首页 > 最新文献

Beilstein Journal of Nanotechnology最新文献

英文 中文
Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies. 集成高性能计算,机器学习,数据管理工作流程,以及多尺度模拟和纳米材料技术的基础设施。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.119
Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri

This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.

这篇透视文章探讨了先进数字技术的融合,包括高性能计算(HPC)、人工智能、机器学习和复杂的数据管理工作流。主要目标是提高多尺度模拟的可及性及其与其他计算技术的集成,从而推进纳米材料技术领域。所提出的方法依赖于关键战略和数字技术,以实现高效和创新的材料发现,强调完全数字化,以数据为中心的方法。基于知识和结构化信息管理的方法的集成作为一个基础元素,建立了一个框架,用于表示与材料相关的信息,并确保跨各种工具的互操作性。本文探讨了数字和以数据为中心的材料开发方法和技术的鲜明特征。它强调了数字孪生在研究中的作用,特别是在纳米材料开发领域,并研究了知识工程在建立数据和信息标准以促进互操作性方面的影响。此外,本文还探讨了部署技术在管理高性能计算基础设施中的作用。它还解决了这些技术与用户友好的开发工具的配对,以支持在高级研究中采用数字方法。
{"title":"Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies.","authors":"Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri","doi":"10.3762/bjnano.15.119","DOIUrl":"https://doi.org/10.3762/bjnano.15.119","url":null,"abstract":"<p><p>This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1498-1521"},"PeriodicalIF":2.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. 用于植物化学物质输送的聚合物脂质混合纳米颗粒:挑战、进展和未来前景。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.118
Iqra Rahat, Pooja Yadav, Aditi Singhal, Mohammad Fareed, Jaganathan Raja Purushothaman, Mohammed Aslam, Raju Balaji, Sonali Patil-Shinde, Md Rizwanullah

Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.

植物化学物质是植物中天然存在的化合物,具有广泛的治疗特性,包括抗氧化、抗炎、抗癌和抗菌活性。然而,由于水溶性差、生物利用率低、新陈代谢快以及在生理条件下不稳定等原因,它们在临床上的应用往往受到阻碍。聚合物脂质杂化纳米颗粒(PLHNPs)是一种新型的给药系统,它结合了聚合物纳米颗粒和脂质纳米颗粒的优点,可以克服这些难题。本综述探讨了 PLHNPs 在生物医学应用中提高植物化学物质的递送和功效的潜力。我们讨论了植物化学物质传统递送的障碍、PLHNPs 的基本结构和 PLHNPs 的类型,重点介绍了它们提高封装效率、稳定性和控制封装植物化学物质释放的能力。此外,我们还讨论了通过特定位点递送封装植物化学物质来提高整体疗效的表面修饰策略。此外,我们还广泛讨论了植物化学物质封装的 PLHNPs 用于治疗不同疾病的临床前研究。此外,我们还探讨了 PLHNPs 在临床广泛应用方面面临的挑战和前景。总之,PLHNPs 在有效传递植物化学物质的生物医学应用方面具有强大的潜力。根据临床前研究的结果,这可能会为治疗各种疾病提供一种前景广阔的策略。
{"title":"Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects.","authors":"Iqra Rahat, Pooja Yadav, Aditi Singhal, Mohammad Fareed, Jaganathan Raja Purushothaman, Mohammed Aslam, Raju Balaji, Sonali Patil-Shinde, Md Rizwanullah","doi":"10.3762/bjnano.15.118","DOIUrl":"10.3762/bjnano.15.118","url":null,"abstract":"<p><p>Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1473-1497"},"PeriodicalIF":2.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model. 辐射诱导的空位饱和对纳米粒子一阶相变的影响:模型的启示。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.117
Aram Shirinyan, Yuriy Bilogorodskyy

By employing a model of nanomaterials with polymorphic phase transitions and using a thermodynamic approach to describe the effects of vacancy saturation, irradiation dose, powder dispersion, and surface energies, we demonstrate the possibility of radiation-induced phase transitions and the zones of radiation stability for nanoparticles. We utilize nanoparticles exhibiting transitions from the body-centered cubic α phase to the face-centered cubic β phase, and the reverse transition from β phase to α phase, as a model system for first-order phase transformations. We incorporate nucleation through the appearance and growth of the nucleus of a new phase, resulting in the formation of a two-phase α+β system, and we highlight the importance of accounting for nucleation. Our model study reveals that very small α-phase particles are unstable (while very small β-phase particles are stable) because of surface effects. There is an intermediate zone of sizes and parameters where radiation-induced defects become important so that the α-phase particle is unstable without irradiation but becomes stable under irradiation. For large sizes and low temperatures, the α→β transformation cannot occur regardless of irradiation because of bulk driving forces; initially, α-phase particles are stable, whereas the β-phase particles are unstable. In some cases, nucleation requires a large additional energy change, resulting in a low probability of phase change fluctuations. This behavior is confirmed by calculations for iron particles under irradiation. Substances characterized by high vacancy migration energy, small diffusion coefficients of defects, and low temperatures of first-order phase transitions can serve as suitable candidates for radiation-induced phase transitions in nanosystems. Ceramic nanomaterials, which possess high vacancy migration energy, will have their behavior significantly influenced by radiation doses. In contrast, most metals exhibit small vacancy migration energy and demonstrate better resistance to irradiation, making them recommended candidates for nuclear materials.

通过采用具有多态相变的纳米材料模型,并使用热力学方法描述空位饱和度、辐照剂量、粉末分散和表面能的影响,我们证明了辐射诱导相变的可能性以及纳米粒子的辐射稳定区。我们利用纳米粒子从体心立方体α相到面心立方体β相的转变,以及从β相到α相的反向转变,作为一阶相变的模型系统。我们通过新相原子核的出现和生长纳入了成核现象,从而形成了α+β两相体系,并强调了考虑成核现象的重要性。我们的模型研究表明,由于表面效应,极小的 α 相粒子是不稳定的(而极小的 β 相粒子是稳定的)。在不同尺寸和参数的中间区域,辐射诱导的缺陷变得非常重要,因此在没有辐照的情况下,α 相粒子是不稳定的,而在辐照下则变得稳定。在大尺寸和低温条件下,由于体积驱动力的作用,无论辐照与否,α→β 转变都不会发生;最初,α 相粒子是稳定的,而 β 相粒子是不稳定的。在某些情况下,成核需要很大的额外能量变化,导致相变波动的概率很低。对辐照下铁粒子的计算证实了这一行为。具有空位迁移能高、缺陷扩散系数小、一阶相变温度低等特点的物质可作为纳米系统中辐射诱导相变的合适候选物质。陶瓷纳米材料具有较高的空位迁移能,其行为会受到辐射剂量的显著影响。相比之下,大多数金属的空位迁移能较小,抗辐照能力较强,因此是核材料的推荐候选材料。
{"title":"Effect of radiation-induced vacancy saturation on the first-order phase transformation in nanoparticles: insights from a model.","authors":"Aram Shirinyan, Yuriy Bilogorodskyy","doi":"10.3762/bjnano.15.117","DOIUrl":"10.3762/bjnano.15.117","url":null,"abstract":"<p><p>By employing a model of nanomaterials with polymorphic phase transitions and using a thermodynamic approach to describe the effects of vacancy saturation, irradiation dose, powder dispersion, and surface energies, we demonstrate the possibility of radiation-induced phase transitions and the zones of radiation stability for nanoparticles. We utilize nanoparticles exhibiting transitions from the body-centered cubic α phase to the face-centered cubic β phase, and the reverse transition from β phase to α phase, as a model system for first-order phase transformations. We incorporate nucleation through the appearance and growth of the nucleus of a new phase, resulting in the formation of a two-phase α+β system, and we highlight the importance of accounting for nucleation. Our model study reveals that very small α-phase particles are unstable (while very small β-phase particles are stable) because of surface effects. There is an intermediate zone of sizes and parameters where radiation-induced defects become important so that the α-phase particle is unstable without irradiation but becomes stable under irradiation. For large sizes and low temperatures, the α→β transformation cannot occur regardless of irradiation because of bulk driving forces; initially, α-phase particles are stable, whereas the β-phase particles are unstable. In some cases, nucleation requires a large additional energy change, resulting in a low probability of phase change fluctuations. This behavior is confirmed by calculations for iron particles under irradiation. Substances characterized by high vacancy migration energy, small diffusion coefficients of defects, and low temperatures of first-order phase transitions can serve as suitable candidates for radiation-induced phase transitions in nanosystems. Ceramic nanomaterials, which possess high vacancy migration energy, will have their behavior significantly influenced by radiation doses. In contrast, most metals exhibit small vacancy migration energy and demonstrate better resistance to irradiation, making them recommended candidates for nuclear materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1453-1472"},"PeriodicalIF":2.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study. 二维ψ-石墨烯材料中的应变诱导带隙工程:第一原理研究。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.116
Kamal Kumar, Nora H de Leeuw, Jost Adam, Abhishek Kumar Mishra

High mechanical strength, excellent thermal and electrical conductivity, and tunable properties make two-dimensional (2D) materials attractive for various applications. However, the metallic nature of these materials restricts their applications in specific domains. Strain engineering is a versatile technique to tailor the distribution of energy levels, including bandgap opening between the energy bands. ψ-Graphene is a newly predicted 2D nanosheet of carbon atoms arranged in 5,6,7-membered rings. The half and fully hydrogenated (hydrogen-functionalized) forms of ψ-graphene are called ψ-graphone and ψ-graphane. Like ψ-graphene, ψ-graphone has a zero bandgap, but ψ-graphane is a wide-bandgap semiconductor. In this study, we have applied in-plane and out-of-plane biaxial strain on pristine and hydrogenated ψ-graphene. We have obtained a bandgap opening (200 meV) in ψ-graphene at 14% in-plane strain, while ψ-graphone loses its zero-bandgap nature at very low values of applied strain (both +1% and -1%). In contrast, fully hydrogenated ψ-graphene remains unchanged under the influence of mechanical strain, preserving its initial characteristic of having a direct bandgap. This behavior offers opportunities for these materials in various vital applications in photodetectors, solar cells, LEDs, pressure and strain sensors, energy storage, and quantum computing. The mechanical strain tolerance of pristine and fully hydrogenated ψ-graphene is observed to be -17% to +17%, while for ψ-graphone, it lies within the strain span of -16% to +16%.

二维(2D)材料具有较高的机械强度、出色的热导率和电导率以及可调特性,因此在各种应用领域都具有吸引力。然而,这些材料的金属特性限制了它们在特定领域的应用。应变工程是一种定制能级分布(包括能带之间的带隙开口)的通用技术。ψ-石墨烯是一种新预测的二维纳米板,由排列成 5、6、7 元环的碳原子组成。ψ-石墨烯的半氢化和全氢化(氢功能化)形式被称为ψ-石墨酮和ψ-石墨烷。与ψ-石墨烯一样,ψ-石墨烯的带隙为零,但ψ-石墨烷是一种宽带隙半导体。在这项研究中,我们对原始ψ石墨烯和氢化ψ石墨烯施加了面内和面外双轴应变。我们在 14% 的面内应变下获得了ψ-石墨烯的带隙开口(200 meV),而ψ-石墨在极低的应变值(+1% 和-1%)下就失去了零带隙特性。相比之下,完全氢化的ψ-石墨烯在机械应变的影响下保持不变,保留了其具有直接带隙的初始特性。这种特性为这些材料在光电探测器、太阳能电池、发光二极管、压力和应变传感器、能量存储以及量子计算等领域的各种重要应用提供了机会。据观察,原始和完全氢化ψ-石墨烯的机械应变容限为-17%至+17%,而ψ-石墨则在-16%至+16%的应变范围内。
{"title":"Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study.","authors":"Kamal Kumar, Nora H de Leeuw, Jost Adam, Abhishek Kumar Mishra","doi":"10.3762/bjnano.15.116","DOIUrl":"10.3762/bjnano.15.116","url":null,"abstract":"<p><p>High mechanical strength, excellent thermal and electrical conductivity, and tunable properties make two-dimensional (2D) materials attractive for various applications. However, the metallic nature of these materials restricts their applications in specific domains. Strain engineering is a versatile technique to tailor the distribution of energy levels, including bandgap opening between the energy bands. ψ-Graphene is a newly predicted 2D nanosheet of carbon atoms arranged in 5,6,7-membered rings. The half and fully hydrogenated (hydrogen-functionalized) forms of ψ-graphene are called ψ-graphone and ψ-graphane. Like ψ-graphene, ψ-graphone has a zero bandgap, but ψ-graphane is a wide-bandgap semiconductor. In this study, we have applied in-plane and out-of-plane biaxial strain on pristine and hydrogenated ψ-graphene. We have obtained a bandgap opening (200 meV) in ψ-graphene at 14% in-plane strain, while ψ-graphone loses its zero-bandgap nature at very low values of applied strain (both +1% and -1%). In contrast, fully hydrogenated ψ-graphene remains unchanged under the influence of mechanical strain, preserving its initial characteristic of having a direct bandgap. This behavior offers opportunities for these materials in various vital applications in photodetectors, solar cells, LEDs, pressure and strain sensors, energy storage, and quantum computing. The mechanical strain tolerance of pristine and fully hydrogenated ψ-graphene is observed to be -17% to +17%, while for ψ-graphone, it lies within the strain span of -16% to +16%.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1440-1452"},"PeriodicalIF":2.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2. 离子诱导的 Pt(CO)2Cl2 和 Pt(CO)2Br2 表面反应和沉积。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.115
Mohammed K Abdel-Rahman, Patrick M Eckhert, Atul Chaudhary, Johnathon M Johnson, Jo-Chi Yu, Lisa McElwee-White, D Howard Fairbrother

Ion beam-induced deposition (IBID) using Pt(CO)2Cl2 and Pt(CO)2Br2 as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2 and Pt(CO)2Br2 exposed to 3 keV Ar+, He+, and H2 + ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX2 species. Upon further ion irradiation these PtCl2 or PtBr2 species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar+) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar+/Pt(CO)2Cl2, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors.

以 Pt(CO)2Cl2 和 Pt(CO)2Br2 为前驱体的离子束诱导沉积 (IBID) 研究采用了超高真空 (UHV) 表面科学技术,以便深入了解沉积过程中的基本反应步骤,并对稳态条件下形成的沉积物进行分析。暴露在 3 keV Ar+、He+ 和 H2 + 离子下的 Pt(CO)2Cl2 和 Pt(CO)2Br2 单层厚膜的 X 射线光电子能谱 (XPS) 和质谱数据表明,沉积是由两个 CO 配体的解吸启动的,这一过程归因于从入射离子到吸附前驱体分子的动量传递。这一前驱体分解步骤伴随着 Pt(II) 原子氧化态的降低,在 IBID 中代表了将分子前驱体转化为不挥发性 PtX2 物种的基本反应步骤。在进一步的离子照射下,这些 PtCl2 或 PtBr2 物种会发生离子诱导溅射。卤素和铂溅射率之间的差异会导致一个临界离子剂量,在该剂量下,薄膜中只剩下铂。对所研究的不同离子/前驱体组合进行比较后发现,尽管最重(Ar+)离子的 CO 解吸速率和随后的物理溅射速率最大,但基本反应步骤的这一顺序是不变的。对 Ar+/Pt(CO)2Cl2 生成的薄膜沉积物进行的 AES 和 XPS 分析证实了 IBID 生成纯铂薄膜的能力,证明了从基本超高真空表面科学研究中获得的数据能够提供深入的见解,用于更好地理解无机前驱体 IBID 过程中离子和前驱体之间的相互作用。
{"title":"Ion-induced surface reactions and deposition from Pt(CO)<sub>2</sub>Cl<sub>2</sub> and Pt(CO)<sub>2</sub>Br<sub>2</sub>.","authors":"Mohammed K Abdel-Rahman, Patrick M Eckhert, Atul Chaudhary, Johnathon M Johnson, Jo-Chi Yu, Lisa McElwee-White, D Howard Fairbrother","doi":"10.3762/bjnano.15.115","DOIUrl":"10.3762/bjnano.15.115","url":null,"abstract":"<p><p>Ion beam-induced deposition (IBID) using Pt(CO)<sub>2</sub>Cl<sub>2</sub> and Pt(CO)<sub>2</sub>Br<sub>2</sub> as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)<sub>2</sub>Cl<sub>2</sub> and Pt(CO)<sub>2</sub>Br<sub>2</sub> exposed to 3 keV Ar<sup>+</sup>, He<sup>+</sup>, and H<sub>2</sub> <sup>+</sup> ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX<sub>2</sub> species. Upon further ion irradiation these PtCl<sub>2</sub> or PtBr<sub>2</sub> species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar<sup>+</sup>) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar<sup>+</sup>/Pt(CO)<sub>2</sub>Cl<sub>2</sub>, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1427-1439"},"PeriodicalIF":2.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control. 绝缘体上的铌酸锂:用于优化光控制的新兴纳米光子晶体。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.114
Midhun Murali, Amit Banerjee, Tanmoy Basu

Lithium niobate (LN) stands out as a versatile nonlinear optoelectronic material which can be directly applied in tunable modulators, filters, parametric amplifiers, and photonic integrated circuits. Recently, LN photonic crystals have garnered attention as a compelling candidate for incorporation into photonic integrated circuits, showcasing their potential in advancing the field. Photonic crystals possess a widely acknowledged capability to manipulate the transmission of light modes, similar to how nanostructures have been utilized to regulate electron-related phenomena. Here we study the optical performance of a one-dimensional stacked photonic crystal based on LN and TiO2/SiO2. We studied the quarter wavelength multi-layered stack using electromagnetic simulation. The forbidden-frequency region indifferent from the bulk material has been observed around 1.55 µm. A high refractive index and non-linear optical and electro-optical properties enable LN to be used for more efficient manipulation of light. The highly reflective quarternary stack can play an important role in diverse fields such as photonics, optomechanics, optoelectronics, signal processing, and quantum technologies, spanning the spectrum from photon generation (including single-photon sources and lasers) to their manipulation (encompassing waveguiding, beam splitting, filters, and spin-photon entanglement), and detection (involving single-photon detectors).

铌酸锂(LN)是一种多功能非线性光电材料,可直接应用于可调谐调制器、滤波器、参量放大器和光子集成电路。最近,镧系元素光子晶体作为一种可用于光子集成电路的引人注目的候选材料备受关注,展示了其在推动该领域发展方面的潜力。光子晶体具有广受认可的操纵光模式传输的能力,这与利用纳米结构调节电子相关现象的方式类似。在此,我们研究了基于 LN 和 TiO2/SiO2 的一维堆叠光子晶体的光学性能。我们利用电磁模拟研究了四分之一波长的多层堆叠。在 1.55 µm 附近观察到了与块体材料不同的禁频区。高折射率以及非线性光学和电光特性使 LN 能够更有效地操纵光。高反射四元叠层可在光子学、光机械学、光电子学、信号处理和量子技术等不同领域发挥重要作用,涵盖从光子产生(包括单光子源和激光器)到光子操纵(包括波导、分光、滤波器和自旋光子纠缠)和检测(涉及单光子探测器)的各个环节。
{"title":"Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control.","authors":"Midhun Murali, Amit Banerjee, Tanmoy Basu","doi":"10.3762/bjnano.15.114","DOIUrl":"10.3762/bjnano.15.114","url":null,"abstract":"<p><p>Lithium niobate (LN) stands out as a versatile nonlinear optoelectronic material which can be directly applied in tunable modulators, filters, parametric amplifiers, and photonic integrated circuits. Recently, LN photonic crystals have garnered attention as a compelling candidate for incorporation into photonic integrated circuits, showcasing their potential in advancing the field. Photonic crystals possess a widely acknowledged capability to manipulate the transmission of light modes, similar to how nanostructures have been utilized to regulate electron-related phenomena. Here we study the optical performance of a one-dimensional stacked photonic crystal based on LN and TiO<sub>2</sub>/SiO<sub>2</sub>. We studied the quarter wavelength multi-layered stack using electromagnetic simulation. The forbidden-frequency region indifferent from the bulk material has been observed around 1.55 µm. A high refractive index and non-linear optical and electro-optical properties enable LN to be used for more efficient manipulation of light. The highly reflective quarternary stack can play an important role in diverse fields such as photonics, optomechanics, optoelectronics, signal processing, and quantum technologies, spanning the spectrum from photon generation (including single-photon sources and lasers) to their manipulation (encompassing waveguiding, beam splitting, filters, and spin-photon entanglement), and detection (involving single-photon detectors).</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1415-1426"},"PeriodicalIF":2.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals. 高效 N2B 输送的纳米技术方法:从小分子药物到生物制药。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-12 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.113
Selin Akpinar Adscheid, Akif Emre Türeli, Nazende Günday-Türeli, Marc Schneider

Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood-brain barrier. While protecting the brain's homeostasis, the barrier limits the passage of almost all large-molecule drugs and most small-molecule drugs. A noninvasive method, nose-to-brain delivery (N2B delivery) has been proposed to overcome this challenge. By exploiting the direct anatomical interaction between the nose and the brain, the drugs can reach the target, the brain. Moreover, the drugs can be encapsulated into various drug delivery systems to enhance physicochemical characteristics and targeting success. Many preclinical data show that this strategy can effectively deliver biopharmaceuticals to the brain. Therefore, this review focuses on N2B delivery while giving examples of different drug delivery systems suitable for the applications. In addition, we emphasize the importance of the effective delivery of monoclonal antibodies and RNA and stress the recent literature tackling this challenge. While giving examples of nanotechnological approaches for the effective delivery of small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies' success and limitations.

中枢神经系统疾病对患者和社会造成了负面影响。由于血脑屏障的存在,为这些疾病提供成功的非侵入性治疗具有挑战性。血脑屏障在保护大脑平衡的同时,也限制了几乎所有大分子药物和大多数小分子药物的通过。为克服这一难题,有人提出了一种非侵入性方法--鼻脑给药(N2B 给药)。通过利用鼻子和大脑之间的直接解剖相互作用,药物可以到达目标部位--大脑。此外,还可以将药物封装到各种给药系统中,以提高药物的理化特性和靶向成功率。许多临床前数据表明,这种策略可以有效地将生物制药送入大脑。因此,本综述重点关注 N2B 给药,同时举例说明适合该应用的不同给药系统。此外,我们还强调了有效递送单克隆抗体和 RNA 的重要性,并着重介绍了应对这一挑战的最新文献。在举例说明当前文献中有效递送小分子或大分子的纳米技术方法的同时,我们强调了临床前研究及其结果,以证明这些策略的成功与局限性。
{"title":"Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals.","authors":"Selin Akpinar Adscheid, Akif Emre Türeli, Nazende Günday-Türeli, Marc Schneider","doi":"10.3762/bjnano.15.113","DOIUrl":"10.3762/bjnano.15.113","url":null,"abstract":"<p><p>Central nervous system diseases negatively affect patients and society. Providing successful noninvasive treatments for these diseases is challenging because of the presence of the blood-brain barrier. While protecting the brain's homeostasis, the barrier limits the passage of almost all large-molecule drugs and most small-molecule drugs. A noninvasive method, nose-to-brain delivery (N2B delivery) has been proposed to overcome this challenge. By exploiting the direct anatomical interaction between the nose and the brain, the drugs can reach the target, the brain. Moreover, the drugs can be encapsulated into various drug delivery systems to enhance physicochemical characteristics and targeting success. Many preclinical data show that this strategy can effectively deliver biopharmaceuticals to the brain. Therefore, this review focuses on N2B delivery while giving examples of different drug delivery systems suitable for the applications. In addition, we emphasize the importance of the effective delivery of monoclonal antibodies and RNA and stress the recent literature tackling this challenge. While giving examples of nanotechnological approaches for the effective delivery of small or large molecules from the current literature, we highlight the preclinical studies and their results to prove the strategies' success and limitations.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1400-1414"},"PeriodicalIF":2.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications. 用于纳米器件和跨学科应用的各种 CVD 生长氧化锌纳米结构。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-11 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.112
The-Long Phan, Le Viet Cuong, Vu Dinh Lam, Ngoc Toan Dang

This work presents a simple chemical vapour deposition (CVD) method to grow ZnO nanostructures. By annealing Zn powder under atmospheric pressure conditions, we collected nanocrystals with various morphologies, including rods, pencils, sheets, combs, tetrapods, and multilegs. Raman scattering study reveals that the samples are monophasic with a hexagonal structure, and fall into the P63 mc space group. Depending on the morphology and crystal quality, their photoluminescence spectra have only a strong UV emission associated with the exciton radiative recombination, or both UV and defect-related visible emissions with their relative intensity ratio varying with the excitation power density. The obtained results prove that ZnO exhibits many novel nanostructures that can foster the development of next-generation optoelectronic nanodevices and new applications in biological and biomedical fields.

本研究提出了一种生长氧化锌纳米结构的简单化学气相沉积(CVD)方法。通过在常压条件下对锌粉进行退火处理,我们收集到了各种形态的纳米晶体,包括棒状、铅笔状、片状、梳状、四棱柱状和多棱柱状。拉曼散射研究表明,这些样品为单相六方结构,属于 P63 mc 空间群。根据形态和晶体质量的不同,它们的光致发光光谱只有与激子辐射重组相关的强紫外发射,或同时具有紫外发射和与缺陷相关的可见发射,其相对强度比随激发功率密度而变化。研究结果证明,氧化锌具有许多新颖的纳米结构,可以促进下一代光电纳米器件的开发以及在生物和生物医学领域的新应用。
{"title":"Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications.","authors":"The-Long Phan, Le Viet Cuong, Vu Dinh Lam, Ngoc Toan Dang","doi":"10.3762/bjnano.15.112","DOIUrl":"10.3762/bjnano.15.112","url":null,"abstract":"<p><p>This work presents a simple chemical vapour deposition (CVD) method to grow ZnO nanostructures. By annealing Zn powder under atmospheric pressure conditions, we collected nanocrystals with various morphologies, including rods, pencils, sheets, combs, tetrapods, and multilegs. Raman scattering study reveals that the samples are monophasic with a hexagonal structure, and fall into the <i>P</i>6<sub>3</sub> <i>mc</i> space group. Depending on the morphology and crystal quality, their photoluminescence spectra have only a strong UV emission associated with the exciton radiative recombination, or both UV and defect-related visible emissions with their relative intensity ratio varying with the excitation power density. The obtained results prove that ZnO exhibits many novel nanostructures that can foster the development of next-generation optoelectronic nanodevices and new applications in biological and biomedical fields.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1390-1399"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A biomimetic approach towards a universal slippery liquid infused surface coating. 一种生物仿生方法,用于制造通用型滑液浸润表面涂层。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-08 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.111
Ryan A Faase, Madeleine H Hummel, AnneMarie V Hasbrook, Andrew P Carpenter, Joe E Baio

One biomimetic approach to surface passivation involves a series of surface coatings based on the slick surfaces of carnivorous pitcher plants (Nepenthes), termed slippery liquid-infused porous surfaces (SLIPS). This study introduces a simplified method to produce SLIPS using a polydopamine (PDA) anchor layer, inspired by mussel adhesion. SLIPS layers were formed on cyclic olefin copolymer, silicon, and stainless steel substrates, by first growing a PDA film on each substrate. This was followed by a hydrophobic liquid anchor layer created by functionalizing the PDA film with a fluorinated thiol. Finally, perfluorodecalin was applied to the surface immediately prior to use. These biomimetic surface functionalization steps were confirmed by several complimentary surface analysis techniques. The wettability of each surface was probed with water contact angle measurements, while the chemical composition of the layer was determined by X-ray photoelectron spectroscopy. Finally, ordering of specific chemical groups within our PDA SLIPS layer was determined via sum frequency generation spectroscopy. The hemocompatibility of our new PDA-based SLIPS coating was then evaluated by tracking FXII activation, fibrin generation time, clot morphology, and platelet adhesion to the surface. This hemocompatibility work suggests that PDA SLIPS coatings slow or prevent clotting, but the observation of both FXII activation and the presence of adherent and activated platelets at the PDA SLIPS samples imply that this formulation of a SLIPS coating is not completely omniphobic.

表面钝化的一种生物仿生方法涉及一系列基于食肉投手植物(Nepenthes)光滑表面的表面涂层,即滑液注入多孔表面(SLIPS)。本研究受贻贝附着力的启发,介绍了一种使用聚多巴胺(PDA)锚层生产 SLIPS 的简化方法。在环烯烃共聚物、硅和不锈钢基底上形成 SLIPS 层,首先在每种基底上形成 PDA 膜。然后用氟化硫醇对 PDA 薄膜进行功能化处理,形成疏水性液体锚固层。最后,在使用前立即在表面涂上全氟萘烷。这些仿生物表面功能化步骤得到了几种辅助表面分析技术的证实。每个表面的润湿性都通过水接触角测量进行了探测,而层的化学成分则通过 X 射线光电子能谱进行了测定。最后,通过和频发生光谱法确定了 PDA SLIPS 层中特定化学基团的有序性。然后,通过跟踪 FXII 激活情况、纤维蛋白生成时间、血块形态以及血小板对表面的粘附情况,对我们基于 PDA 的新型 SLIPS 涂层的血液相容性进行了评估。这项血液相容性研究表明,PDA SLIPS 涂层可减缓或防止凝血,但在 PDA SLIPS 样品上观察到的 FXII 激活以及附着和激活血小板的存在意味着,这种 SLIPS 涂层配方并非完全疏水性。
{"title":"A biomimetic approach towards a universal slippery liquid infused surface coating.","authors":"Ryan A Faase, Madeleine H Hummel, AnneMarie V Hasbrook, Andrew P Carpenter, Joe E Baio","doi":"10.3762/bjnano.15.111","DOIUrl":"https://doi.org/10.3762/bjnano.15.111","url":null,"abstract":"<p><p>One biomimetic approach to surface passivation involves a series of surface coatings based on the slick surfaces of carnivorous pitcher plants (Nepenthes), termed slippery liquid-infused porous surfaces (SLIPS). This study introduces a simplified method to produce SLIPS using a polydopamine (PDA) anchor layer, inspired by mussel adhesion. SLIPS layers were formed on cyclic olefin copolymer, silicon, and stainless steel substrates, by first growing a PDA film on each substrate. This was followed by a hydrophobic liquid anchor layer created by functionalizing the PDA film with a fluorinated thiol. Finally, perfluorodecalin was applied to the surface immediately prior to use. These biomimetic surface functionalization steps were confirmed by several complimentary surface analysis techniques. The wettability of each surface was probed with water contact angle measurements, while the chemical composition of the layer was determined by X-ray photoelectron spectroscopy. Finally, ordering of specific chemical groups within our PDA SLIPS layer was determined via sum frequency generation spectroscopy. The hemocompatibility of our new PDA-based SLIPS coating was then evaluated by tracking FXII activation, fibrin generation time, clot morphology, and platelet adhesion to the surface. This hemocompatibility work suggests that PDA SLIPS coatings slow or prevent clotting, but the observation of both FXII activation and the presence of adherent and activated platelets at the PDA SLIPS samples imply that this formulation of a SLIPS coating is not completely omniphobic.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1376-1389"},"PeriodicalIF":2.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication. 从大黄中绿色合成碳点结构并制造肖特基二极管。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.110
Muhammed Taha Durmus, Ebru Bozkurt

In this study, we aimed to synthesize new carbon dot structures (CDs) in a single step by using the plant Rheum Ribes for the first time and to contribute to the studies in the field of diode fabrication by using the new CDs. The CDs were obtained by hydrothermal synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and steady-state fluorescence measurements. In the second part of the study, CDs were dripped onto silicon substrates, and a CDs thin film was formed by evaporation. A diode structure was obtained by evaporating gold with the shadow mask technique on the CDs film, and the current-voltage characteristics of this diode were examined. The synthesized CDs are spherical with an average size of 5.5 nm, have a negative surface charge and contain 73.3 atom % C, 24.0 atom % O, and 2.7 atom % N. The CDs exhibit fluorescence at approximately 394 nm. The layer thickness and bandgap energy of the prepared CDs film were calculated as 566 nm and 5.25 eV, respectively. The ideality factor and the measured barrier height (Φb) of the CDs-based Schottky diode were calculated as 9.1 and 0.364 eV, respectively. The CDs were used as semiconductor material in a Schottky diode, and the diode exhibited rectification behavior. The results obtained from this study showed that CDs can be applied in the field of electronics, apart from sensor studies, which are common application areas.

在这项研究中,我们旨在首次利用大黄这种植物一步合成新的碳点结构(CD),并利用新的 CD 为二极管制造领域的研究做出贡献。这种 CD 是通过文献中常用的水热合成法获得的。TEM 和 zeta 电位测量用于确定 CD 的形态和尺寸,XRD、XPS、傅立叶变换红外光谱和微拉曼光谱用于结构表征。通过吸收和稳态荧光测量对光盘进行了光学表征。研究的第二部分是将 CD 滴在硅基底上,通过蒸发形成 CD 薄膜。利用阴影掩膜技术在 CD 薄膜上蒸发金,得到了一个二极管结构,并研究了该二极管的电流-电压特性。合成的光盘呈球形,平均尺寸为 5.5 纳米,表面带负电荷,含有 73.3 原子%的 C、24.0 原子%的 O 和 2.7 原子%的 N。经计算,制备的 CD 薄膜的层厚度和带隙能分别为 566 纳米和 5.25 eV。计算得出基于 CD 的肖特基二极管的理想因子和测量势垒高度 (Φb)分别为 9.1 和 0.364 eV。在肖特基二极管中使用 CD 作为半导体材料,二极管表现出整流行为。这项研究的结果表明,除了传感器研究等常见应用领域外,CD 还可应用于电子学领域。
{"title":"Green synthesis of carbon dot structures from <i>Rheum Ribes</i> and Schottky diode fabrication.","authors":"Muhammed Taha Durmus, Ebru Bozkurt","doi":"10.3762/bjnano.15.110","DOIUrl":"https://doi.org/10.3762/bjnano.15.110","url":null,"abstract":"<p><p>In this study, we aimed to synthesize new carbon dot structures (CDs) in a single step by using the plant <i>Rheum Ribes</i> for the first time and to contribute to the studies in the field of diode fabrication by using the new CDs. The CDs were obtained by hydrothermal synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and steady-state fluorescence measurements. In the second part of the study, CDs were dripped onto silicon substrates, and a CDs thin film was formed by evaporation. A diode structure was obtained by evaporating gold with the shadow mask technique on the CDs film, and the current-voltage characteristics of this diode were examined. The synthesized CDs are spherical with an average size of 5.5 nm, have a negative surface charge and contain 73.3 atom % C, 24.0 atom % O, and 2.7 atom % N. The CDs exhibit fluorescence at approximately 394 nm. The layer thickness and bandgap energy of the prepared CDs film were calculated as 566 nm and 5.25 eV, respectively. The ideality factor and the measured barrier height (Φ<sub>b</sub>) of the CDs-based Schottky diode were calculated as 9.1 and 0.364 eV, respectively. The CDs were used as semiconductor material in a Schottky diode, and the diode exhibited rectification behavior. The results obtained from this study showed that CDs can be applied in the field of electronics, apart from sensor studies, which are common application areas.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1369-1375"},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beilstein Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1