as wetting agents for the NASICON-type NZSP (Na3Zr2Si2PO12) solid electrolyte, resulting in a combined system with enhanced ionic conductivity suitable for Na-ion solid-state full cells. Electrochemical impedance spectroscopy (EIS) performed on symmetric cells employing NZSP paired with different wetting agent compositions demonstrates a significant reduction in interfacial resistance with the use of poly(vinyl acetate)—(PVAc-) based polymers, achieving an impressive ionic conductivity of 1.31 mS cm−1 at room temperature, 63.8% higher than the pristine material, notably reaching 7.36 mS cm−1 at 90 °C. These results offer valuable insights into the potential of PVAc-based polymers for advancing high-performance solid-state sodium-ion batteries by reducing their total internal resistance.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141017046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.3390/batteries10050156
Yuanyuan Li, Xinrong Huang, Jinhao Meng, Kaibo Shi, R. Teodorescu, D. Stroe
Considering the diversity of battery data under dynamic test conditions, the stability of battery working data is affected due to the diversity of charge and discharge rates, variability of operating temperature, and randomness of the current state of charge, and the data types are multi-sourced, which increases the difficulty of estimating battery SOH based on data-driven methods. In this paper, a lithium-ion battery state of health estimation method with sample transfer learning under dynamic test conditions is proposed. Through the Tradaboost.R2 method, the weight of the source domain sample data is adjusted to complete the update of the sample data distribution. At the same time, considering the division methods of the six auxiliary and the source domain data set, aging features from different state of charge ranges are selected. It is verified that while the aging feature dimension and the demand for target domain label data are reduced, the estimation accuracy of the lithium-ion battery state of health is not affected by the initial value of the state of charge. By considering the mean absolute error, mean square error and root mean square error, the estimated error results do not exceed 1.2% on the experiment battery data, which highlights the advantages of the proposed methods.
{"title":"State of Health Estimation for Lithium-Ion Battery Based on Sample Transfer Learning under Current Pulse Test","authors":"Yuanyuan Li, Xinrong Huang, Jinhao Meng, Kaibo Shi, R. Teodorescu, D. Stroe","doi":"10.3390/batteries10050156","DOIUrl":"https://doi.org/10.3390/batteries10050156","url":null,"abstract":"Considering the diversity of battery data under dynamic test conditions, the stability of battery working data is affected due to the diversity of charge and discharge rates, variability of operating temperature, and randomness of the current state of charge, and the data types are multi-sourced, which increases the difficulty of estimating battery SOH based on data-driven methods. In this paper, a lithium-ion battery state of health estimation method with sample transfer learning under dynamic test conditions is proposed. Through the Tradaboost.R2 method, the weight of the source domain sample data is adjusted to complete the update of the sample data distribution. At the same time, considering the division methods of the six auxiliary and the source domain data set, aging features from different state of charge ranges are selected. It is verified that while the aging feature dimension and the demand for target domain label data are reduced, the estimation accuracy of the lithium-ion battery state of health is not affected by the initial value of the state of charge. By considering the mean absolute error, mean square error and root mean square error, the estimated error results do not exceed 1.2% on the experiment battery data, which highlights the advantages of the proposed methods.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141018408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/batteries10050146
Panagiotis Stavropoulos, K. Sabatakakis, H. Bikas
Electric vehicles’ batteries, referred to as Battery Packs (BPs), are composed of interconnected battery cells and modules. The utilisation of different materials, configurations, and welding processes forms a plethora of different applications. This level of diversity along with the low maturity of welding designs and the lack of standardisation result in great variations in the mechanical and electrical quality of the joints. Moreover, the high-volume production requirements, meaning the high number of joints per module/BP, increase the absolute number of defects. The first part of this study focuses on associating the challenges of welding application in battery assembly with the key performance indicators of the joints. The second part reviews the existing methods for quality assurance which concerns the joining of battery cells and busbars. Additionally, the second part of this paper identifies the general trends and the research gaps for the most widely adopted welding methods in this domain, while it renders the future directions.
{"title":"Welding Challenges and Quality Assurance in Electric Vehicle Battery Pack Manufacturing","authors":"Panagiotis Stavropoulos, K. Sabatakakis, H. Bikas","doi":"10.3390/batteries10050146","DOIUrl":"https://doi.org/10.3390/batteries10050146","url":null,"abstract":"Electric vehicles’ batteries, referred to as Battery Packs (BPs), are composed of interconnected battery cells and modules. The utilisation of different materials, configurations, and welding processes forms a plethora of different applications. This level of diversity along with the low maturity of welding designs and the lack of standardisation result in great variations in the mechanical and electrical quality of the joints. Moreover, the high-volume production requirements, meaning the high number of joints per module/BP, increase the absolute number of defects. The first part of this study focuses on associating the challenges of welding application in battery assembly with the key performance indicators of the joints. The second part reviews the existing methods for quality assurance which concerns the joining of battery cells and busbars. Additionally, the second part of this paper identifies the general trends and the research gaps for the most widely adopted welding methods in this domain, while it renders the future directions.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/batteries10050144
N. S. Seroka, Hongze Luo, L. Khotseng
Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries (LIBs) as the most reliable energy storage technology. This method is thought to be both environmentally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant attention in recent decades as promising tools for efficient and alternative anode materials for LIBs. Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending on the synthetic process, precise surface chemistry, and textural qualities such as specific surface area and porosity, this material can be customised to favour application-specific properties with a preferred application. In this research, we look at the performance of biochar in LIBs, its properties, and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy storage devices.
{"title":"Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review","authors":"N. S. Seroka, Hongze Luo, L. Khotseng","doi":"10.3390/batteries10050144","DOIUrl":"https://doi.org/10.3390/batteries10050144","url":null,"abstract":"Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries (LIBs) as the most reliable energy storage technology. This method is thought to be both environmentally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant attention in recent decades as promising tools for efficient and alternative anode materials for LIBs. Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending on the synthetic process, precise surface chemistry, and textural qualities such as specific surface area and porosity, this material can be customised to favour application-specific properties with a preferred application. In this research, we look at the performance of biochar in LIBs, its properties, and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy storage devices.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.3390/batteries10050145
Juan Fernando Meza Gonzalez, Hermann Nirschl, Frank Rhein
Screw design in the extrusion process has an important effect on the distribution of material through the extruder, resulting in partially filled sections in the processing zone. Accordingly, the local accumulation of material in the extruder leads to variations in material strain conditions and also influences the local residence time of the material in a given screw section. This work evaluates particle dispersion in anode slurry considering three different screw arrangements. The particle size distribution is considered as a quality parameter representing the microstructure of the battery slurry components and their distribution. Numerical simulation of the material flow behavior through a laboratory extruder was performed to investigate the filling ratios and resulting shear rates for different screw designs and process conditions. The importance of process parameters and a suitable screw configuration to achieve specific particle sizes in battery slurry is discussed.
{"title":"Continuous Anode Slurry Production in Twin-Screw Extruders: Effects of the Process Setup on the Dispersion","authors":"Juan Fernando Meza Gonzalez, Hermann Nirschl, Frank Rhein","doi":"10.3390/batteries10050145","DOIUrl":"https://doi.org/10.3390/batteries10050145","url":null,"abstract":"Screw design in the extrusion process has an important effect on the distribution of material through the extruder, resulting in partially filled sections in the processing zone. Accordingly, the local accumulation of material in the extruder leads to variations in material strain conditions and also influences the local residence time of the material in a given screw section. This work evaluates particle dispersion in anode slurry considering three different screw arrangements. The particle size distribution is considered as a quality parameter representing the microstructure of the battery slurry components and their distribution. Numerical simulation of the material flow behavior through a laboratory extruder was performed to investigate the filling ratios and resulting shear rates for different screw designs and process conditions. The importance of process parameters and a suitable screw configuration to achieve specific particle sizes in battery slurry is discussed.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.3390/batteries10040142
E. Gillich, M. Steinhardt, Yaroslava Fedoryshyna, A. Jossen
The propagation of thermal runaway in a battery system is safety-critical in almost every application, such as electric vehicles or home storage. Abuse models can help to undestand propagation mechanisms and assist in designing safe battery systems, but need to be well-parametrized. Most of the heat during thermal runaway is released by venting that is why the characteristic of the vent flow plays an important part in the safety assessment. During venting, the cell generates a recoil force like a rocket, which depends on the flow speed and flow rate of the gas. This principle is used in this work to measure the velocity and mass flow rate of the vent gas. High-power and high-energy 18650 format lithium-ion batteries were overheated and the recoil and weight forces were measured to determine the venting parameter during thermal runaway. Our results show, that the linearized gas flow rate for the high-power and high-energy cell is 22.15gs−1 and 27.92gs−1, respectively. The progress of the gas velocity differs between the two cell types and in case of the high-energy cell, it follows a single peak asymmetrical pattern with a peak of 398.5ms−1, while the high-power cell shows a bumpy pattern with a maximum gas velocity of 260.9ms−1. The developed test bench and gained results can contribute insights in the venting behavior, characterize venting, support safety assessments, simulations and pack design studies.
{"title":"Mechanical Measurement Approach to Characterize Venting Behavior during Thermal Runaway of 18650 Format Lithium-Ion Batteries","authors":"E. Gillich, M. Steinhardt, Yaroslava Fedoryshyna, A. Jossen","doi":"10.3390/batteries10040142","DOIUrl":"https://doi.org/10.3390/batteries10040142","url":null,"abstract":"The propagation of thermal runaway in a battery system is safety-critical in almost every application, such as electric vehicles or home storage. Abuse models can help to undestand propagation mechanisms and assist in designing safe battery systems, but need to be well-parametrized. Most of the heat during thermal runaway is released by venting that is why the characteristic of the vent flow plays an important part in the safety assessment. During venting, the cell generates a recoil force like a rocket, which depends on the flow speed and flow rate of the gas. This principle is used in this work to measure the velocity and mass flow rate of the vent gas. High-power and high-energy 18650 format lithium-ion batteries were overheated and the recoil and weight forces were measured to determine the venting parameter during thermal runaway. Our results show, that the linearized gas flow rate for the high-power and high-energy cell is 22.15gs−1 and 27.92gs−1, respectively. The progress of the gas velocity differs between the two cell types and in case of the high-energy cell, it follows a single peak asymmetrical pattern with a peak of 398.5ms−1, while the high-power cell shows a bumpy pattern with a maximum gas velocity of 260.9ms−1. The developed test bench and gained results can contribute insights in the venting behavior, characterize venting, support safety assessments, simulations and pack design studies.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}