首页 > 最新文献

Beilstein Journal of Nanotechnology最新文献

英文 中文
Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters. 用于开发过渡边传感器微量热仪的铪/钛双层膜研究。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.108
Victoria Yu Safonova, Anna V Gordeeva, Anton V Blagodatkin, Dmitry A Pimanov, Anton A Yablokov, Andrey L Pankratov

The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm2 chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δE of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δE less than 1 eV using these films.

我们研究了厚度为 85 纳米、上面有 5 纳米厚钛层的铪薄膜在三种不同几何形状下的超导特性,即覆盖整个 7 × 7 平方毫米芯片表面的薄膜,宽度为 200 微米、长度达 1800 微米的电桥,以及边长为 100 至 1000 微米的正方形电桥。这些桥是通过光刻掀离工艺形成的,打算在测定中微子磁矩的实验中用作基于过渡边传感器(TES)的微量热计的主要传感元件。根据临界电流、临界温度和超导跃迁宽度的测量结果,我们估算出了过渡边传感器原型的能量分辨率δE,表明利用这些薄膜可以制造出δE小于1 eV的微量热计。
{"title":"Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters.","authors":"Victoria Yu Safonova, Anna V Gordeeva, Anton V Blagodatkin, Dmitry A Pimanov, Anton A Yablokov, Andrey L Pankratov","doi":"10.3762/bjnano.15.108","DOIUrl":"https://doi.org/10.3762/bjnano.15.108","url":null,"abstract":"<p><p>The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm<sup>2</sup> chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δ<i>E</i> of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δ<i>E</i> less than 1 eV using these films.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1353-1361"},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe2. 平面外偏振在斜方体叠层双层 WSe2 中诱导皮秒光响应。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-06 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.109
Guixian Liu, Yufan Wang, Zhoujuan Xu, Zhouxiaosong Zeng, Lanyu Huang, Cuihuan Ge, Xiao Wang

Constructing van der Waals materials with spontaneous out-of-plane polarization through interlayer engineering expands the family of two-dimensional ferroelectrics and provides an excellent platform for enhancing the photoelectric conversion efficiency. Here, we reveal the effect of spontaneous polarization on ultrafast carrier dynamics in rhombohedral stacked bilayer WSe2. Using precise stacking techniques, a 3R WSe2-based vertical heterojunction was successfully constructed and confirmed by polarization-resolved second harmonic generation measurements. Through output characteristics and the scanning photocurrent map under zero bias, we reveal a non-zero short-circuit current in the graphene/3R WSe2/graphene heterojunction region, demonstrating the bulk photovoltaic effect. Furthermore, the out-of-plane polarization enables the 3R WSe2 heterojunction region to achieve an ultrafast intrinsic photoresponse time of approximately 3 ps. The ultrafast response time remains consistent across varying detection powers, demonstrating environmental stability and highlighting the potential in optoelectronic applications. Our study presents an effective strategy for enhancing the response time of photodetectors.

通过层间工程构建具有面外自发极化的范德华材料,拓展了二维铁电家族,并为提高光电转换效率提供了一个绝佳的平台。在这里,我们揭示了自发极化对斜方体堆叠双层 WSe2 中超快载流子动力学的影响。利用精确的堆叠技术,我们成功地构建了基于 3R WSe2 的垂直异质结,并通过偏振分辨二次谐波发生测量得到了证实。通过零偏压下的输出特性和扫描光电流图,我们揭示了石墨烯/3R WSe2/石墨烯异质结区域的非零短路电流,证明了体光伏效应。此外,面外极化使 3R WSe2 异质结区域实现了约 3 ps 的超快本征光响应时间。这种超快响应时间在不同的探测功率下保持一致,显示了环境稳定性,并突出了其在光电应用方面的潜力。我们的研究提出了一种提高光电探测器响应时间的有效策略。
{"title":"Out-of-plane polarization induces a picosecond photoresponse in rhombohedral stacked bilayer WSe<sub>2</sub>.","authors":"Guixian Liu, Yufan Wang, Zhoujuan Xu, Zhouxiaosong Zeng, Lanyu Huang, Cuihuan Ge, Xiao Wang","doi":"10.3762/bjnano.15.109","DOIUrl":"https://doi.org/10.3762/bjnano.15.109","url":null,"abstract":"<p><p>Constructing van der Waals materials with spontaneous out-of-plane polarization through interlayer engineering expands the family of two-dimensional ferroelectrics and provides an excellent platform for enhancing the photoelectric conversion efficiency. Here, we reveal the effect of spontaneous polarization on ultrafast carrier dynamics in rhombohedral stacked bilayer WSe<sub>2</sub>. Using precise stacking techniques, a 3R WSe<sub>2</sub>-based vertical heterojunction was successfully constructed and confirmed by polarization-resolved second harmonic generation measurements. Through output characteristics and the scanning photocurrent map under zero bias, we reveal a non-zero short-circuit current in the graphene/3R WSe<sub>2</sub>/graphene heterojunction region, demonstrating the bulk photovoltaic effect. Furthermore, the out-of-plane polarization enables the 3R WSe<sub>2</sub> heterojunction region to achieve an ultrafast intrinsic photoresponse time of approximately 3 ps. The ultrafast response time remains consistent across varying detection powers, demonstrating environmental stability and highlighting the potential in optoelectronic applications. Our study presents an effective strategy for enhancing the response time of photodetectors.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1362-1368"},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hymenoptera and biomimetic surfaces: insights and innovations. 膜翅目昆虫与仿生物表面:见解与创新。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.107
Vinicius Marques Lopez, Carlo Polidori, Rhainer Guillermo Ferreira

The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.

长期以来,膜翅目昆虫(锯蝇、黄蜂、蚂蚁和蜜蜂)体表表现出的非凡适应性一直吸引着生物学家。这些适应性使这些昆虫能够在广泛的环境和栖息地中取得巨大成功,其中包括一系列令人惊叹的特化结构,这些结构有助于附着、穿透基质、发出声音、感知挥发物和输送毒液等。这些形态特征为生物仿生和生物启发技术的发展提供了宝贵的启示。在此,我们将探讨膜翅目昆虫体表的生物仿生潜力。我们重点介绍了最近取得的进展,并概述了潜在的战略途径,评估了它们目前的功能和应用,同时提出了有希望进一步研究的途径。通过研究这些迷人的生物多样性昆虫,研究人员可以开发出创新材料和设备,复制昆虫身体结构的效率和功能,推动医疗技术、机器人技术、环境监测等领域的进步。
{"title":"Hymenoptera and biomimetic surfaces: insights and innovations.","authors":"Vinicius Marques Lopez, Carlo Polidori, Rhainer Guillermo Ferreira","doi":"10.3762/bjnano.15.107","DOIUrl":"https://doi.org/10.3762/bjnano.15.107","url":null,"abstract":"<p><p>The extraordinary adaptations that Hymenoptera (sawflies, wasps, ants, and bees) exhibit on their body surfaces has long intrigued biologists. These adaptations, which enabled the immense success of these insects in a wide range of environments and habitats, include an amazing array of specialized structures facilitating attachment, penetration of substrates, production of sound, perception of volatiles, and delivery of venoms, among others. These morphological features offer valuable insights for biomimetic and bioinspired technological advancements. Here, we explore the biomimetic potential of hymenopteran body surfaces. We highlight recent advancements and outline potential strategic pathways, evaluating their current functions and applications while suggesting promising avenues for further investigations. By studying these fascinating and biologically diverse insects, researchers could develop innovative materials and devices that replicate the efficiency and functionality of insect body structures, driving progress in medical technology, robotics, environmental monitoring, and beyond.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1333-1352"},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol. 在金属纳米粒子上使用溴化十六烷基铵的纳米结构,用于无链接检测有毒金属离子和催化降解 4-硝基苯酚。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.106
Akash Kumar, Raja Gopal Rayavarapu

Heavy metal ions and organic pollutants, such as 4-nitrophenol (4-NP), pose significant environmental and human health threats. Addressing these challenges necessitates using advanced nanoparticle-based systems capable of efficient detection and degradation. However, conventional approaches utilizing strong capping agents like cetrimonium bromide (CTAB) on nanoparticles lead to limitations due to the rigid nature of CTAB. This restricts its utility in heavy metal detection and 4-NP degradation, requiring additional surface modifications using linker molecules, thereby increasing process complexity and cost. To overcome these limitations, there is a critical need for the development of an easy-to-use, dual-functional, linker-free nanosystem capable of simultaneous detection of heavy metals and efficient degradation of 4-NP. For enabling linker-free/ligand-free detection of heavy metal ions and catalytic degradation of 4-NP, CTAB was engineered as a versatile capping agent on gold and silver nanoparticles. Various factors, including nanoparticle characteristics such as shape, size, metal composition, centrifugation, and NaOH amount, were investigated for their impact on the performance of CTAB-capped nanoparticles in heavy metal detection and 4-NP degradation. CTAB-Au nanospheres demonstrated limited heavy metal ion detection capability but exhibited remarkable efficiency in degrading 94.37% of 4-NP within 1 min. In contrast, silver nanospheres effectively detected Hg2+, Cu2+, and Fe3+ at concentrations as low as 1 ppm and degraded 90.78% of 4-NP within 30 min. Moreover, anisotropic gold nanorods (CTAB-AuNR1 and CTAB-AuNR2) showed promising sensing capabilities towards Cu2+, Cr3+, and Hg2+ at 0.5 OD, while efficiently degrading 4-NP within 5 min at 1 OD. This study emphasizes the importance of tailoring parameters of CTAB-capped nanoparticles for specific sensing and catalytic applications, offering potential solutions for environmental remediation and human health protection.

重金属离子和有机污染物(如 4-硝基苯酚 (4-NP))对环境和人类健康构成严重威胁。要应对这些挑战,就必须使用能够高效检测和降解的先进纳米粒子系统。然而,由于 CTAB 的刚性,在纳米粒子上使用溴化十六烷铵(CTAB)等强封端剂的传统方法存在局限性。这限制了它在重金属检测和 4-NP 降解中的应用,需要使用连接分子对其表面进行额外的修饰,从而增加了工艺的复杂性和成本。为了克服这些限制,亟需开发一种易于使用、双功能、无链接剂的纳米系统,能够同时检测重金属和高效降解 4-NP。为了实现无链接剂/无配体重金属离子检测和 4-NP 催化降解,我们在金和银纳米粒子上设计了 CTAB 作为多功能封端剂。研究了各种因素,包括纳米颗粒的形状、尺寸、金属成分、离心和 NaOH 用量等特征,以了解它们对 CTAB 封端的纳米颗粒在重金属检测和 4-NP 降解中的性能的影响。CTAB-Au 纳米球的重金属离子检测能力有限,但在 1 分钟内降解 94.37% 的 4-NP 的效率很高。相比之下,银纳米球能有效检测浓度低至 1 ppm 的 Hg2+、Cu2+ 和 Fe3+,并能在 30 分钟内降解 90.78% 的 4-NP。此外,各向异性金纳米棒(CTAB-AuNR1 和 CTAB-AuNR2)在 0.5 OD 条件下对 Cu2+、Cr3+ 和 Hg2+ 具有良好的传感能力,而在 1 OD 条件下则能在 5 分钟内有效降解 4-NP。这项研究强调了为特定的传感和催化应用定制 CTAB 封装纳米粒子参数的重要性,为环境修复和人类健康保护提供了潜在的解决方案。
{"title":"Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol.","authors":"Akash Kumar, Raja Gopal Rayavarapu","doi":"10.3762/bjnano.15.106","DOIUrl":"https://doi.org/10.3762/bjnano.15.106","url":null,"abstract":"<p><p>Heavy metal ions and organic pollutants, such as 4-nitrophenol (4-NP), pose significant environmental and human health threats. Addressing these challenges necessitates using advanced nanoparticle-based systems capable of efficient detection and degradation. However, conventional approaches utilizing strong capping agents like cetrimonium bromide (CTAB) on nanoparticles lead to limitations due to the rigid nature of CTAB. This restricts its utility in heavy metal detection and 4-NP degradation, requiring additional surface modifications using linker molecules, thereby increasing process complexity and cost. To overcome these limitations, there is a critical need for the development of an easy-to-use, dual-functional, linker-free nanosystem capable of simultaneous detection of heavy metals and efficient degradation of 4-NP. For enabling linker-free/ligand-free detection of heavy metal ions and catalytic degradation of 4-NP, CTAB was engineered as a versatile capping agent on gold and silver nanoparticles. Various factors, including nanoparticle characteristics such as shape, size, metal composition, centrifugation, and NaOH amount, were investigated for their impact on the performance of CTAB-capped nanoparticles in heavy metal detection and 4-NP degradation. CTAB-Au nanospheres demonstrated limited heavy metal ion detection capability but exhibited remarkable efficiency in degrading 94.37% of 4-NP within 1 min. In contrast, silver nanospheres effectively detected Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> at concentrations as low as 1 ppm and degraded 90.78% of 4-NP within 30 min. Moreover, anisotropic gold nanorods (CTAB-AuNR1 and CTAB-AuNR2) showed promising sensing capabilities towards Cu<sup>2+</sup>, Cr<sup>3+</sup>, and Hg<sup>2+</sup> at 0.5 OD, while efficiently degrading 4-NP within 5 min at 1 OD. This study emphasizes the importance of tailoring parameters of CTAB-capped nanoparticles for specific sensing and catalytic applications, offering potential solutions for environmental remediation and human health protection.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1312-1332"},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. 氧化石墨烯与单宁酸的相互作用:计算建模和减轻对优雅小鼠的毒性。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-30 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.105
Romana Petry, James M de Almeida, Francine Côa, Felipe Crasto de Lima, Diego Stéfani T Martinez, Adalberto Fazzio

Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.

氧化石墨烯(GO)进入生物和环境介质后会发生多重变化。通过不同类型的相互作用机制,GO 表面有利于吸附生物分子,从而调节材料的生物效应。在本研究中,我们研究了 GO 与单宁酸(TA)的相互作用及其对 GO 毒性的影响。我们利用秀丽隐杆线虫模型,重点了解单宁酸如何与 GO 相互作用,其对材料表面化学、胶体稳定性以及毒性和生物分布的影响。通过计算建模(包括反应经典分子动力学和 ab initio 计算),我们发现 TA 会通过含氧基团或碳基质优先结合到 GO 表面活性最强的位点;范德华相互作用力主导了结合能。TA对GO的毒性具有剂量依赖性的缓解作用,这不仅归因于分子与材料之间的表面相互作用,也归因于TA在秀丽隐杆线虫体内固有的生物特性。我们的发现有助于加深对 GO 的环境行为和毒性的理解,并突出了单宁酸在石墨烯基纳米材料的合成和表面功能化方面的潜力,为更安全的纳米技术发展提供了启示。
{"title":"Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in <i>C. elegans</i>.","authors":"Romana Petry, James M de Almeida, Francine Côa, Felipe Crasto de Lima, Diego Stéfani T Martinez, Adalberto Fazzio","doi":"10.3762/bjnano.15.105","DOIUrl":"10.3762/bjnano.15.105","url":null,"abstract":"<p><p>Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the <i>Caenorhabditis elegans</i> model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in <i>C. elegans</i>. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1297-1311"},"PeriodicalIF":2.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn-doped ZnO nanopowders prepared by sol-gel and microwave-assisted sol-gel methods and their photocatalytic properties. 溶胶-凝胶法和微波辅助溶胶-凝胶法制备的掺锰氧化锌纳米粉体及其光催化性能。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.104
Cristina Maria Vlăduț, Crina Anastasescu, Silviu Preda, Oana Catalina Mocioiu, Simona Petrescu, Jeanina Pandele-Cusu, Dana Culita, Veronica Bratan, Ioan Balint, Maria Zaharescu

Although the microwave-assisted sol-gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating the as-synthesized materials. The present paper presents a comparative study of Mn-doped ZnO nanopowders prepared by both sol-gel and microwave-assisted sol-gel methods. The structural, morphological, and optical properties of the as-obtained powders were established and correlated with their newly proved functionality, namely, the ability to photogenerate distinct reactive oxygen species (·OH or O2 -) and to act as photoactive materials in aqueous media. The solar light-induced mineralization of oxalic acid by Mn-doped ZnO materials was clearly observed while similar amounts of generated CO2 were measured for both catalysts. These inexpensive semiconductor materials, which proved to be light-responsive, can be further used for developing water depollution technologies based on solar light energy.

尽管微波辅助溶胶-凝胶法常用于制备氧化物纳米结构,但其反应途径的协同作用尚未得到充分解释。然而,通过对合成材料的不断评估,可以获得具有高度新颖性的最新理论和实践成果。本文比较研究了溶胶-凝胶法和微波辅助溶胶-凝胶法制备的掺锰氧化锌纳米粉体。研究确定了所获粉末的结构、形态和光学特性,并将其与新证明的功能(即在水介质中能够光生成不同的活性氧(-OH 或 O2-)并作为光活性材料)相关联。我们清楚地观察到掺锰氧化锌材料在太阳光诱导下对草酸的矿化作用,同时测量到两种催化剂产生的二氧化碳量相似。事实证明,这些价格低廉的半导体材料具有光响应性,可进一步用于开发基于太阳光能的水污染技术。
{"title":"Mn-doped ZnO nanopowders prepared by sol-gel and microwave-assisted sol-gel methods and their photocatalytic properties.","authors":"Cristina Maria Vlăduț, Crina Anastasescu, Silviu Preda, Oana Catalina Mocioiu, Simona Petrescu, Jeanina Pandele-Cusu, Dana Culita, Veronica Bratan, Ioan Balint, Maria Zaharescu","doi":"10.3762/bjnano.15.104","DOIUrl":"10.3762/bjnano.15.104","url":null,"abstract":"<p><p>Although the microwave-assisted sol-gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating the as-synthesized materials. The present paper presents a comparative study of Mn-doped ZnO nanopowders prepared by both sol-gel and microwave-assisted sol-gel methods. The structural, morphological, and optical properties of the as-obtained powders were established and correlated with their newly proved functionality, namely, the ability to photogenerate distinct reactive oxygen species (·OH or O<sub>2</sub> <sup>-</sup>) and to act as photoactive materials in aqueous media. The solar light-induced mineralization of oxalic acid by Mn-doped ZnO materials was clearly observed while similar amounts of generated CO<sub>2</sub> were measured for both catalysts. These inexpensive semiconductor materials, which proved to be light-responsive, can be further used for developing water depollution technologies based on solar light energy.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1283-1296"},"PeriodicalIF":2.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures. 用于测量基于 FEBID 的纳米结构特性的新型可操作 MEMS 桥。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.103
Bartosz Pruchnik, Krzysztof Kwoka, Ewelina Gacka, Dominik Badura, Piotr Kunicki, Andrzej Sierakowski, Paweł Janus, Tomasz Piasecki, Teodor Gotszalk

Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing nanostructures. Experimenting at the nanoscale requires instruments with sufficient resolution and sensitivity to measure various properties of nanostructures. Such measurements (regardless of the nature of the quantities being measured) are particularly problematic in the case of free-standing nanostructures, whose properties must be separated from the measurement system to avoid possible interference. In this paper, we propose novel devices, namely operational micro-electromechanical system (opMEMS) bridges. These are 3D substrates with nanometer-scale actuation capability and equipped with electrical contacts characterised by leakage resistances above 100 GΩ, which provide a platform for comprehensive measurements of properties (i.e., resistance) of free-standing FEBID structures. We also present a use case scenario in which an opMEMS bridge is used to measure the resistance of a free-standing FEBID nanostructure.

聚焦电子束诱导沉积(FEBID)是一种用于开发多材料纳米结构的新型技术。更重要的是,它适用于制造独立的纳米结构。纳米尺度的实验需要具有足够分辨率和灵敏度的仪器来测量纳米结构的各种特性。在独立纳米结构的情况下,这种测量(无论被测量的性质如何)尤其成问题,因为其特性必须与测量系统分离,以避免可能的干扰。在本文中,我们提出了一种新型装置,即操作微机电系统(opMEMS)桥。它们是具有纳米级致动能力的三维基底,配备了漏电电阻超过 100 GΩ 的电触点,为全面测量独立 FEBID 结构的特性(如电阻)提供了平台。我们还介绍了一个使用案例,其中使用了 opMEMS 电桥来测量独立 FEBID 纳米结构的电阻。
{"title":"New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures.","authors":"Bartosz Pruchnik, Krzysztof Kwoka, Ewelina Gacka, Dominik Badura, Piotr Kunicki, Andrzej Sierakowski, Paweł Janus, Tomasz Piasecki, Teodor Gotszalk","doi":"10.3762/bjnano.15.103","DOIUrl":"10.3762/bjnano.15.103","url":null,"abstract":"<p><p>Focused electron beam-induced deposition (FEBID) is a novel technique for the development of multimaterial nanostructures. More importantly, it is applicable to the fabrication of free-standing nanostructures. Experimenting at the nanoscale requires instruments with sufficient resolution and sensitivity to measure various properties of nanostructures. Such measurements (regardless of the nature of the quantities being measured) are particularly problematic in the case of free-standing nanostructures, whose properties must be separated from the measurement system to avoid possible interference. In this paper, we propose novel devices, namely operational micro-electromechanical system (opMEMS) bridges. These are 3D substrates with nanometer-scale actuation capability and equipped with electrical contacts characterised by leakage resistances above 100 GΩ, which provide a platform for comprehensive measurements of properties (i.e., resistance) of free-standing FEBID structures. We also present a use case scenario in which an opMEMS bridge is used to measure the resistance of a free-standing FEBID nanostructure.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1273-1282"},"PeriodicalIF":2.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae). 豆娘 Ischnura elegans(蜻蜓目,鞘翅目)清洁装置的功能形态。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.102
Silvana Piersanti, Gianandrea Salerno, Wencke Krings, Stanislav Gorb, Manuela Rebora

Among the different micro- and nanostructures located on cuticular surfaces, grooming devices represent fundamental tools for insect survival. The present study describes the grooming microstructures of the damselfly Ischnura elegans (Odonata, Coenagrionidae) at the adult stage. These structures, situated on the foreleg tibiae, were observed using scanning electron microscopy, and the presence and distribution of resilin, an elastomeric protein that enhances cuticle flexibility, were analyzed using confocal laser scanning microscopy. Eye and antennal grooming behavior were analyzed to evaluate the particle removal efficiency in intact insects and in insects with ablated grooming devices. The grooming devices are constituted of long setae from which a concave cuticular lamina develops towards the medial side of the leg. Each seta shows a material gradient of resilin from its basal to the distal portion and from the seta to the cuticular lamina. The removal of the grooming devices induces a strong increase in the contaminated areas on the eyes after grooming. Further studies on insect grooming can provide valuable data on the functional morphology of insect micro- and nanostructures and can represent a starting point to develop advanced biomimetic cleaning tools.

在位于角质表面的各种微观和纳米结构中,梳理装置是昆虫生存的基本工具。本研究描述了草蜻蛉成虫阶段的梳理微结构。使用扫描电子显微镜观察了这些位于前肢胫骨上的结构,并使用激光共聚焦扫描显微镜分析了增强角质层柔韧性的弹性蛋白树脂蛋白的存在和分布情况。对昆虫的眼睛和触角梳理行为进行了分析,以评估完整昆虫和带有烧蚀梳理装置的昆虫的微粒清除效率。梳理装置由长长的刚毛构成,从这些刚毛上向腿的内侧发展出凹陷的角质层。每根刚毛从基部到远端以及从刚毛到角质层都显示出树脂蛋白的物质梯度。取下梳理器后,眼睛上的污染区域会明显增加。对昆虫梳理的进一步研究可为昆虫微纳米结构的功能形态提供宝贵数据,并可作为开发先进仿生清洁工具的起点。
{"title":"Functional morphology of cleaning devices in the damselfly <i>Ischnura elegans</i> (Odonata, Coenagrionidae).","authors":"Silvana Piersanti, Gianandrea Salerno, Wencke Krings, Stanislav Gorb, Manuela Rebora","doi":"10.3762/bjnano.15.102","DOIUrl":"https://doi.org/10.3762/bjnano.15.102","url":null,"abstract":"<p><p>Among the different micro- and nanostructures located on cuticular surfaces, grooming devices represent fundamental tools for insect survival. The present study describes the grooming microstructures of the damselfly <i>Ischnura elegans</i> (Odonata, Coenagrionidae) at the adult stage. These structures, situated on the foreleg tibiae, were observed using scanning electron microscopy, and the presence and distribution of resilin, an elastomeric protein that enhances cuticle flexibility, were analyzed using confocal laser scanning microscopy. Eye and antennal grooming behavior were analyzed to evaluate the particle removal efficiency in intact insects and in insects with ablated grooming devices. The grooming devices are constituted of long setae from which a concave cuticular lamina develops towards the medial side of the leg. Each seta shows a material gradient of resilin from its basal to the distal portion and from the seta to the cuticular lamina. The removal of the grooming devices induces a strong increase in the contaminated areas on the eyes after grooming. Further studies on insect grooming can provide valuable data on the functional morphology of insect micro- and nanostructures and can represent a starting point to develop advanced biomimetic cleaning tools.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1260-1272"},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films. 钽中间层在增强 Fe3O4 薄膜性能方面的作用。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-14 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.101
Hai Dang Ngo, Vo Doan Thanh Truong, Van Qui Le, Hoai Phuong Pham, Thi Kim Hang Pham

High spin polarization and low resistivity of Fe3O4 at room temperature have been an appealing topic in spintronics with various promising applications. High-quality Fe3O4 thin films are a must to achieve the goals. In this report, Fe3O4 films on different substrates (SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100)) were fabricated at room temperature with radio-frequency (RF) sputtering and annealed at 450 °C for 2 h. The morphological, structural, and magnetic properties of the deposited samples were characterized with atomic force microscopy, X-ray diffractometry, and vibrating sample magnetometry. The polycrystalline Fe3O4 film grown on MgO/Ta/SiO2/Si(100) presented very interesting morphology and structure characteristics. More importantly, changes in grain size and structure due to the effect of the MgO/Ta buffering layers have a strong impact on saturation magnetization and coercivity of Fe3O4 thin films compared to cases of no or just a single buffering layer.

室温下 Fe3O4 的高自旋极化和低电阻率一直是自旋电子学中一个吸引人的话题,其应用前景十分广阔。要实现这些目标,高质量的 Fe3O4 薄膜是必不可少的。本报告采用射频溅射法在室温下制备了不同基底(SiO2/Si(100)、MgO(100)和 MgO/Ta/SiO2/Si(100))上的 Fe3O4 薄膜,并在 450 °C 下退火 2 小时。在 MgO/Ta/SiO2/Si(100) 上生长的多晶 Fe3O4 薄膜呈现出非常有趣的形态和结构特征。更重要的是,与没有缓冲层或只有一个缓冲层的情况相比,由于氧化镁/Ta 缓冲层的影响而导致的晶粒大小和结构变化对 Fe3O4 薄膜的饱和磁化和矫顽力有很大影响。
{"title":"The role of a tantalum interlayer in enhancing the properties of Fe<sub>3</sub>O<sub>4</sub> thin films.","authors":"Hai Dang Ngo, Vo Doan Thanh Truong, Van Qui Le, Hoai Phuong Pham, Thi Kim Hang Pham","doi":"10.3762/bjnano.15.101","DOIUrl":"https://doi.org/10.3762/bjnano.15.101","url":null,"abstract":"<p><p>High spin polarization and low resistivity of Fe<sub>3</sub>O<sub>4</sub> at room temperature have been an appealing topic in spintronics with various promising applications. High-quality Fe<sub>3</sub>O<sub>4</sub> thin films are a must to achieve the goals. In this report, Fe<sub>3</sub>O<sub>4</sub> films on different substrates (SiO<sub>2</sub>/Si(100), MgO(100), and MgO/Ta/SiO<sub>2</sub>/Si(100)) were fabricated at room temperature with radio-frequency (RF) sputtering and annealed at 450 °C for 2 h. The morphological, structural, and magnetic properties of the deposited samples were characterized with atomic force microscopy, X-ray diffractometry, and vibrating sample magnetometry. The polycrystalline Fe<sub>3</sub>O<sub>4</sub> film grown on MgO/Ta/SiO<sub>2</sub>/Si(100) presented very interesting morphology and structure characteristics. More importantly, changes in grain size and structure due to the effect of the MgO/Ta buffering layers have a strong impact on saturation magnetization and coercivity of Fe<sub>3</sub>O<sub>4</sub> thin films compared to cases of no or just a single buffering layer.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1253-1259"},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids. 双重功能化结构可使 SiO2NPs 在复杂的生物液体中保持稳定并具有肿瘤细胞特异性。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-07 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.100
Iris Renata Sousa Ribeiro, Raquel Frenedoso da Silva, Romênia Ramos Domingues, Adriana Franco Paes Leme, Mateus Borba Cardoso

Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO2NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO2NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.

大多数商用抗癌纳米药物都是通过静脉注射的。这种途径快速而精确,因为药物直接进入全身循环,无需经过吸收过程。然而,当纳米颗粒与血液直接接触时,它们会与生理成分相互作用,导致胶体不稳定和/或改变其原有的生化特性,从而影响其在靶点选择性蓄积的能力。因此,这些系统通常缺乏主动靶向性,治疗效果有限。在文献中,很少有在复杂环境中对纳米粒子的稳定性、蛋白电晕形成、溶血活性和靶向能力进行评估的深入研究。为解决这一问题,本文将荧光二氧化硅纳米粒子(SiO2NPs)功能化为齐聚物(动力学稳定剂)和叶酸基团(靶向剂),以便在生物介质中与肿瘤细胞系进行选择性相互作用。这些双重功能化的 SiO2NPs 在未经处理的人体血浆中保持稳定,同时减少了吸附蛋白质的数量。在小鼠血液中进行的实验进一步证明,这些纳米粒子不会溶血。值得注意的是,功能化的 SiO2NPs 比健康的同类产品更容易被肿瘤细胞内化。这种性质的研究在获得更可靠的结果方面起着至关重要的作用,有助于开发基于纳米粒子的药物,使其在医疗方面表现出更高的疗效和更低的毒性。
{"title":"Dual-functionalized architecture enables stable and tumor cell-specific SiO<sub>2</sub>NPs in complex biological fluids.","authors":"Iris Renata Sousa Ribeiro, Raquel Frenedoso da Silva, Romênia Ramos Domingues, Adriana Franco Paes Leme, Mateus Borba Cardoso","doi":"10.3762/bjnano.15.100","DOIUrl":"https://doi.org/10.3762/bjnano.15.100","url":null,"abstract":"<p><p>Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO<sub>2</sub>NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO<sub>2</sub>NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO<sub>2</sub>NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1238-1252"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472657/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beilstein Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1