Pub Date : 2024-11-19DOI: 10.1016/j.bbrc.2024.151010
Yungyeong Heo, Yonghyeon Kim, Won Chung Lim, Hyeseong Cho, Yong Won Choi, Sunwoo Min
The transcriptional regulation of p53-dependent genes in response to DNA damage is critical for effective DNA repair and cell survival. We previously established that RSF1 (remodeling and spacing factor 1) is necessary for p53-dependent gene transcription in response to DNA strand breaks. Here, we further elucidate that the role of RSF1 in p53 regulation by demonstrating that its depletion results in a reduction in the acetylated-Lys(K)382 level of p53, which governs its transcriptional activity. RSF1 was co-precipitated with p300 acetyltransferase upon etoposide treatment. Chromatin immunoprecipitation assays on the upstream region of CDKN1A gene revealed reduced p300 and TBP accumulation, which were accompanied with low H3H27ac and H3K4me1 levels in RSF1 knockout cells. Moreover, RSF1 depletion led to a reduced accumulation of SSRP1 and SPT16, subunits of FACT complex at the promoter of CDKN1A gene. These findings suggest that RSF1 promotes p53-dependent p21 gene transcription by facilitating the accumulation of p300 acetyltransferase at the enhancer and FACT at the promoter region of CDKN1A gene, respectively.
{"title":"RSF1 orchestrates p53 transcriptional activity by coordinating p300 acetyltransferase and FACT complex.","authors":"Yungyeong Heo, Yonghyeon Kim, Won Chung Lim, Hyeseong Cho, Yong Won Choi, Sunwoo Min","doi":"10.1016/j.bbrc.2024.151010","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151010","url":null,"abstract":"<p><p>The transcriptional regulation of p53-dependent genes in response to DNA damage is critical for effective DNA repair and cell survival. We previously established that RSF1 (remodeling and spacing factor 1) is necessary for p53-dependent gene transcription in response to DNA strand breaks. Here, we further elucidate that the role of RSF1 in p53 regulation by demonstrating that its depletion results in a reduction in the acetylated-Lys(K)382 level of p53, which governs its transcriptional activity. RSF1 was co-precipitated with p300 acetyltransferase upon etoposide treatment. Chromatin immunoprecipitation assays on the upstream region of CDKN1A gene revealed reduced p300 and TBP accumulation, which were accompanied with low H3H27ac and H3K4me1 levels in RSF1 knockout cells. Moreover, RSF1 depletion led to a reduced accumulation of SSRP1 and SPT16, subunits of FACT complex at the promoter of CDKN1A gene. These findings suggest that RSF1 promotes p53-dependent p21 gene transcription by facilitating the accumulation of p300 acetyltransferase at the enhancer and FACT at the promoter region of CDKN1A gene, respectively.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"741 ","pages":"151010"},"PeriodicalIF":2.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19Epub Date: 2024-10-01DOI: 10.1016/j.bbrc.2024.150777
Khoula Sharif Mughal, Muhammad Ikram, Zia Uddin, Amna Rashid, Umer Rashid, Momina Khan, Naseem Zehra, Umair Sharif Mughal, Nabi Shah, Imran Amirzada
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
{"title":"Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model.","authors":"Khoula Sharif Mughal, Muhammad Ikram, Zia Uddin, Amna Rashid, Umer Rashid, Momina Khan, Naseem Zehra, Umair Sharif Mughal, Nabi Shah, Imran Amirzada","doi":"10.1016/j.bbrc.2024.150777","DOIUrl":"10.1016/j.bbrc.2024.150777","url":null,"abstract":"<p><p>Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"734 ","pages":"150777"},"PeriodicalIF":2.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-17DOI: 10.1016/j.bbrc.2024.151002
Mahintaj Dara, Mehdi Dianatpour, Negar Azarpira, Nader Tanideh, Romina Tanideh
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.
CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)是细菌和古细菌的一种适应性免疫系统,提供了一种抵御病毒(噬菌体)和质粒等遗传因子入侵的防御机制。如今,CRISPR 已经发展成为一种强大的基因编辑技术,能够对基因组内的 DNA 进行高度特异性的快速修改。它在医学、农业和基础研究等各个领域都有广泛的应用。这项技术面临的重大挑战之一是如何将 CRISPR 构建物有效地转移到目标细胞中进行基因编辑。将该系统转入靶细胞的方法有多种,可分为病毒方法和非病毒方法。这些方法各有利弊。最近,利用细胞外囊泡进行递送的方法尤其受到关注。外泌体是一种纳米大小的细胞外囊泡,由于其独特的性质,已成为很有前途的药物输送载体。这些天然存在的囊泡直径通常在 30 到 150 纳米之间,通过在细胞间传递蛋白质、脂类和核酸等生物活性分子,促进细胞间的交流。外泌体疗法是再生医学中一种前景广阔的策略,它利用小的细胞外囊泡向靶细胞输送治疗分子。外泌体是转移 CRISPR 系统的新兴选择之一。这两项先进技术的整合为开发高效、有针对性的基因编辑和推进精准医疗带来了巨大潜力。在当代医学中,人们越来越关注个性化和靶向治疗,以满足不同患者的不同基因和分子特征。CRISPR 技术和外泌体疗法的协同作用为开发高度靶向性和有效的治疗策略提供了绝佳的机会,这些策略可根据患者的个体需求进行定制。这篇综述文章探讨了将 CRISPR 技术纳入外泌体进行精准治疗应用的潜力。
{"title":"Integrating CRISPR technology with exosomes: Revolutionizing gene delivery systems.","authors":"Mahintaj Dara, Mehdi Dianatpour, Negar Azarpira, Nader Tanideh, Romina Tanideh","doi":"10.1016/j.bbrc.2024.151002","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151002","url":null,"abstract":"<p><p>CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151002"},"PeriodicalIF":2.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
{"title":"Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model.","authors":"Yuki Sasaki, Taku Maeda, Masahiro Hojo, Takahiro Miura, Kosuke Ishikawa, Emi Funayama, Kazufumi Okada, Yuhei Yamamoto","doi":"10.1016/j.bbrc.2024.151011","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151011","url":null,"abstract":"<p><p>It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151011"},"PeriodicalIF":2.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oxidative stress induced growth inhibitor 1 (OSGIN1) is a tumor protein p53 (TP53)-target gene involved in the oxidative stress response and promotes apoptosis. Here, we present the first evidence that OSGIN1 functions conversely by inhibiting ferroptosis, a distinct form of oxidative cell death driven by excessive lipid peroxidation. OSGIN1 expression is upregulated by pharmacological ferroptosis inducers in an NFE2 like BZIP transcription factor 2 (NFE2L2)-dependent manner, rather than through the TP53 pathway, in human pancreatic ductal adenocarcinoma (PDAC) cells. Genetic depletion of OSGIN1 or NFE2L2 similarly promotes ferroptosis, while re-expression of OSGIN1 rescues ferroptosis resistance in NFE2L2-knockout cells, both in vitro and in animal models. Mechanistically, immunoprecipitation combined with mass spectrometry revealed that OSGIN1 interacts with glutamate-cysteine ligase modifier subunit (GCLM), enhancing glutathione production and thereby mitigating oxidative stress. Additionally, OSGIN1 expression shows a positive correlation with NFE2L2 expression in pancreatic tumors, which is linked to poorer prognosis in PDAC patients. Collectively, these findings establish a novel defense mechanism that regulates ferroptosis and may influence tumor suppression in PDAC.
{"title":"OSGIN1 promotes ferroptosis resistance by directly enhancing GCLM activity.","authors":"Yuanyuan Jia, Xinyue Zhang, Yiqing Cai, Hanghui Yu, Guohua Cao, Enyong Dai, Rui Kang, Daolin Tang, Nanjun Hu, Leng Han","doi":"10.1016/j.bbrc.2024.151015","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151015","url":null,"abstract":"<p><p>Oxidative stress induced growth inhibitor 1 (OSGIN1) is a tumor protein p53 (TP53)-target gene involved in the oxidative stress response and promotes apoptosis. Here, we present the first evidence that OSGIN1 functions conversely by inhibiting ferroptosis, a distinct form of oxidative cell death driven by excessive lipid peroxidation. OSGIN1 expression is upregulated by pharmacological ferroptosis inducers in an NFE2 like BZIP transcription factor 2 (NFE2L2)-dependent manner, rather than through the TP53 pathway, in human pancreatic ductal adenocarcinoma (PDAC) cells. Genetic depletion of OSGIN1 or NFE2L2 similarly promotes ferroptosis, while re-expression of OSGIN1 rescues ferroptosis resistance in NFE2L2-knockout cells, both in vitro and in animal models. Mechanistically, immunoprecipitation combined with mass spectrometry revealed that OSGIN1 interacts with glutamate-cysteine ligase modifier subunit (GCLM), enhancing glutathione production and thereby mitigating oxidative stress. Additionally, OSGIN1 expression shows a positive correlation with NFE2L2 expression in pancreatic tumors, which is linked to poorer prognosis in PDAC patients. Collectively, these findings establish a novel defense mechanism that regulates ferroptosis and may influence tumor suppression in PDAC.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151015"},"PeriodicalIF":2.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein inhibition via the traditional drug-designing approach has been shown to be an effective method for developing numerous small-molecule-based therapeutics. In the last decade, small inhibitors-guided protein degradation has arisen as an alternative method with the potential to fulfill the drug requirement for undruggable targets. Focal adhesion kinase (FAK) is a crucial modulator of the growth and spread of tumors, apart from it also acts as a scaffold for signaling of other proteins. FAK inhibitors have thus far had unsatisfactory results in clinical trials for cancer applications. Unlike prior attempts to control FAK expression, which were restricted to kinase domain inhibition with limited success in clinical research, protein degradation has the potential to concurrently disrupt FAK's kinase and scaffolding function. Recently, several FAK degraders were reported based on FAK Type I inhibitors using complex chemical synthesis approaches. Interestingly, recently a ternary complex was published revealing the binding mode of the FAK-PROTAC-E3 complex. This complex opens an avenue for the development of rational PROTAC design against FAK protein. Therefore, in the present study, we selected the most active Type I FAK inhibitor GSK2256098. The binding mode of the inhibitor prompted us to identify the most suitable analog for PROTAC design. We have identified a high-affinity analog that is suitable for PTOTAC design through the application of molecular docking (MD) and molecular dynamics simulations (MDS). Further based on the ternary FAK-PROTAC-E3 complex we build a binary complex FAK-Hit-E3-VHL between both proteins. Using the structure-based approach ten different potential FAK PROTACs candidates were designed. The stability of the complexes was analyzed using MDS and binding free energies were used to predict the binding affinity. Finally, based on desirable intermolecular interactions with the target and E3 ligase ProTAC4 was selected as the best candidate when compared with known FAK PROTAC GSK215.
{"title":"Modeling of FAK-PROTAC candidates from GSK2256098 analogs for targeted protein degradation.","authors":"Vikas Kumar, Shraddha Parate, Hyeon-Su Ro, Tae Sung Jung, Keun Woo Lee","doi":"10.1016/j.bbrc.2024.151001","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151001","url":null,"abstract":"<p><p>Protein inhibition via the traditional drug-designing approach has been shown to be an effective method for developing numerous small-molecule-based therapeutics. In the last decade, small inhibitors-guided protein degradation has arisen as an alternative method with the potential to fulfill the drug requirement for undruggable targets. Focal adhesion kinase (FAK) is a crucial modulator of the growth and spread of tumors, apart from it also acts as a scaffold for signaling of other proteins. FAK inhibitors have thus far had unsatisfactory results in clinical trials for cancer applications. Unlike prior attempts to control FAK expression, which were restricted to kinase domain inhibition with limited success in clinical research, protein degradation has the potential to concurrently disrupt FAK's kinase and scaffolding function. Recently, several FAK degraders were reported based on FAK Type I inhibitors using complex chemical synthesis approaches. Interestingly, recently a ternary complex was published revealing the binding mode of the FAK-PROTAC-E3 complex. This complex opens an avenue for the development of rational PROTAC design against FAK protein. Therefore, in the present study, we selected the most active Type I FAK inhibitor GSK2256098. The binding mode of the inhibitor prompted us to identify the most suitable analog for PROTAC design. We have identified a high-affinity analog that is suitable for PTOTAC design through the application of molecular docking (MD) and molecular dynamics simulations (MDS). Further based on the ternary FAK-PROTAC-E3 complex we build a binary complex FAK-Hit-E3-VHL between both proteins. Using the structure-based approach ten different potential FAK PROTACs candidates were designed. The stability of the complexes was analyzed using MDS and binding free energies were used to predict the binding affinity. Finally, based on desirable intermolecular interactions with the target and E3 ligase ProTAC4 was selected as the best candidate when compared with known FAK PROTAC GSK215.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151001"},"PeriodicalIF":2.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.bbrc.2024.151007
Mai Asakura, Kazuya Toriumi, Aya Nozaki, Jinwei Yang, Jin Tatsuzaki, Kazuhiro Suzuki, Mitsuhiro Miyashita, Masanari Itokawa, Makoto Arai
Pentosidine (PEN), an advanced glycation end product (AGE), is associated with various age-related diseases and schizophrenia. This study aimed to identify the natural compounds that inhibit PEN synthesis from glucuronic acid using an in vitro system. A screening of 93 natural compounds revealed 47 that reduced PEN synthesis by > 50 %, with eight inhibiting it by > 80 %. The top five inhibitors were anthocyanins, with petunidin chloride showing the strongest effect, inhibiting PEN synthesis by approximately 90 %. These compounds directly inhibited PEN synthesis without degrading or capturing the synthesized PEN. Petunidin chloride had an IC50 value approximately 85 times lower than that of pyridoxamine, an AGE inhibitor. A correlation between the antioxidant capacity of the compounds and their PEN-inhibitory effects was observed, suggesting that antioxidant properties may contribute to the inhibition mechanism. This study provides potential new therapeutic strategies for diseases associated with PEN accumulation, including schizophrenia, and highlights the potential of anthocyanins in the development of safer preventive interventions.
{"title":"Anthocyanins as potent inhibitors of pentosidine synthesis: Antioxidant-mediated effects.","authors":"Mai Asakura, Kazuya Toriumi, Aya Nozaki, Jinwei Yang, Jin Tatsuzaki, Kazuhiro Suzuki, Mitsuhiro Miyashita, Masanari Itokawa, Makoto Arai","doi":"10.1016/j.bbrc.2024.151007","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151007","url":null,"abstract":"<p><p>Pentosidine (PEN), an advanced glycation end product (AGE), is associated with various age-related diseases and schizophrenia. This study aimed to identify the natural compounds that inhibit PEN synthesis from glucuronic acid using an in vitro system. A screening of 93 natural compounds revealed 47 that reduced PEN synthesis by > 50 %, with eight inhibiting it by > 80 %. The top five inhibitors were anthocyanins, with petunidin chloride showing the strongest effect, inhibiting PEN synthesis by approximately 90 %. These compounds directly inhibited PEN synthesis without degrading or capturing the synthesized PEN. Petunidin chloride had an IC<sub>50</sub> value approximately 85 times lower than that of pyridoxamine, an AGE inhibitor. A correlation between the antioxidant capacity of the compounds and their PEN-inhibitory effects was observed, suggesting that antioxidant properties may contribute to the inhibition mechanism. This study provides potential new therapeutic strategies for diseases associated with PEN accumulation, including schizophrenia, and highlights the potential of anthocyanins in the development of safer preventive interventions.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151007"},"PeriodicalIF":2.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.bbrc.2024.151004
Zhiwen Cao , Jinwen Jiang , Yiting Wang , Yuhang Lu , Min Wu , Xin Zhen , Xinyu Cai , Haixiang Sun , Guijun Yan
A successful embryo implantation relies heavily on the receptivity of the endometrial epithelium, a process regulated by various molecular mechanisms. Evaluating endometrial receptivity in infertility patients undergoing assisted reproductive treatment, particularly those with adenomyosis related infertility, poses significant challenges due to limitations associated with conventional assessment methods. In this study, we collected residual endometrial epithelial cells from the tips of embryo transfer catheters in patients with adenomyosis related infertility. High throughput sequencing revealed a marked downregulation of protein arginine methyltransferase 5 (PRMT5) in these cells. Functional assays demonstrated that PRMT5 interacts with and methylates homeobox A10 (HOXA10), a crucial transcription factor for endometrial receptivity and implantation. The methylation of HOXA10 at arginine 337 by PRMT5 enhances its stability and promotes the transcriptional activation of genes essential for endometrial differentiation and adhesion. The downregulation of PRMT5 led to decreased HOXA10 activity, resulting in impaired endometrial receptivity and subsequent implantation failure. These findings elucidate a critical pathway where PRMT5 downregulation negatively impacts HOXA10 function, providing new insights into the molecular mechanisms underlying implantation failure in adenomyosis related infertility. This study not only advances our understanding of the regulatory mechanisms governing endometrial receptivity but also identifies potential therapeutic targets for enhancing endometrial function in affected patients.
{"title":"Role of PRMT5 mediated HOXA10 arginine 337 methylation in endometrial epithelial cell receptivity","authors":"Zhiwen Cao , Jinwen Jiang , Yiting Wang , Yuhang Lu , Min Wu , Xin Zhen , Xinyu Cai , Haixiang Sun , Guijun Yan","doi":"10.1016/j.bbrc.2024.151004","DOIUrl":"10.1016/j.bbrc.2024.151004","url":null,"abstract":"<div><div>A successful embryo implantation relies heavily on the receptivity of the endometrial epithelium, a process regulated by various molecular mechanisms. Evaluating endometrial receptivity in infertility patients undergoing assisted reproductive treatment, particularly those with adenomyosis related infertility, poses significant challenges due to limitations associated with conventional assessment methods. In this study, we collected residual endometrial epithelial cells from the tips of embryo transfer catheters in patients with adenomyosis related infertility. High throughput sequencing revealed a marked downregulation of protein arginine methyltransferase 5 (PRMT5) in these cells. Functional assays demonstrated that PRMT5 interacts with and methylates homeobox A10 (HOXA10), a crucial transcription factor for endometrial receptivity and implantation. The methylation of HOXA10 at arginine 337 by PRMT5 enhances its stability and promotes the transcriptional activation of genes essential for endometrial differentiation and adhesion. The downregulation of PRMT5 led to decreased HOXA10 activity, resulting in impaired endometrial receptivity and subsequent implantation failure. These findings elucidate a critical pathway where PRMT5 downregulation negatively impacts HOXA10 function, providing new insights into the molecular mechanisms underlying implantation failure in adenomyosis related infertility. This study not only advances our understanding of the regulatory mechanisms governing endometrial receptivity but also identifies potential therapeutic targets for enhancing endometrial function in affected patients.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"739 ","pages":"Article 151004"},"PeriodicalIF":2.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.bbrc.2024.151012
Boyu Diao, Zhiyao Fan, Bin Zhou, Hanxiang Zhan
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
{"title":"Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications.","authors":"Boyu Diao, Zhiyao Fan, Bin Zhou, Hanxiang Zhan","doi":"10.1016/j.bbrc.2024.151012","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151012","url":null,"abstract":"<p><p>The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151012"},"PeriodicalIF":2.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Phenotypic states of vascular smooth muscle cells (SMCs) are essential to understanding vascular pathophysiology. SMCs in vessels generally express a specific set of contractile proteins, but decreased contractile protein expression, indicating a phenotypic shift, is a hallmark of vascular diseases. Recent studies have suggested the relation of abnormally high wall shear stress (WSS) of approximately 20 Pa with the aortic disease pathogenesis. However, due to the lack of appropriate experimental models to assess SMC phenotypic states, the details of the phenotypic shift under high WSS conditions remain unclear. In this study, we developed a coculture model where vascular endothelial cells (ECs) were cocultured with SMCs expressing calponin 1, a contractile protein involved in the phenotypic shift of SMCs. We investigated the effects of a pathologically high WSS condition on the phenotypic states of SMCs. Increased calponin 1 expression was found upon exposure to 20 Pa WSS compared with a physiological 2 Pa condition, whereas the expression of another contractile protein, α-smooth muscle actin (αSMA) remained unchanged. Furthermore, the inhibition of EC-derived nitric oxide (NO), which is associated with endothelial dysfunction in vascular diseases, resulted in a trend of decreasing αSMA and Calponin 1 expression under 20 Pa WSS conditions compared with 2 Pa. Our findings suggest that EC-derived NO under pathologically high WSS conditions may impact the expression of contractile proteins implicated in aortic pathophysiology.
血管平滑肌细胞(SMC)的表型状态对了解血管病理生理学至关重要。血管中的平滑肌细胞通常表达一组特定的收缩蛋白,但收缩蛋白表达的减少表明表型发生了转变,这是血管疾病的一个特征。最近的研究表明,约 20 Pa 的异常高壁剪应力(WSS)与主动脉疾病的发病机制有关。然而,由于缺乏评估 SMC 表型状态的适当实验模型,高 WSS 条件下表型转变的细节仍不清楚。在本研究中,我们建立了一个共培养模型,将血管内皮细胞(EC)与表达钙调蛋白 1(一种参与 SMC 表型转变的收缩蛋白)的 SMC 进行共培养。我们研究了病理性高 WSS 条件对 SMC 表型状态的影响。与生理状态下的 2 Pa 相比,暴露于 20 Pa WSS 时钙调蛋白 1 的表达增加,而另一种收缩蛋白α-平滑肌肌动蛋白(αSMA)的表达则保持不变。此外,在 20 Pa WSS 条件下,与 2 Pa 相比,与血管疾病中内皮功能障碍有关的一氧化氮(NO)被抑制后,αSMA 和 Calponin 1 的表达呈下降趋势。 我们的研究结果表明,在病理高 WSS 条件下,EC 源性 NO 可能会影响与主动脉病理生理有关的收缩蛋白的表达。
{"title":"Endothelial-derived nitric oxide impacts vascular smooth muscle cell phenotypes under high wall shear stress condition.","authors":"Kaoru Sawasaki, Masanori Nakamura, Naoyuki Kimura, Koji Kawahito, Masashi Yamazaki, Hiromichi Fujie, Naoya Sakamoto","doi":"10.1016/j.bbrc.2024.151005","DOIUrl":"https://doi.org/10.1016/j.bbrc.2024.151005","url":null,"abstract":"<p><p>The Phenotypic states of vascular smooth muscle cells (SMCs) are essential to understanding vascular pathophysiology. SMCs in vessels generally express a specific set of contractile proteins, but decreased contractile protein expression, indicating a phenotypic shift, is a hallmark of vascular diseases. Recent studies have suggested the relation of abnormally high wall shear stress (WSS) of approximately 20 Pa with the aortic disease pathogenesis. However, due to the lack of appropriate experimental models to assess SMC phenotypic states, the details of the phenotypic shift under high WSS conditions remain unclear. In this study, we developed a coculture model where vascular endothelial cells (ECs) were cocultured with SMCs expressing calponin 1, a contractile protein involved in the phenotypic shift of SMCs. We investigated the effects of a pathologically high WSS condition on the phenotypic states of SMCs. Increased calponin 1 expression was found upon exposure to 20 Pa WSS compared with a physiological 2 Pa condition, whereas the expression of another contractile protein, α-smooth muscle actin (αSMA) remained unchanged. Furthermore, the inhibition of EC-derived nitric oxide (NO), which is associated with endothelial dysfunction in vascular diseases, resulted in a trend of decreasing αSMA and Calponin 1 expression under 20 Pa WSS conditions compared with 2 Pa. Our findings suggest that EC-derived NO under pathologically high WSS conditions may impact the expression of contractile proteins implicated in aortic pathophysiology.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151005"},"PeriodicalIF":2.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}