Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Furthermore, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction sites with a Matthew’s correlation coefficient (MCC) of 0.82.
{"title":"pKalculator: A pKa predictor for C–H bonds","authors":"Rasmus M Borup, Nicolai Ree, Jan H Jensen","doi":"10.3762/bjoc.20.144","DOIUrl":"https://doi.org/10.3762/bjoc.20.144","url":null,"abstract":"Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Furthermore, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction sites with a Matthew’s correlation coefficient (MCC) of 0.82.","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin A. Juarez-Ornelas, Manuel Solís-Hernández, P. Navarro‐Santos, J. Jiménez-Halla, C. Solorio-Alvarado
The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl–I(Ph)–OTFA–AlCl3 and [Cl–I(Ph)][OTFA–AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br–I(Ph)–OAc–AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.
{"title":"Divergent role of PIDA and PIFA in the AlX3 (X = Cl, Br) halogenation of 2-naphthol: a mechanistic study","authors":"Kevin A. Juarez-Ornelas, Manuel Solís-Hernández, P. Navarro‐Santos, J. Jiménez-Halla, C. Solorio-Alvarado","doi":"10.3762/bjoc.20.141","DOIUrl":"https://doi.org/10.3762/bjoc.20.141","url":null,"abstract":"The reaction mechanism for the chlorination and bromination of 2-naphthol with PIDA or PIFA and AlX3 (X = Cl, Br), previously reported by our group, was elucidated via quantum chemical calculations using density functional theory. The chlorination mechanism using PIFA and AlCl3 demonstrated a better experimental and theoretical yield compared to using PIDA. Additionally, the lowest-energy chlorinating species was characterized by an equilibrium of Cl–I(Ph)–OTFA–AlCl3 and [Cl–I(Ph)][OTFA–AlCl3], rather than PhICl2 being the active species. On the other hand, bromination using PIDA and AlBr3 was more efficient, wherein the intermediate Br–I(Ph)–OAc–AlBr3 was formed as active brominating species. Similarly, PhIBr2 was higher in energy than our proposed species. The reaction mechanisms are described in detail in this work and were found to be in excellent agreement with the experimental yield. These initial results confirmed that our proposed mechanism was energetically favored and therefore more plausible compared to halogenation via PhIX2.","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor–acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV–vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.
在设计水介质中的光收获和光致发光超分子系统时,制造两亲性光开关可通过光照射实现非侵入性功能响应。虽然大多数水性超分子组装体都是由高能量和具有生物破坏性的紫外线驱动的,但我们以前曾报道过一种由白光控制的两亲性供体-受体斯登豪斯加合物(DASAs)的设计。在此,我们介绍了一系列 DASA 两性化合物(DAs),这些化合物对连接 DASA 主题和亲水分子的烷基连接链长度进行了微小的结构修改。通过紫外-可见吸收光谱,研究了在可见光的驱动下,DASA 在有机介质中的优异光开关性和在水介质中的光致响应性。电子显微镜确认了组装好的超分子纳米结构,而 X 射线衍射分析则揭示了超分子堆积。在可见光照射下,DA 的几何形状发生了显著变化,使超分子组装体在微观尺度上发生了转变,随后DA 的宏观软支架被分解。目前的工作表明,可见光控制的宏观支架的制造大有可为,为具有可见光控制微环境的下一代生物医学材料和未来的软机器人系统提供了可能。
{"title":"Supramolecular assemblies of amphiphilic donor–acceptor Stenhouse adducts as macroscopic soft scaffolds","authors":"Ka-Lung Hung, Leong-Hung Cheung, Yikun Ren, Ming-Hin Chau, Yan-Yi Lam, Takashi Kajitani, Franco King‐Chi Leung","doi":"10.3762/bjoc.20.142","DOIUrl":"https://doi.org/10.3762/bjoc.20.142","url":null,"abstract":"In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor–acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV–vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}