首页 > 最新文献

Beilstein Journal of Nanotechnology最新文献

英文 中文
Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy.
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-31 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.10
Naths Grazia Sukubo, Paolo Bigini, Annalisa Morelli

In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.

{"title":"Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy.","authors":"Naths Grazia Sukubo, Paolo Bigini, Annalisa Morelli","doi":"10.3762/bjnano.16.10","DOIUrl":"10.3762/bjnano.16.10","url":null,"abstract":"<p><p>In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"97-118"},"PeriodicalIF":2.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and simulation of carbon-nanocomposite-based gas sensors.
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.9
Roopa Hegde, Punya Prabha V, Shipra Upadhyay, Krishna S B

This paper reports simulation of a carbon monoxide gas sensor using COMSOL Multiphysics whose active sensing material used is a carbon nanocomposite (i.e., 0.1 wt % of single-walled carbon nanotubes along with PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) in an equal volume ratio of 1:1. Given the high cost associated with the development of these sensors, it becomes imperative to establish a mathematical model for economically predicting their behavior. The simulation using COMSOL Multiphysics is performed to obtain the surface coverage of the sensor by introducing carbon monoxide gas through a Gaussian pulse feed inlet at concentrations ranging from 1 to 7 ppm. The surface coverage over the range of 14% to 32.94% for the given range of concentrations is achieved giving the information of the amount of gas molecules adsorbed onto the surface of the sensing material at a given time. The surface coverage of the sensor is enhanced by using the nanocomposite materials which in turn enhances the sensitivity of the gas sensors.

{"title":"Modeling and simulation of carbon-nanocomposite-based gas sensors.","authors":"Roopa Hegde, Punya Prabha V, Shipra Upadhyay, Krishna S B","doi":"10.3762/bjnano.16.9","DOIUrl":"10.3762/bjnano.16.9","url":null,"abstract":"<p><p>This paper reports simulation of a carbon monoxide gas sensor using COMSOL Multiphysics whose active sensing material used is a carbon nanocomposite (i.e., 0.1 wt % of single-walled carbon nanotubes along with PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) in an equal volume ratio of 1:1. Given the high cost associated with the development of these sensors, it becomes imperative to establish a mathematical model for economically predicting their behavior. The simulation using COMSOL Multiphysics is performed to obtain the surface coverage of the sensor by introducing carbon monoxide gas through a Gaussian pulse feed inlet at concentrations ranging from 1 to 7 ppm. The surface coverage over the range of 14% to 32.94% for the given range of concentrations is achieved giving the information of the amount of gas molecules adsorbed onto the surface of the sensing material at a given time. The surface coverage of the sensor is enhanced by using the nanocomposite materials which in turn enhances the sensitivity of the gas sensors.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"90-96"},"PeriodicalIF":2.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258.
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.8
Prashantkumar Siddappa Chakra, Aishwarya Banakar, Shriram Narayan Puranik, Vishwas Kaveeshwar, C R Ravikumar, Devaraja Gayathri

The fundamental goal of our investigation is to employ a sustainable synthesis method for zinc oxide nanoparticles (ZnO NPs), utilizing lactic acid bacteria isolated from curd as the key biological agent. Bacteria function as agents for both reduction and capping processes, which aids the synthesis of ZnO NPs. Various characterization techniques including XRD, FTIR, UV-vis, TEM, SEM-EDX, and zeta potential measurements were employed to analyze the morphology, dimensions, and elemental composition of the generated nanoparticles. The experimental outcomes confirmed the presence of hexagonal wurtzite-structured ZnO NPs with an average size of 10 nm. The colloidal system demonstrated excellent stability with a zeta potential of -60 mV. Furthermore, the synthesized nanoparticles displayed significant antibacterial activity against selected human pathogens, with the biggest inhibition zone observed against Staphylococcus aureus (22 ± 0.57 mm) and the smallest inhibition zone observed against Salmonella enterica serovar typhi (3 ± 1 mm). MTT assay revealed the promising antiproliferative potential of ZnO NPs, with an average IC50 value of 98.53 µg/mL. Additionally, the NPs were photocatalytically and electrochemically analyzed, indicating their potential use in cancer research as well as in coating and drug delivery applications.

{"title":"Characterization of ZnO nanoparticles synthesized using probiotic <i>Lactiplantibacillus plantarum</i> GP258.","authors":"Prashantkumar Siddappa Chakra, Aishwarya Banakar, Shriram Narayan Puranik, Vishwas Kaveeshwar, C R Ravikumar, Devaraja Gayathri","doi":"10.3762/bjnano.16.8","DOIUrl":"10.3762/bjnano.16.8","url":null,"abstract":"<p><p>The fundamental goal of our investigation is to employ a sustainable synthesis method for zinc oxide nanoparticles (ZnO NPs), utilizing lactic acid bacteria isolated from curd as the key biological agent. Bacteria function as agents for both reduction and capping processes, which aids the synthesis of ZnO NPs. Various characterization techniques including XRD, FTIR, UV-vis, TEM, SEM-EDX, and zeta potential measurements were employed to analyze the morphology, dimensions, and elemental composition of the generated nanoparticles. The experimental outcomes confirmed the presence of hexagonal wurtzite-structured ZnO NPs with an average size of 10 nm. The colloidal system demonstrated excellent stability with a zeta potential of -60 mV. Furthermore, the synthesized nanoparticles displayed significant antibacterial activity against selected human pathogens, with the biggest inhibition zone observed against <i>Staphylococcus aureus</i> (22 ± 0.57 mm) and the smallest inhibition zone observed against <i>Salmonella enterica serovar typhi</i> (3 ± 1 mm). MTT assay revealed the promising antiproliferative potential of ZnO NPs, with an average IC<sub>50</sub> value of 98.53 µg/mL. Additionally, the NPs were photocatalytically and electrochemically analyzed, indicating their potential use in cancer research as well as in coating and drug delivery applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"78-89"},"PeriodicalIF":2.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research.
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.7
Benjamin Punz, Maja Brajnik, Joh Dokler, Jaleesia D Amos, Litty Johnson, Katie Reilly, Anastasios G Papadiamantis, Amaia Green Etxabe, Lee Walker, Diego S T Martinez, Steffi Friedrichs, Klaus M Weltring, Nazende Günday-Türeli, Claus Svendsen, Christine Ogilvie Hendren, Mark R Wiesner, Martin Himly, Iseult Lynch, Thomas E Exner

Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers. Instance maps are most effective when applied at the study design stage to associate the workflow with the nanomaterials, environmental conditions, method descriptions, protocols, biological and computational models to be used, and the data flows arising from study execution. Application of the InstanceMaps tool (described herein) to research workflows of increasing complexity is presented to demonstrate its utility, starting from (i) documentation of a nanomaterial's synthesis, functionalisation, and characterisation, over (ii) assessment of a nanomaterial's transformations in complex media, (iii) description of the culturing of ecotoxicity model organisms Daphnia magna and their use in standardised tests for nanomaterials ecotoxicity assessment, and (iv) visualisation of complex workflows in human immunotoxicity assessment using cell lines and primary cellular models, to (v) the use of the instance map approach for the coordination of materials and data flows in complex multipartner collaborative projects and for the demonstration of case studies. Finally, areas for future development of the instance map approach and the tool are highlighted.

{"title":"Instance maps as an organising concept for complex experimental workflows as demonstrated for (nano)material safety research.","authors":"Benjamin Punz, Maja Brajnik, Joh Dokler, Jaleesia D Amos, Litty Johnson, Katie Reilly, Anastasios G Papadiamantis, Amaia Green Etxabe, Lee Walker, Diego S T Martinez, Steffi Friedrichs, Klaus M Weltring, Nazende Günday-Türeli, Claus Svendsen, Christine Ogilvie Hendren, Mark R Wiesner, Martin Himly, Iseult Lynch, Thomas E Exner","doi":"10.3762/bjnano.16.7","DOIUrl":"10.3762/bjnano.16.7","url":null,"abstract":"<p><p>Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality (how was the data generated, using which protocol with which controls), as part of good research output management, is necessary to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and Re-usable) data and the everyday practice of experimental researchers. Instance maps are most effective when applied at the study design stage to associate the workflow with the nanomaterials, environmental conditions, method descriptions, protocols, biological and computational models to be used, and the data flows arising from study execution. Application of the InstanceMaps tool (described herein) to research workflows of increasing complexity is presented to demonstrate its utility, starting from (i) documentation of a nanomaterial's synthesis, functionalisation, and characterisation, over (ii) assessment of a nanomaterial's transformations in complex media, (iii) description of the culturing of ecotoxicity model organisms <i>Daphnia magna</i> and their use in standardised tests for nanomaterials ecotoxicity assessment, and (iv) visualisation of complex workflows in human immunotoxicity assessment using cell lines and primary cellular models, to (v) the use of the instance map approach for the coordination of materials and data flows in complex multipartner collaborative projects and for the demonstration of case studies. Finally, areas for future development of the instance map approach and the tool are highlighted.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"57-77"},"PeriodicalIF":2.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced atomic force microscopy techniques V.
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.6
Philipp Rahe, Ilko Bald, Nadine Hauptmann, Regina Hoffmann-Vogel, Harry Mönig, Michael Reichling
{"title":"Advanced atomic force microscopy techniques V.","authors":"Philipp Rahe, Ilko Bald, Nadine Hauptmann, Regina Hoffmann-Vogel, Harry Mönig, Michael Reichling","doi":"10.3762/bjnano.16.6","DOIUrl":"10.3762/bjnano.16.6","url":null,"abstract":"","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"54-56"},"PeriodicalIF":2.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster. 沸石NaA与磁铁矿团簇形成的复合材料的电子和光学性质的理论研究。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.5
Joel Antúnez-García, Roberto Núñez-González, Vitalii Petranovskii, H'Linh Hmok, Armando Reyes-Serrato, Fabian N Murrieta-Rico, Mufei Xiao, Jonathan Zamora

The electronic and optical properties of a composite created by introducing a magnetite cluster into NaA zeolite have been investigated in this work using DFT calculations. The results obtained indicate that the electronic and optical properties of the composite are enhanced because of the cluster. However, the properties exhibited by the cluster outside the zeolite differ from those it presents when it is part of the composite. It is noteworthy that the composite exhibits magnetic properties of a half-semiconductor and a strong optical response within the visible and ultraviolet regions of the spectrum.

利用DFT计算研究了在NaA沸石中引入磁铁矿团簇形成的复合材料的电子和光学性质。结果表明,簇的存在提高了复合材料的电子性能和光学性能。然而,沸石外的团簇所表现出的性质与它作为复合材料的一部分时所表现出的性质不同。值得注意的是,该复合材料具有半半导体的磁性,并且在光谱的可见和紫外区域具有较强的光学响应。
{"title":"Theoretical study of the electronic and optical properties of a composite formed by the zeolite NaA and a magnetite cluster.","authors":"Joel Antúnez-García, Roberto Núñez-González, Vitalii Petranovskii, H'Linh Hmok, Armando Reyes-Serrato, Fabian N Murrieta-Rico, Mufei Xiao, Jonathan Zamora","doi":"10.3762/bjnano.16.5","DOIUrl":"10.3762/bjnano.16.5","url":null,"abstract":"<p><p>The electronic and optical properties of a composite created by introducing a magnetite cluster into NaA zeolite have been investigated in this work using DFT calculations. The results obtained indicate that the electronic and optical properties of the composite are enhanced because of the cluster. However, the properties exhibited by the cluster outside the zeolite differ from those it presents when it is part of the composite. It is noteworthy that the composite exhibits magnetic properties of a half-semiconductor and a strong optical response within the visible and ultraviolet regions of the spectrum.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"44-53"},"PeriodicalIF":2.6,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition. 电子束诱导沉积压痕镀层前驱体粘附系数的测定。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.4
Alexander Kuprava, Michael Huth

A fast simulation approach for focused electron beam induced deposition (FEBID) numerically solves the diffusion-reaction equation (continuum model) of the precursor surface on the growing nanostructure in conjunction with a Monte Carlo simulation for electron transport in the growing deposit. An important requirement in this regard is to have access to a methodology that can be used to systematically determine the values for the set of precursor parameters needed for this model. In this work we introduce such a method to derive the precursor sticking coefficient as one member of the precursor parameter set. The method is based on the analysis of the different growth regimes in FEBID, in particular the diffusion-enhanced growth regime in the center region of an intentionally defocused electron beam. We employ the method to determine the precursor sticking coefficient for bis(benzene)chromium, Cr(C6H6)2, and trimethyl(methylcyclopentadienyl)platinum(IV), Me3CpPtMe, and find a value of about 10-2 for both precursors, which is substantially smaller than the sticking coefficients previously assumed for Me3CpPtMe (1.0). Furthermore, depositions performed at different substrate temperatures indicate a temperature dependence of the sticking coefficient.

针对聚焦电子束诱导沉积(FEBID)的快速模拟方法,结合蒙特卡罗方法对生长中的纳米结构前驱体表面的扩散反应方程(连续体模型)进行了数值求解。在这方面的一个重要要求是有机会获得一种方法,可以用来系统地确定该模型所需的一组前体参数的值。本文介绍了一种将前驱体粘着系数作为前驱体参数集的一员来推导的方法。该方法是基于对FEBID中不同生长模式的分析,特别是在有意散焦的电子束中心区域的扩散增强生长模式。我们利用该方法测定了双(苯)铬(Cr(C6H6)2)和三甲基(甲基环戊二烯基)铂(IV) Me3CpPtMe前驱体的粘附系数,发现这两种前驱体的粘附系数都在10-2左右,大大小于之前假设的Me3CpPtMe(1.0)的粘附系数。此外,在不同衬底温度下进行的沉积表明粘著系数与温度有关。
{"title":"Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition.","authors":"Alexander Kuprava, Michael Huth","doi":"10.3762/bjnano.16.4","DOIUrl":"10.3762/bjnano.16.4","url":null,"abstract":"<p><p>A fast simulation approach for focused electron beam induced deposition (FEBID) numerically solves the diffusion-reaction equation (continuum model) of the precursor surface on the growing nanostructure in conjunction with a Monte Carlo simulation for electron transport in the growing deposit. An important requirement in this regard is to have access to a methodology that can be used to systematically determine the values for the set of precursor parameters needed for this model. In this work we introduce such a method to derive the precursor sticking coefficient as one member of the precursor parameter set. The method is based on the analysis of the different growth regimes in FEBID, in particular the diffusion-enhanced growth regime in the center region of an intentionally defocused electron beam. We employ the method to determine the precursor sticking coefficient for bis(benzene)chromium, Cr(C<sub>6</sub>H<sub>6</sub>)<sub>2</sub>, and trimethyl(methylcyclopentadienyl)platinum(IV), Me<sub>3</sub>CpPtMe, and find a value of about 10<sup>-2</sup> for both precursors, which is substantially smaller than the sticking coefficients previously assumed for Me<sub>3</sub>CpPtMe (1.0). Furthermore, depositions performed at different substrate temperatures indicate a temperature dependence of the sticking coefficient.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"35-43"},"PeriodicalIF":2.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired nanofilament coatings for scale reduction on steel. 生物启发纳米丝涂层在钢铁上的减垢。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.3
Siad Dahir Ali, Mette Heidemann Rasmussen, Jacopo Catalano, Christian Husum Frederiksen, Tobias Weidner

Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel. Our study demonstrates the successful coating of stainless steel with SNFs, achieving super-hydrophobicity and resilience under high shear stress and explosion/decompression tests. Scaling experiments reveal a 75.5% reduction in calcium carbonate deposition on SNF-coated steel surfaces. This reduction is attributed to altered flow dynamics near the super-hydrophobic surface, inhibiting nucleation and growth of scale. Our findings highlight the potential of bioinspired SNF coatings to enhance the performance and longevity of steel surfaces in industrial environments.

在各种工业应用中普遍存在的钢表面结垢会导致显著的操作效率低下和维护成本。受弹尾(弹尾)皮肤天然疏水性的启发,我们研究了硅纳米丝(snf)作为涂层在钢表面的应用,以减轻结垢。硅纳米丝,以前成功的聚合物,纺织品和玻璃,探索其疏水性和稳定性的钢。我们的研究成功地证明了SNFs涂层不锈钢,在高剪切应力和爆炸/减压试验下实现了超疏水性和回弹性。结垢实验表明,snf涂层钢表面碳酸钙沉积减少75.5%。这种减少归因于超疏水表面附近流动动力学的改变,抑制了水垢的成核和生长。我们的研究结果强调了生物启发SNF涂层在工业环境中提高钢表面性能和寿命的潜力。
{"title":"Bioinspired nanofilament coatings for scale reduction on steel.","authors":"Siad Dahir Ali, Mette Heidemann Rasmussen, Jacopo Catalano, Christian Husum Frederiksen, Tobias Weidner","doi":"10.3762/bjnano.16.3","DOIUrl":"10.3762/bjnano.16.3","url":null,"abstract":"<p><p>Scaling of steel surfaces, prevalent in various industrial applications, results in significant operational inefficiencies and maintenance costs. Inspired by the natural hydrophobicity of springtail (Collembola) skin, which employs micro- and nanostructures to repel water, we investigate the application of silicone nanofilaments (SNFs) as a coating on steel surfaces to mitigate scaling. Silicone nanofilaments, previously successful on polymers, textiles, and glass, are explored for their hydrophobic properties and stability on steel. Our study demonstrates the successful coating of stainless steel with SNFs, achieving super-hydrophobicity and resilience under high shear stress and explosion/decompression tests. Scaling experiments reveal a 75.5% reduction in calcium carbonate deposition on SNF-coated steel surfaces. This reduction is attributed to altered flow dynamics near the super-hydrophobic surface, inhibiting nucleation and growth of scale. Our findings highlight the potential of bioinspired SNF coatings to enhance the performance and longevity of steel surfaces in industrial environments.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"25-34"},"PeriodicalIF":2.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery. 一种含有羧基和组胺基团的纳米载体,具有双重作用:乙酰胆碱水解和解毒剂阿托品递送。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.2
Elina E Mansurova, Andrey A Maslennikov, Anna P Lyubina, Alexandra D Voloshina, Irek R Nizameev, Marsil K Kadirov, Anzhela A Mikhailova, Polina V Mikshina, Albina Y Ziganshina, Igor S Antipin

Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated. This approach will ensure timely delivery of the antidote and minimize side effects associated with uncontrolled drug release. Here, we describe the creation of a new smart system that serves as a carrier for delivering an antidote (i.e., atropine) and functions as a synthetic esterase to hydrolyze acetylcholine. The nanocarrier was synthesized through microemulsion polycondensation of phenylboronic acid with resorcinarenes containing hydroxy, imidazole, and carboxylic groups on the upper rim. The nanocarrier breaks down acetylcholine into choline and acetic acid. The latter acts on the boronate bonds, dissociating them. This leads to the destruction of the nanocarrier and the release of the antidote. The paper covers the creation of the nanocarrier, its physicochemical and biological properties, encapsulation of the antidote, acetylcholine hydrolysis, and antidote release.

胆碱酯酶的破坏以及乙酰胆碱水平的升高会导致神经系统功能的严重紊乱,包括死亡。因此,必须迅速施用解毒剂以恢复酯酶的活性,但实际操作往往很困难。一个有希望的解决方案可能是开发解毒剂输送系统,只有在乙酰胆碱水平升高时才释放药物。这种方法将确保解毒剂的及时输送,并最大限度地减少因药物释放失控而产生的副作用。在此,我们介绍了一种新型智能系统的创建过程,该系统既可作为输送解毒剂(即阿托品)的载体,又可作为水解乙酰胆碱的合成酯酶。这种纳米载体是通过苯基硼酸与上缘含有羟基、咪唑和羧基的间苯二酚的微乳缩聚反应合成的。这种纳米载体可将乙酰胆碱分解成胆碱和乙酸。后者作用于硼酸键,使其解离。这导致纳米载体的破坏和解毒剂的释放。论文涵盖了纳米载体的创建、其物理化学和生物特性、解毒剂的封装、乙酰胆碱的水解和解毒剂的释放。
{"title":"A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery.","authors":"Elina E Mansurova, Andrey A Maslennikov, Anna P Lyubina, Alexandra D Voloshina, Irek R Nizameev, Marsil K Kadirov, Anzhela A Mikhailova, Polina V Mikshina, Albina Y Ziganshina, Igor S Antipin","doi":"10.3762/bjnano.16.2","DOIUrl":"10.3762/bjnano.16.2","url":null,"abstract":"<p><p>Disruption of cholinesterases and, as a consequence, increased levels of acetylcholine lead to serious disturbances in the functioning of the nervous system, including death. The need for rapid administration of an antidote to restore esterase activity is critical, but practical implementation of this is often difficult. One promising solution may be the development of antidote delivery systems that will release the drug only when acetylcholine levels are elevated. This approach will ensure timely delivery of the antidote and minimize side effects associated with uncontrolled drug release. Here, we describe the creation of a new smart system that serves as a carrier for delivering an antidote (i.e., atropine) and functions as a synthetic esterase to hydrolyze acetylcholine. The nanocarrier was synthesized through microemulsion polycondensation of phenylboronic acid with resorcinarenes containing hydroxy, imidazole, and carboxylic groups on the upper rim. The nanocarrier breaks down acetylcholine into choline and acetic acid. The latter acts on the boronate bonds, dissociating them. This leads to the destruction of the nanocarrier and the release of the antidote. The paper covers the creation of the nanocarrier, its physicochemical and biological properties, encapsulation of the antidote, acetylcholine hydrolysis, and antidote release.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"11-24"},"PeriodicalIF":2.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates. 金尘象鼻虫鳞片及其二氧化钛生物复制体中取向相关的光子带隙。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-02 eCollection Date: 2025-01-01 DOI: 10.3762/bjnano.16.1
Norma Salvadores Farran, Limin Wang, Primoz Pirih, Bodo D Wilts

The scales of the gold-dust weevil Hypomeces squamosus are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100}-oriented domains exhibits polarization conversion, rotating the angle of linearly polarized light. The overall coloration, resulting from the reflections from many scales, is close to uniformly diffuse because of the random orientation of the domains. Using titania sol-gel chemistry, we produced negative replicas that exhibited a 70 to 120 nm redshift of the bandgap, depending on the lattice orientation. The wavelength shift in {100} orientation is supported by full-wave optical modeling of a dual diamond network with an exchanged fill fraction (0.56) of the material with the refractive index in the range of 1.55 to 2.00. The study suggests that the effective refractive index of titania in the 3D lattice is similar to that in sol-gel films. The study demonstrates the potential of replicating complex biophotonic structures using the sol-gel technique. Optimization of the sol-gel process could lead to customizable photonic bandgaps that might be used in novel optical materials.

金粉象鼻虫鳞片呈绿色,主要是由于三维金刚石型几丁质-空气光子晶体,其平均周期约为430 nm,几丁质填充分数约为0.44。单个尺度通常包含一到三个具有不同晶格取向的晶体。从单畴得到的倒易空间图像和反射光谱表明,在450 ~ 650 nm波长范围内存在部分光子带隙。从{111}取向域反射的光是黄绿色的。从蓝色{100}定向畴反射的光呈现偏振转换,旋转线偏振光的角度。由于区域的方向随机,从多个尺度反射得到的整体颜色接近均匀扩散。利用二氧化钛溶胶-凝胶化学,我们制作了负副本,显示出70到120纳米的带隙红移,这取决于晶格的方向。在{100}方向上的波长位移是由双金刚石网络的全波光学建模支持的,交换填充分数(0.56)的材料的折射率在1.55到2.00之间。研究表明,钛在三维晶格中的有效折射率与在溶胶-凝胶膜中的有效折射率相似。该研究证明了利用溶胶-凝胶技术复制复杂生物光子结构的潜力。溶胶-凝胶过程的优化可能导致可定制的光子带隙,可能用于新型光学材料。
{"title":"Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates.","authors":"Norma Salvadores Farran, Limin Wang, Primoz Pirih, Bodo D Wilts","doi":"10.3762/bjnano.16.1","DOIUrl":"https://doi.org/10.3762/bjnano.16.1","url":null,"abstract":"<p><p>The scales of the gold-dust weevil <i>Hypomeces squamosus</i> are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations. The reciprocal space images and reflection spectra obtained from single domains indicated a partial photonic bandgap in the wavelength range from 450 to 650 nm. Light reflected from {111}-oriented domains is green-yellow. Light reflected from blue, {100}-oriented domains exhibits polarization conversion, rotating the angle of linearly polarized light. The overall coloration, resulting from the reflections from many scales, is close to uniformly diffuse because of the random orientation of the domains. Using titania sol-gel chemistry, we produced negative replicas that exhibited a 70 to 120 nm redshift of the bandgap, depending on the lattice orientation. The wavelength shift in {100} orientation is supported by full-wave optical modeling of a dual diamond network with an exchanged fill fraction (0.56) of the material with the refractive index in the range of 1.55 to 2.00. The study suggests that the effective refractive index of titania in the 3D lattice is similar to that in sol-gel films. The study demonstrates the potential of replicating complex biophotonic structures using the sol-gel technique. Optimization of the sol-gel process could lead to customizable photonic bandgaps that might be used in novel optical materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1-10"},"PeriodicalIF":2.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beilstein Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1