Pub Date : 2024-03-14DOI: 10.3390/batteries10030101
Rafael Martínez-Sánchez, Ángel Molina-García, A. Ramallo-González
Batteries have been integral components in modern vehicles, initially powering starter motors and ensuring stable electrical conditions in various vehicle systems and later in energy sources of drive electric motors. Over time, their significance has grown exponentially with the advent of features such as “Start & Stop” systems, micro hybridization, and kinetic energy regeneration. This trend culminated in the emergence of hybrid and electric vehicles, where batteries are the energy source of the electric traction motors. The evolution of storage for vehicles has been driven by the need for larger autonomy, a higher number of cycles, lower self-discharge rates, enhanced performance in extreme temperatures, and greater electrical power extraction capacity. As these technologies have advanced, so have they the methods for their disposal, recovery, and recycling. However, one critical aspect often overlooked is the potential for battery reuse once they reach the end of their useful life. For each battery technology, specific regeneration methods have been developed, aiming to restore the battery to its initial performance state or something very close to it. This focus on regeneration holds significant economic implications, particularly for vehicles where batteries represent a substantial share of the overall cost, such as hybrid and electric vehicles. This paper conducts a comprehensive review of battery technologies employed in vehicles from their inception to the present day. Special attention is given to identifying common failures within these technologies. Additionally, the scientific literature and existing patents addressing regeneration methods are explored, shedding light on the promising avenues for extending the life and performance of automotive batteries.
{"title":"Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives","authors":"Rafael Martínez-Sánchez, Ángel Molina-García, A. Ramallo-González","doi":"10.3390/batteries10030101","DOIUrl":"https://doi.org/10.3390/batteries10030101","url":null,"abstract":"Batteries have been integral components in modern vehicles, initially powering starter motors and ensuring stable electrical conditions in various vehicle systems and later in energy sources of drive electric motors. Over time, their significance has grown exponentially with the advent of features such as “Start & Stop” systems, micro hybridization, and kinetic energy regeneration. This trend culminated in the emergence of hybrid and electric vehicles, where batteries are the energy source of the electric traction motors. The evolution of storage for vehicles has been driven by the need for larger autonomy, a higher number of cycles, lower self-discharge rates, enhanced performance in extreme temperatures, and greater electrical power extraction capacity. As these technologies have advanced, so have they the methods for their disposal, recovery, and recycling. However, one critical aspect often overlooked is the potential for battery reuse once they reach the end of their useful life. For each battery technology, specific regeneration methods have been developed, aiming to restore the battery to its initial performance state or something very close to it. This focus on regeneration holds significant economic implications, particularly for vehicles where batteries represent a substantial share of the overall cost, such as hybrid and electric vehicles. This paper conducts a comprehensive review of battery technologies employed in vehicles from their inception to the present day. Special attention is given to identifying common failures within these technologies. Additionally, the scientific literature and existing patents addressing regeneration methods are explored, shedding light on the promising avenues for extending the life and performance of automotive batteries.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.3390/batteries10030100
Yuri Surace, Marcus Jahn, D. Cupid
The aqueous processing of cathode materials for lithium-ion batteries (LIBs) has both environmental and cost benefits. However, high-loading, water-based electrodes from the layered oxides (e.g., NMC) typically exhibit worse electrochemical performance than NMP-based electrodes. In this work, primary, binary, and ternary binder mixtures of aqueous binders such as CMC, PAA, PEO, SBR, and Na alginate, in combination with bare and C-coated Al current collectors, were explored, aiming to improve the rate capability performance of NMC811 electrodes with high areal capacity (≥4 mAh cm−2) and low binder content (3 wt.%). Electrodes with a ternary binder composition (CMC:PAA:SBR) have the best performance with bare Al current collectors, attaining a specific capacity of 150 mAh g−1 at 1C. Using carbon-coated Al current collectors results in improved performance for both water- and NMP-based electrodes. This is further accentuated for Na-Alg and CMC:PAA binder compositions. These electrodes show specific capacities of 170 and 80 mAh g−1 at 1C and 2C, respectively. Although the specific capacities at 1C are comparable to those for NMP-PVDF electrodes, they are approximately 50% higher at the 2C rate. This study aims to contribute to the development of sustainably processed NMC electrodes for high energy density LIBs using water as solvent.
锂离子电池(LIB)正极材料的水处理具有环保和成本优势。然而,与基于 NMP 的电极相比,基于层状氧化物(如 NMC)的高负载水基电极通常表现出更差的电化学性能。在这项工作中,研究人员探索了 CMC、PAA、PEO、SBR 和 Na alginate 等水性粘合剂的一元、二元和三元粘合剂混合物与裸露和 C 涂层铝集流器的组合,旨在提高高电容(≥4 mAh cm-2)和低粘合剂含量(3 wt.%)的 NMC811 电极的速率能力性能。采用三元粘合剂成分(CMC:PAA:SBR)的电极在使用裸铝集流体时性能最佳,在 1C 时比容量达到 150 mAh g-1。使用碳涂层铝集流体可提高水基和 NMP 基电极的性能。这在 Na-Alg 和 CMC:PAA 粘合剂成分中得到了进一步的体现。这些电极在 1C 和 2C 时的比容量分别为 170 和 80 mAh g-1。虽然 1C 时的比容量与 NMP-PVDF 电极相当,但 2C 时比容量高出约 50%。本研究旨在为开发以水为溶剂的高能量密度锂离子电池的可持续加工 NMC 电极做出贡献。
{"title":"The Rate Capability Performance of High-Areal-Capacity Water-Based NMC811 Electrodes: The Role of Binders and Current Collectors","authors":"Yuri Surace, Marcus Jahn, D. Cupid","doi":"10.3390/batteries10030100","DOIUrl":"https://doi.org/10.3390/batteries10030100","url":null,"abstract":"The aqueous processing of cathode materials for lithium-ion batteries (LIBs) has both environmental and cost benefits. However, high-loading, water-based electrodes from the layered oxides (e.g., NMC) typically exhibit worse electrochemical performance than NMP-based electrodes. In this work, primary, binary, and ternary binder mixtures of aqueous binders such as CMC, PAA, PEO, SBR, and Na alginate, in combination with bare and C-coated Al current collectors, were explored, aiming to improve the rate capability performance of NMC811 electrodes with high areal capacity (≥4 mAh cm−2) and low binder content (3 wt.%). Electrodes with a ternary binder composition (CMC:PAA:SBR) have the best performance with bare Al current collectors, attaining a specific capacity of 150 mAh g−1 at 1C. Using carbon-coated Al current collectors results in improved performance for both water- and NMP-based electrodes. This is further accentuated for Na-Alg and CMC:PAA binder compositions. These electrodes show specific capacities of 170 and 80 mAh g−1 at 1C and 2C, respectively. Although the specific capacities at 1C are comparable to those for NMP-PVDF electrodes, they are approximately 50% higher at the 2C rate. This study aims to contribute to the development of sustainably processed NMC electrodes for high energy density LIBs using water as solvent.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140245341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.3390/batteries10030099
Patrick Deeg, C. Weisenberger, Jonas Oehm, Denny Schmidt, O. Csiszár, Volker Knoblauch
In this study, we investigate the use of artificial neural networks as a potentially efficient method to determine the rate capability of electrodes for lithium-ion batteries with different porosities. The performance of a lithium-ion battery is, to a large extent, determined by the microstructure (i.e., layer thickness and porosity) of its electrodes. Tailoring the microstructure to a specific application is a crucial process in battery development. However, unravelling the complex correlations between microstructure and rate performance using either experiments or simulations is time-consuming and costly. Our approach provides a swift method for predicting the rate capability of battery electrodes by using machine learning on microstructural images of electrode cross-sections. We train multiple models in order to predict the specific capacity based on the batteries’ microstructure and investigate the decisive parts of the microstructure through the use of explainable artificial intelligence (XAI) methods. Our study shows that even comparably small neural network architectures are capable of providing state-of-the-art prediction results. In addition to this, our XAI studies demonstrate that the models are using understandable human features while ignoring present artefacts.
{"title":"Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries","authors":"Patrick Deeg, C. Weisenberger, Jonas Oehm, Denny Schmidt, O. Csiszár, Volker Knoblauch","doi":"10.3390/batteries10030099","DOIUrl":"https://doi.org/10.3390/batteries10030099","url":null,"abstract":"In this study, we investigate the use of artificial neural networks as a potentially efficient method to determine the rate capability of electrodes for lithium-ion batteries with different porosities. The performance of a lithium-ion battery is, to a large extent, determined by the microstructure (i.e., layer thickness and porosity) of its electrodes. Tailoring the microstructure to a specific application is a crucial process in battery development. However, unravelling the complex correlations between microstructure and rate performance using either experiments or simulations is time-consuming and costly. Our approach provides a swift method for predicting the rate capability of battery electrodes by using machine learning on microstructural images of electrode cross-sections. We train multiple models in order to predict the specific capacity based on the batteries’ microstructure and investigate the decisive parts of the microstructure through the use of explainable artificial intelligence (XAI) methods. Our study shows that even comparably small neural network architectures are capable of providing state-of-the-art prediction results. In addition to this, our XAI studies demonstrate that the models are using understandable human features while ignoring present artefacts.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140251219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.3390/batteries10030098
Ali Abbas, Nassim Rizoug, R. Trigui, E. Redondo-Iglesias, S. Pélissier
Predicting the operating temperature of lithium-ion battery during different cycles is important when it comes to the safety and efficiency of electric vehicles. In this regard, it is vital to adopt a suitable modeling approach to analyze the thermal performance of a battery. In this paper, the temperature of lithium-ion NMC pouch battery has been investigated. A new formulation of lumped model based on the thermal resistance network is proposed. Unlike previous models that treated the battery as a single entity, the proposed model introduces a more detailed analysis by incorporating thermal interactions between individual cells and tabs within a single cell scenario, while also considering interactions between cells and insulators or gaps, located between the cells, within the module case. This enhancement allows for the precise prediction of temperature variations across different cells implemented within the battery module. In order to evaluate the accuracy of the prediction, a three-dimensional finite element model was adopted as a reference. The study was performed first on a single cell, then on modules composed of several cells connected in series, during different operating conditions. A comprehensive comparison between both models was conducted. The analysis focused on two main aspects, the accuracy of temperature predictions and the computational time required. Notably, the developed lumped model showed a significant capability to estimate cell temperatures within the modules. The thermal results revealed close agreement with the values predicted by the finite element model, while needing significantly lower computational time. For instance, while the finite element model took almost 21 h to predict the battery temperature during consecutive charge/discharge cycles of a 10-cell module, the developed lumped model predicted the temperature within seconds, with a maximum difference of 0.42 °C.
{"title":"Low-Computational Model to Predict Individual Temperatures of Cells within Battery Modules","authors":"Ali Abbas, Nassim Rizoug, R. Trigui, E. Redondo-Iglesias, S. Pélissier","doi":"10.3390/batteries10030098","DOIUrl":"https://doi.org/10.3390/batteries10030098","url":null,"abstract":"Predicting the operating temperature of lithium-ion battery during different cycles is important when it comes to the safety and efficiency of electric vehicles. In this regard, it is vital to adopt a suitable modeling approach to analyze the thermal performance of a battery. In this paper, the temperature of lithium-ion NMC pouch battery has been investigated. A new formulation of lumped model based on the thermal resistance network is proposed. Unlike previous models that treated the battery as a single entity, the proposed model introduces a more detailed analysis by incorporating thermal interactions between individual cells and tabs within a single cell scenario, while also considering interactions between cells and insulators or gaps, located between the cells, within the module case. This enhancement allows for the precise prediction of temperature variations across different cells implemented within the battery module. In order to evaluate the accuracy of the prediction, a three-dimensional finite element model was adopted as a reference. The study was performed first on a single cell, then on modules composed of several cells connected in series, during different operating conditions. A comprehensive comparison between both models was conducted. The analysis focused on two main aspects, the accuracy of temperature predictions and the computational time required. Notably, the developed lumped model showed a significant capability to estimate cell temperatures within the modules. The thermal results revealed close agreement with the values predicted by the finite element model, while needing significantly lower computational time. For instance, while the finite element model took almost 21 h to predict the battery temperature during consecutive charge/discharge cycles of a 10-cell module, the developed lumped model predicted the temperature within seconds, with a maximum difference of 0.42 °C.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite features of cost-effectiveness, high safety, and superior capacity, aqueous zinc-ion batteries (ZIBs) have issues of uncontrolled dendritic cell failure and poor Zn utilization, resulting in inferior cycling reversibility. Herein, the environmentally friendly and naturally abundant sodium citrate (SC) was adopted as a dual-functional additive for ZnSO4-based (ZSO) electrolytes. Owing to the abundant hydrogen-bond donors and hydrogen-bond acceptors of SC, the Zn2+-solvation shell is interrupted to facilitate Zn desolvation, resulting in inhibited corrosion reactions. Additionally, sodium ions (Na+) from the SC additive with a lower effective reduction potential than that of zinc ions (Zn2+) form an electrostatic shield inhibiting the formation of initial surface protuberances and subsequent Zn dendrite growth. This assists in the Zn three-dimensional (3D) diffusion and deposition, thereby effectively enhancing cycling stability. Specifically, a long cycling lifespan (more than 760 h) of the Zn//Zn symmetric cell is achieved with a 2 M ZSO-1.0 SC electrolyte at a current density of 1 mA cm−2. When coupled with the NaV3O8·1.5 H2O (NVO) cathode, the full battery containing SC additive exhibited a capacity retention rate (40.0%) and a cycling life of 400 cycles at a current density of 1 A g−1 compared with that of pure ZnSO4 electrolyte (23.8%). This work provides a protocol for selecting an environmentally friendly and naturally abundant dual-functional electrolyte additive to achieve solvation shell regulation and Zn anode protection for the practical large-scale application of ZIBs.
{"title":"Sodium Citrate Electrolyte Additive to Improve Zinc Anode Behavior in Aqueous Zinc-Ion Batteries","authors":"Xin Liu, Liang Yue, Weixu Dong, Yifan Qu, Xianzhong Sun, Li‐Feng Chen","doi":"10.3390/batteries10030097","DOIUrl":"https://doi.org/10.3390/batteries10030097","url":null,"abstract":"Despite features of cost-effectiveness, high safety, and superior capacity, aqueous zinc-ion batteries (ZIBs) have issues of uncontrolled dendritic cell failure and poor Zn utilization, resulting in inferior cycling reversibility. Herein, the environmentally friendly and naturally abundant sodium citrate (SC) was adopted as a dual-functional additive for ZnSO4-based (ZSO) electrolytes. Owing to the abundant hydrogen-bond donors and hydrogen-bond acceptors of SC, the Zn2+-solvation shell is interrupted to facilitate Zn desolvation, resulting in inhibited corrosion reactions. Additionally, sodium ions (Na+) from the SC additive with a lower effective reduction potential than that of zinc ions (Zn2+) form an electrostatic shield inhibiting the formation of initial surface protuberances and subsequent Zn dendrite growth. This assists in the Zn three-dimensional (3D) diffusion and deposition, thereby effectively enhancing cycling stability. Specifically, a long cycling lifespan (more than 760 h) of the Zn//Zn symmetric cell is achieved with a 2 M ZSO-1.0 SC electrolyte at a current density of 1 mA cm−2. When coupled with the NaV3O8·1.5 H2O (NVO) cathode, the full battery containing SC additive exhibited a capacity retention rate (40.0%) and a cycling life of 400 cycles at a current density of 1 A g−1 compared with that of pure ZnSO4 electrolyte (23.8%). This work provides a protocol for selecting an environmentally friendly and naturally abundant dual-functional electrolyte additive to achieve solvation shell regulation and Zn anode protection for the practical large-scale application of ZIBs.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140253795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.3390/batteries10030095
J. Gerstenberg, Dominik Steckermeier, Arno Kwade, P. Michalowski
Despite the variety of solid electrolytes available, no single solid electrolyte has been found that meets all the requirements of the successor technology of lithium-ion batteries in an optimum way. However, composite hybrid electrolytes that combine the desired properties such as high ionic conductivity or stability against lithium are promising. The addition of conductive oxide fillers to sulfide solid electrolytes has been reported to increase ionic conductivity and improve stability relative to the individual electrolytes, but the influence of the mixing process to create composite electrolytes has not been investigated. Here, we investigate Li3PS4 (LPS) and Li7La3Zr2O12 (LLZO) composite electrolytes using electrochemical impedance spectroscopy and distribution of relaxation times. The distinction between sulfide bulk and grain boundary polarization processes is possible with the methods used at temperatures below 10 °C. We propose lithium transport through the space-charge layer within the sulfide electrolyte, which increases the conductivity. With increasing mixing intensities in a high-energy ball mill, we show an overlay of the enhanced lithium-ion transport with the structural change of the sulfide matrix component, which increases the ionic conductivity of LPS from 4.1 × 10−5 S cm−1 to 1.7 × 10−4 S cm−1.
尽管固态电解质种类繁多,但目前还没有发现一种固态电解质能以最佳方式满足锂离子电池后续技术的所有要求。不过,兼具高离子电导率或锂稳定性等理想特性的复合混合电解质前景广阔。据报道,在硫化物固体电解质中添加导电氧化物填料可提高离子电导率,并改善相对于单个电解质的稳定性,但尚未研究混合过程对创建复合电解质的影响。在此,我们利用电化学阻抗光谱和弛豫时间分布研究了 Li3PS4(LPS)和 Li7La3Zr2O12(LLZO)复合电解质。在温度低于 10 ℃ 的条件下,所使用的方法可以区分硫化物块体和晶界极化过程。我们认为锂通过硫化物电解质中的空间电荷层进行传输,从而增加了导电性。随着高能球磨机中混合强度的增加,我们发现锂离子传输的增强与硫化物基质成分的结构变化相叠加,从而使 LPS 的离子电导率从 4.1 × 10-5 S cm-1 增加到 1.7 × 10-4 S cm-1。
{"title":"Effect of Mixing Intensity on Electrochemical Performance of Oxide/Sulfide Composite Electrolytes","authors":"J. Gerstenberg, Dominik Steckermeier, Arno Kwade, P. Michalowski","doi":"10.3390/batteries10030095","DOIUrl":"https://doi.org/10.3390/batteries10030095","url":null,"abstract":"Despite the variety of solid electrolytes available, no single solid electrolyte has been found that meets all the requirements of the successor technology of lithium-ion batteries in an optimum way. However, composite hybrid electrolytes that combine the desired properties such as high ionic conductivity or stability against lithium are promising. The addition of conductive oxide fillers to sulfide solid electrolytes has been reported to increase ionic conductivity and improve stability relative to the individual electrolytes, but the influence of the mixing process to create composite electrolytes has not been investigated. Here, we investigate Li3PS4 (LPS) and Li7La3Zr2O12 (LLZO) composite electrolytes using electrochemical impedance spectroscopy and distribution of relaxation times. The distinction between sulfide bulk and grain boundary polarization processes is possible with the methods used at temperatures below 10 °C. We propose lithium transport through the space-charge layer within the sulfide electrolyte, which increases the conductivity. With increasing mixing intensities in a high-energy ball mill, we show an overlay of the enhanced lithium-ion transport with the structural change of the sulfide matrix component, which increases the ionic conductivity of LPS from 4.1 × 10−5 S cm−1 to 1.7 × 10−4 S cm−1.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140259291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.3390/batteries10030094
Jorge González-Morales, J. Mosa, Sho Ishiyama, N. Rosero-Navarro, Akira Miura, K. Tadanaga, Mario Aparicio
The impact of global warming has required the development of efficient new types of batteries. One of the most promising is Zn-O2 batteries because they provide the second biggest theoretical energy density, with relevant safety and a cycle of life long enough to be fitted for massive use. However, their industrial use is hindered by a series of obstacles, such as a fast reduction in the energy density after the initial charge and discharge cycles and a limited cathode efficiency or an elevated overpotential between discharge and charge. This work is focused on the synthesis of titanium compounds as catalyzers for the cathode of a Zn-O2 aqueous battery and their characterization. The results have shown a surface area of 350 m2/g after the elimination of the organic templates during heat treatment at 500 °C in air. Different thermal treatments were performed, tuning different parameters, such as intermediate treatment at 500 °C or the atmosphere used and the final temperature. Surface areas remain high for samples without an intermediate temperature step of 500 °C. Raman spectroscopy studies confirmed the nitridation of samples. SEM and XRD showed macro–meso-porosity and the presence of nitrogen, and the electrochemical evaluation confirmed the catalytic properties of this material in oxygen reaction reduction (ORR)/oxygen evolution reaction (OER) analysis and Zn-O2 battery tests.
全球变暖的影响要求开发高效的新型电池。其中最有前途的是锌-二氧化物电池,因为这种电池的理论能量密度仅次于锌-二氧化物电池,而且具有相关的安全性和足够长的寿命周期,适合大规模使用。然而,它们的工业应用受到一系列障碍的阻碍,例如在初始充放电循环后能量密度会迅速降低,阴极效率有限,或在放电和充电之间过电位升高。这项工作的重点是合成钛化合物作为 Zn-O2 水电池阴极的催化剂,并对其进行表征。结果表明,在 500 °C 的空气中进行热处理,消除有机模板后,其表面积为 350 m2/g。进行了不同的热处理,调整了不同的参数,如 500 °C 的中间处理或使用的气氛和最终温度。没有 500 °C 中间温度步骤的样品表面积仍然很高。拉曼光谱研究证实了样品的氮化。扫描电子显微镜(SEM)和 X 射线衍射仪(XRD)显示了大介孔和氮的存在,电化学评估证实了这种材料在氧反应还原(ORR)/氧进化反应(OER)分析和 Zn-O2 电池测试中的催化特性。
{"title":"Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries","authors":"Jorge González-Morales, J. Mosa, Sho Ishiyama, N. Rosero-Navarro, Akira Miura, K. Tadanaga, Mario Aparicio","doi":"10.3390/batteries10030094","DOIUrl":"https://doi.org/10.3390/batteries10030094","url":null,"abstract":"The impact of global warming has required the development of efficient new types of batteries. One of the most promising is Zn-O2 batteries because they provide the second biggest theoretical energy density, with relevant safety and a cycle of life long enough to be fitted for massive use. However, their industrial use is hindered by a series of obstacles, such as a fast reduction in the energy density after the initial charge and discharge cycles and a limited cathode efficiency or an elevated overpotential between discharge and charge. This work is focused on the synthesis of titanium compounds as catalyzers for the cathode of a Zn-O2 aqueous battery and their characterization. The results have shown a surface area of 350 m2/g after the elimination of the organic templates during heat treatment at 500 °C in air. Different thermal treatments were performed, tuning different parameters, such as intermediate treatment at 500 °C or the atmosphere used and the final temperature. Surface areas remain high for samples without an intermediate temperature step of 500 °C. Raman spectroscopy studies confirmed the nitridation of samples. SEM and XRD showed macro–meso-porosity and the presence of nitrogen, and the electrochemical evaluation confirmed the catalytic properties of this material in oxygen reaction reduction (ORR)/oxygen evolution reaction (OER) analysis and Zn-O2 battery tests.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140261254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.3390/batteries10030093
M. Á. Hidalgo, P. Lavela, J. Tirado, Manuel Aranda
Layered oxides exhibit interesting performance as positive electrodes for commercial sodium-ion batteries. Nevertheless, the replacement of low-sustainable nickel with more abundant iron would be desirable. Although it can be achieved in P2-Na2/3Ni2/9Fe2/9Mn5/9O2, its performance still requires further improvement. Many imaginative strategies such as surface modification have been proposed to minimize undesirable interactions at the cathode–electrolyte interface while facilitating sodium insertion in different materials. Here, we examine four different approaches based on the use of the electron-conductive polymer poly(3,4-ethylene dioxythiophene) (PEDOT) as an additive: (i) electrochemical in situ polymerization of the monomer, (ii) manual mixing with the active material, (iii) coating the current collector, and (iv) a combination of the latter two methods. As compared with pristine layered oxide, the electrochemical performance shows a particularly effective way of increasing cycling stability by using electropolymerization. Contrarily, the mixtures show less improvement, probably due to the heterogeneous distribution of oxide and polymer in the samples. In contrast with less conductive polyanionic cathode materials such as phosphates, the beneficial effects of PEDOT on oxide cathodes are not as much in rate performance as in inhibiting cycling degradation, due to the compactness of the electrodes without loss of electrical contact between active particles.
{"title":"Modification of Layered Cathodes of Sodium-Ion Batteries with Conducting Polymers","authors":"M. Á. Hidalgo, P. Lavela, J. Tirado, Manuel Aranda","doi":"10.3390/batteries10030093","DOIUrl":"https://doi.org/10.3390/batteries10030093","url":null,"abstract":"Layered oxides exhibit interesting performance as positive electrodes for commercial sodium-ion batteries. Nevertheless, the replacement of low-sustainable nickel with more abundant iron would be desirable. Although it can be achieved in P2-Na2/3Ni2/9Fe2/9Mn5/9O2, its performance still requires further improvement. Many imaginative strategies such as surface modification have been proposed to minimize undesirable interactions at the cathode–electrolyte interface while facilitating sodium insertion in different materials. Here, we examine four different approaches based on the use of the electron-conductive polymer poly(3,4-ethylene dioxythiophene) (PEDOT) as an additive: (i) electrochemical in situ polymerization of the monomer, (ii) manual mixing with the active material, (iii) coating the current collector, and (iv) a combination of the latter two methods. As compared with pristine layered oxide, the electrochemical performance shows a particularly effective way of increasing cycling stability by using electropolymerization. Contrarily, the mixtures show less improvement, probably due to the heterogeneous distribution of oxide and polymer in the samples. In contrast with less conductive polyanionic cathode materials such as phosphates, the beneficial effects of PEDOT on oxide cathodes are not as much in rate performance as in inhibiting cycling degradation, due to the compactness of the electrodes without loss of electrical contact between active particles.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140262495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.3390/batteries10030081
A. Pražanová, Zbyněk Plachý, Jan Kočí, Michael Fridrich, V. Knap
The significant deployment of lithium-ion batteries (LIBs) within a wide application field covering small consumer electronics, light and heavy means of transport, such as e-bikes, e-scooters, and electric vehicles (EVs), or energy storage stationary systems will inevitably lead to generating notable amounts of spent batteries in the coming years. Considering the environmental perspective, material resource sustainability, and terms of the circular economy, recycling represents a highly prospective strategy for LIB end-of-life (EOL) management. In contrast with traditional, large-scale, implemented recycling methods, such as pyrometallurgy or hydrometallurgy, direct recycling technology constitutes a promising solution for LIB EOL treatment with outstanding environmental benefits, including reduction of energy consumption and emission footprint, and weighty economic viability. This work comprehensively assesses the limitations and challenges of state-of-the-art, implemented direct recycling methods for spent LIB cathode and anode material treatment. The introduced approaches include solid-state sintering, electrochemical relithiation in organic and aqueous electrolytes, and ionothermal, solution, and eutectic relithiation methods. Since most direct recycling techniques are still being developed and implemented primarily on a laboratory scale, this review identifies and discusses potential areas for optimization to facilitate forthcoming large-scale industrial implementation.
{"title":"Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation","authors":"A. Pražanová, Zbyněk Plachý, Jan Kočí, Michael Fridrich, V. Knap","doi":"10.3390/batteries10030081","DOIUrl":"https://doi.org/10.3390/batteries10030081","url":null,"abstract":"The significant deployment of lithium-ion batteries (LIBs) within a wide application field covering small consumer electronics, light and heavy means of transport, such as e-bikes, e-scooters, and electric vehicles (EVs), or energy storage stationary systems will inevitably lead to generating notable amounts of spent batteries in the coming years. Considering the environmental perspective, material resource sustainability, and terms of the circular economy, recycling represents a highly prospective strategy for LIB end-of-life (EOL) management. In contrast with traditional, large-scale, implemented recycling methods, such as pyrometallurgy or hydrometallurgy, direct recycling technology constitutes a promising solution for LIB EOL treatment with outstanding environmental benefits, including reduction of energy consumption and emission footprint, and weighty economic viability. This work comprehensively assesses the limitations and challenges of state-of-the-art, implemented direct recycling methods for spent LIB cathode and anode material treatment. The introduced approaches include solid-state sintering, electrochemical relithiation in organic and aqueous electrolytes, and ionothermal, solution, and eutectic relithiation methods. Since most direct recycling techniques are still being developed and implemented primarily on a laboratory scale, this review identifies and discusses potential areas for optimization to facilitate forthcoming large-scale industrial implementation.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140422131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.3390/batteries10030079
F. Salek, S. Resalati, Meisam Babaie, P. Henshall, Denise Morrey, Lei Yao
The increasing number of electric vehicles (EVs) on the roads has led to a rise in the number of batteries reaching the end of their first life. Such batteries, however, still have a capacity of 75–80% remaining, creating an opportunity for a second life in less power-intensive applications. Utilising these second-life batteries (SLBs) requires specific preparation, including grading the batteries based on their State of Health (SoH); repackaging, considering the end-use requirements; and the development of an accurate battery-management system (BMS) based on validated theoretical models. In this paper, we conduct a technical review of mathematical modelling and experimental analyses of SLBs to address existing challenges in BMS development. Our review reveals that most of the recent research focuses on environmental and economic aspects rather than technical challenges. The review suggests the use of equivalent-circuit models with 2RCs and 3RCs, which exhibit good accuracy for estimating the performance of lithium-ion batteries during their second life. Furthermore, electrochemical impedance spectroscopy (EIS) tests provide valuable information about the SLBs’ degradation history and conditions. For addressing calendar-ageing mechanisms, electrochemical models are suggested over empirical models due to their effectiveness and efficiency. Additionally, generating cycle-ageing test profiles based on real application scenarios using synthetic load data is recommended for reliable predictions. Artificial intelligence algorithms show promise in predicting SLB cycle-ageing fading parameters, offering significant time-saving benefits for lab testing. Our study emphasises the importance of focusing on technical challenges to facilitate the effective utilisation of SLBs in stationary applications, such as building energy-storage systems and EV charging stations.
{"title":"A Review of the Technical Challenges and Solutions in Maximising the Potential Use of Second Life Batteries from Electric Vehicles","authors":"F. Salek, S. Resalati, Meisam Babaie, P. Henshall, Denise Morrey, Lei Yao","doi":"10.3390/batteries10030079","DOIUrl":"https://doi.org/10.3390/batteries10030079","url":null,"abstract":"The increasing number of electric vehicles (EVs) on the roads has led to a rise in the number of batteries reaching the end of their first life. Such batteries, however, still have a capacity of 75–80% remaining, creating an opportunity for a second life in less power-intensive applications. Utilising these second-life batteries (SLBs) requires specific preparation, including grading the batteries based on their State of Health (SoH); repackaging, considering the end-use requirements; and the development of an accurate battery-management system (BMS) based on validated theoretical models. In this paper, we conduct a technical review of mathematical modelling and experimental analyses of SLBs to address existing challenges in BMS development. Our review reveals that most of the recent research focuses on environmental and economic aspects rather than technical challenges. The review suggests the use of equivalent-circuit models with 2RCs and 3RCs, which exhibit good accuracy for estimating the performance of lithium-ion batteries during their second life. Furthermore, electrochemical impedance spectroscopy (EIS) tests provide valuable information about the SLBs’ degradation history and conditions. For addressing calendar-ageing mechanisms, electrochemical models are suggested over empirical models due to their effectiveness and efficiency. Additionally, generating cycle-ageing test profiles based on real application scenarios using synthetic load data is recommended for reliable predictions. Artificial intelligence algorithms show promise in predicting SLB cycle-ageing fading parameters, offering significant time-saving benefits for lab testing. Our study emphasises the importance of focusing on technical challenges to facilitate the effective utilisation of SLBs in stationary applications, such as building energy-storage systems and EV charging stations.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140424747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}