首页 > 最新文献

Beilstein Journal of Nanotechnology最新文献

英文 中文
Exfoliation of titanium nitride using a non-thermal plasma process. 利用非热等离子体工艺剥离氮化钛。
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.53
Priscila Jussiane Zambiazi, Dolores Ribeiro Ricci Lazar, Larissa Otubo, Rodrigo Fernando Brambilla de Souza, Almir Oliveira Neto, Cecilia Chaves Guedes-Silva

In this study, we present a novel approach for the exfoliation of titanium nitride (TiN) powders utilizing a rapid, facile, and environmentally friendly non-thermal plasma method. This method involves the use of an electric arc and nitrogen as the ambient gas at room temperature to generate ionized particles. These ionized species interact with the ceramic crystal of TiN, resulting in a pronounced structural expansion. The exfoliated TiN products were comprehensively characterized using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Remarkably, the cubic crystal structure of TiN was effectively retained, while the (200) crystal plane d-spacing increased from 2.08 to 3.09 Å, accompanied by a reduction in crystallite size and alterations in Raman vibrational modes. Collectively, these findings provide compelling evidence for the successful exfoliation of TiN structures using our innovative non-thermal plasma method, opening up exciting possibilities for advanced material applications.

在本研究中,我们提出了一种利用快速、简便、环保的非热等离子体方法剥离氮化钛(TiN)粉末的新方法。这种方法使用电弧和氮气作为环境气体,在室温下产生电离粒子。这些电离粒子与钛镍陶瓷晶体相互作用,产生明显的结构膨胀。利用透射电子显微镜、X 射线衍射和拉曼光谱对剥离的 TiN 产品进行了全面表征。值得注意的是,TiN 的立方晶体结构得到了有效保留,而 (200) 晶面 d 间距从 2.08 Å 增加到 3.09 Å,同时晶体尺寸减小,拉曼振动模式也发生了变化。总之,这些发现为利用我们创新的非热等离子体方法成功剥离 TiN 结构提供了令人信服的证据,为先进材料的应用开辟了令人兴奋的可能性。
{"title":"Exfoliation of titanium nitride using a non-thermal plasma process.","authors":"Priscila Jussiane Zambiazi, Dolores Ribeiro Ricci Lazar, Larissa Otubo, Rodrigo Fernando Brambilla de Souza, Almir Oliveira Neto, Cecilia Chaves Guedes-Silva","doi":"10.3762/bjnano.15.53","DOIUrl":"10.3762/bjnano.15.53","url":null,"abstract":"<p><p>In this study, we present a novel approach for the exfoliation of titanium nitride (TiN) powders utilizing a rapid, facile, and environmentally friendly non-thermal plasma method. This method involves the use of an electric arc and nitrogen as the ambient gas at room temperature to generate ionized particles. These ionized species interact with the ceramic crystal of TiN, resulting in a pronounced structural expansion. The exfoliated TiN products were comprehensively characterized using transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Remarkably, the cubic crystal structure of TiN was effectively retained, while the (200) crystal plane d-spacing increased from 2.08 to 3.09 Å, accompanied by a reduction in crystallite size and alterations in Raman vibrational modes. Collectively, these findings provide compelling evidence for the successful exfoliation of TiN structures using our innovative non-thermal plasma method, opening up exciting possibilities for advanced material applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect Medauroidea extradentata (Phasmatodea). 粘虫Medauroidea extradentata(Phasmatodea)不同光滑附着垫的超微结构和粘性分泌途径的比较分析。
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.52
Julian Thomas, Stanislav N Gorb, Thies H Büscher

The mechanism by which insects achieve attachment and locomotion across diverse substrates has long intrigued scientists, prompting extensive research on the functional morphology of attachment pads. In stick insects, attachment and locomotion are facilitated by two distinct types of smooth cuticular attachment pads: the primary adhesion force-generating arolium and the friction force-generating euplantulae. They are both supported by an adhesive secretion delivered into the interspace between the attachment pads and the substrate. In this study, we analysed and compared internal morphology, material composition and ultrastructure, as well as the transportation pathways in both adhesive organs in the stick insect Medauroidea extradentata using scanning electron microscopy, micro-computed tomography, light microscopy, and confocal laser scanning microscopy. Our observations revealed structural differences between both attachment pads, reflecting their distinct functionality. Furthermore, our results delineate a potential pathway for adhesive secretions, originating from exocrine epidermal cells and traversing various layers before reaching the surface. Within the attachment pad, the fluid may influence the viscoelastic properties of the pad and control the attachment/detachment process. Understanding the material composition of attachment pads and the distribution process of the adhesive secretion can potentially aid in the development of more effective artificial attachment systems.

长期以来,昆虫在不同基质上实现附着和运动的机制一直令科学家们感到好奇,这促使他们对附着垫的功能形态进行了广泛的研究。在粘虫中,两种不同类型的光滑角质层附着垫有助于附着和运动:产生主要附着力的rolium和产生摩擦力的euplantulae。这两种附着垫都由附着垫和基质之间的粘附分泌物支撑。在这项研究中,我们利用扫描电子显微镜、微型计算机断层扫描、光学显微镜和激光共聚焦扫描显微镜,分析和比较了粘虫Medauroidea extradentata的两个粘附器官的内部形态、材料组成和超微结构以及运输途径。我们的观察结果表明,这两种附着垫在结构上存在差异,反映了它们不同的功能。此外,我们的研究结果还为粘附性分泌物勾勒出了一条潜在的路径,这些分泌物来自表皮外分泌细胞,在到达表面之前会穿过不同的层。在附着垫内部,液体可能会影响附着垫的粘弹性,并控制附着/脱离过程。了解附着垫的材料组成和粘合剂分泌物的分布过程,可能有助于开发更有效的人工附着系统。
{"title":"Comparative analysis of the ultrastructure and adhesive secretion pathways of different smooth attachment pads of the stick insect <i>Medauroidea extradentata</i> (Phasmatodea).","authors":"Julian Thomas, Stanislav N Gorb, Thies H Büscher","doi":"10.3762/bjnano.15.52","DOIUrl":"10.3762/bjnano.15.52","url":null,"abstract":"<p><p>The mechanism by which insects achieve attachment and locomotion across diverse substrates has long intrigued scientists, prompting extensive research on the functional morphology of attachment pads. In stick insects, attachment and locomotion are facilitated by two distinct types of smooth cuticular attachment pads: the primary adhesion force-generating arolium and the friction force-generating euplantulae. They are both supported by an adhesive secretion delivered into the interspace between the attachment pads and the substrate. In this study, we analysed and compared internal morphology, material composition and ultrastructure, as well as the transportation pathways in both adhesive organs in the stick insect <i>Medauroidea extradentata</i> using scanning electron microscopy, micro-computed tomography, light microscopy, and confocal laser scanning microscopy. Our observations revealed structural differences between both attachment pads, reflecting their distinct functionality. Furthermore, our results delineate a potential pathway for adhesive secretions, originating from exocrine epidermal cells and traversing various layers before reaching the surface. Within the attachment pad, the fluid may influence the viscoelastic properties of the pad and control the attachment/detachment process. Understanding the material composition of attachment pads and the distribution process of the adhesive secretion can potentially aid in the development of more effective artificial attachment systems.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode 以表面敏感模式对聚丙烯基底上的 PECVD 氧化硅薄膜进行原子力显微镜-红外光谱分析
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-24 DOI: 10.3762/bjnano.15.51
Hendrik Müller, Hartmut Stadler, T. de los Arcos, A. Keller, Guido Grundmeier
Thin silicon oxide films deposited on a polypropylene substrate by plasma-enhanced chemical vapor deposition were investigated using atomic force microscopy-based infrared (AFM-IR) nanospectroscopy in contact and surface-sensitive mode. The focus of this work is the comparison of the different measurement methods (i.e., contact mode and surface-sensitive mode) with respect to the chemical surface sensitivity. The use of the surface-sensitive mode in AFM-IR shows an enormous improvement for the analysis of thin films on the IR-active substrate. As a result, in this mode, the signal of the substrate material could be significantly reduced. Even layers that are so thin that they could hardly be measured in the contact mode can be analyzed with the surface-sensitive mode.
使用基于原子力显微镜的红外(AFM-IR)纳米光谱技术,以接触模式和表面敏感模式对通过等离子体增强化学气相沉积沉积在聚丙烯基底上的氧化硅薄膜进行了研究。这项工作的重点是比较不同测量方法(即接触模式和表面敏感模式)对化学表面的灵敏度。在 AFM-IR 中使用表面敏感模式对分析红外活性基底上的薄膜有极大的帮助。因此,在这种模式下,基底材料的信号可以显著减少。即使是在接触模式下难以测量的薄层,也可以通过表面敏感模式进行分析。
{"title":"AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode","authors":"Hendrik Müller, Hartmut Stadler, T. de los Arcos, A. Keller, Guido Grundmeier","doi":"10.3762/bjnano.15.51","DOIUrl":"https://doi.org/10.3762/bjnano.15.51","url":null,"abstract":"Thin silicon oxide films deposited on a polypropylene substrate by plasma-enhanced chemical vapor deposition were investigated using atomic force microscopy-based infrared (AFM-IR) nanospectroscopy in contact and surface-sensitive mode. The focus of this work is the comparison of the different measurement methods (i.e., contact mode and surface-sensitive mode) with respect to the chemical surface sensitivity. The use of the surface-sensitive mode in AFM-IR shows an enormous improvement for the analysis of thin films on the IR-active substrate. As a result, in this mode, the signal of the substrate material could be significantly reduced. Even layers that are so thin that they could hardly be measured in the contact mode can be analyzed with the surface-sensitive mode.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements 通过热噪声测量在低温下校准 qPlus 传感器的刚度
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-23 DOI: 10.3762/bjnano.15.50
L. Nony, Sylvain Clair, Daniel Uehli, Aitziber Herrero, J. Themlin, Andrea Campos, F. Para, Alessandro Pioda, Christian Loppacher
Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip–sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.
非接触式原子力显微镜(nc-AFM)为原子和/或亚分子分辨率的表面形貌成像提供了一个独特的实验框架。该技术还允许执行频移光谱,以定量评估单个原子或分子上的针尖-样品相互作用力和电势。在进行频移-力转换时,需要探针的刚度 k。然而,这个量通常是已知的,精确度很低。因此,如果要进行精确的力测量,就必须进行精确的刚度校准。在 nc-AFM 中,探头可以是硅悬臂、石英音叉 (QTF) 或长度延伸谐振器 (LER)。在超高真空(UHV)和低温条件下使用时,该技术大多采用基于所谓 qPlus 设计的 QTF。它们都有一个共同的 QTF,其特点是在其中一个棱的自由端粘有一个金属尖端。在这项研究中,我们报告了在超高真空和 9.8 K 温度下,通过热噪声测量对一种特殊类型的 qPlus 传感器进行刚度校准的情况。这种高 K 传感器的刚度校准也具有高品质因数 (Q) 的特点,需要掌握采集参数和数据后处理。我们的方法依赖于数值模拟和实验结果。通过对 qPlus 波动的热噪声功率谱密度进行全面分析,我们估算出第一挠曲特征模式的刚度为 2000 N/m,最大不确定性为 10%,而无尖端传感器的静态刚度预计为 3300 N/m。前一个值不能被视为任何 qPlus 的通用值,因为我们的研究强调了尖端对估计刚度的影响,并指出需要对这些探头进行单独校准。尽管该框架侧重于一种特定的传感器,但它也可适用于在类似条件下使用的任何高k、高Q nc-AFM 探头,例如硅悬臂和LER。
{"title":"Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements","authors":"L. Nony, Sylvain Clair, Daniel Uehli, Aitziber Herrero, J. Themlin, Andrea Campos, F. Para, Alessandro Pioda, Christian Loppacher","doi":"10.3762/bjnano.15.50","DOIUrl":"https://doi.org/10.3762/bjnano.15.50","url":null,"abstract":"Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip–sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy 射频增强响应性纳米花的药物释放,用于肝癌治疗
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-22 DOI: 10.3762/bjnano.15.49
Yanyan Wen, Ningning Song, Yueyou Peng, Weiwei Wu, Qixiong Lin, Minjie Cui, Rongrong Li, Qiufeng Yu, Sixue Wu, Yongkang Liang, Wei Tian, Yanfeng Meng
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), – CUR layer, – and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy was used to characterize the CUR-Fe@MnO2 NFs, which appeared flower-like with a size of 96.27 nm. The in vitro experimental data showed that RF enhanced the degradation of CUR-Fe@MnO2 NFs to release Mn2+ and CUR. The cytotoxicity test results indicated that after RF heating, the CUR-Fe@MnO2 NFs significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T1/T2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs.
肝细胞癌(HCC)是全球第六大常见恶性肿瘤和第三大癌症死因。大多数患者确诊时已是晚期,全身化疗是晚期 HCC 的首选治疗方式。姜黄素(CUR)是从植物中提取的低毒多酚抗肿瘤药物。然而,其生物利用度低和溶解性差限制了其功能的发挥。在这项研究中,包含超顺磁性氧化铁纳米团簇(Fe3O4 NCs)、CUR 层和 MnO2(CUR-Fe@MnO2 NFs)的射频(RF)增强型响应纳米花(NFs)被证实具有热疗效果。透射电子显微镜对 CUR-Fe@MnO2 NFs 进行了表征,CUR-Fe@MnO2 NFs 呈花朵状,大小为 96.27 nm。体外实验数据显示,射频增强了 CUR-Fe@MnO2 NFs 的降解,释放出 Mn2+ 和 CUR。细胞毒性测试结果表明,射频加热后,CUR-Fe@MnO2 NFs 能显著抑制 HCC 细胞的增殖。此外,由于释放了 Mn2+ 和 Fe3O4 NCs,CUR-Fe@MnO2 NFs 成为分子磁共振成像中有效的 T1/T2 造影剂。
{"title":"Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy","authors":"Yanyan Wen, Ningning Song, Yueyou Peng, Weiwei Wu, Qixiong Lin, Minjie Cui, Rongrong Li, Qiufeng Yu, Sixue Wu, Yongkang Liang, Wei Tian, Yanfeng Meng","doi":"10.3762/bjnano.15.49","DOIUrl":"https://doi.org/10.3762/bjnano.15.49","url":null,"abstract":"Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), – CUR layer, – and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy was used to characterize the CUR-Fe@MnO2 NFs, which appeared flower-like with a size of 96.27 nm. The in vitro experimental data showed that RF enhanced the degradation of CUR-Fe@MnO2 NFs to release Mn2+ and CUR. The cytotoxicity test results indicated that after RF heating, the CUR-Fe@MnO2 NFs significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T1/T2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface 拮抗剂 Ag(35 1 1)表面喹吖啶酮链的定向生长
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-21 DOI: 10.3762/bjnano.15.48
Niklas Humberg, Lukas Grönwoldt, Moritz Sokolowski
The formation of self-assembled domains and chains of monomolecular width of quinacridone (QA) on the vicinal Ag(35 1 1) surface was investigated by scanning tunneling microscopy and low-energy electron diffraction. The focus was on the influence of the steps on the QA structures and their preferential azimuthal orientations with the aim of achieving a selective orientation. After deposition at a sample temperature of 300 K, QA forms the same kind of molecular chains as on the nominally flat Ag(100) surface because of strong intermolecular hydrogen bonds, which we reported in a previous publication [Humberg, N.; Bretel, R.; Eslam, A.; Le Moal, E.; Sokolowski, M. J. Phys. Chem. C 2020, 124, 24861–24873]. The vicinal surface leads to one additional chain orientation, which is parallel to the Ag step edges. However, most chains nucleate on the Ag terraces between steps with four distinct azimuthal orientations that are identical to those on Ag(100), and which are determined by the interactions with the (100) surface. At 300 K, the chains grow across the Ag steps, which do not break the azimuthal chain orientations. In contrast, during the deposition at sample temperatures of 400 and 500 K, the nucleation of the chains takes place at the Ag step edges. Hence, these have a strong influence on the azimuthal orientation of the molecules, resulting in a preferential growth of the chains in two of the four azimuthal orientations. We explain this by the adaptation of favorable adsorption sites, which involve the replacement of Ag atoms by QA molecules with specific azimuthal orientations at the step edges.
通过扫描隧道显微镜和低能电子衍射,研究了喹吖啶酮(QA)单分子宽度的自组装域和链在临近 Ag(35 1 1)表面的形成。研究的重点是台阶对 QA 结构及其优先方位角取向的影响,目的是实现选择性取向。在样品温度为 300 K 的条件下沉积后,由于分子间氢键的作用,QA 形成了与名义上平坦的 Ag(100) 表面上相同的分子链,这一点我们在之前的出版物中已有报道[Humberg, N.; Bretel, R.; Eslam, A.; Le Moal, E.; Sokolowski, M. J. Phys. Chem.C 2020, 124, 24861-24873].临近表面会导致一个额外的链取向,即平行于银阶梯边缘。然而,大多数链核在台阶之间的银阶上,具有四个不同的方位角取向,这些取向与 Ag(100) 上的取向相同,由与 (100) 表面的相互作用决定。在 300 K 温度下,链条穿过银台阶生长,这不会破坏链条的方位取向。相反,在样品温度为 400 和 500 K 的沉积过程中,链的成核发生在银阶边缘。因此,这些边缘对分子的方位取向有很大的影响,导致链在四个方位取向中的两个取向上优先生长。我们用有利吸附位点的适应性来解释这一现象,这涉及 QA 分子在阶梯边缘以特定的方位角取向取代 Ag 原子。
{"title":"Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface","authors":"Niklas Humberg, Lukas Grönwoldt, Moritz Sokolowski","doi":"10.3762/bjnano.15.48","DOIUrl":"https://doi.org/10.3762/bjnano.15.48","url":null,"abstract":"The formation of self-assembled domains and chains of monomolecular width of quinacridone (QA) on the vicinal Ag(35 1 1) surface was investigated by scanning tunneling microscopy and low-energy electron diffraction. The focus was on the influence of the steps on the QA structures and their preferential azimuthal orientations with the aim of achieving a selective orientation. After deposition at a sample temperature of 300 K, QA forms the same kind of molecular chains as on the nominally flat Ag(100) surface because of strong intermolecular hydrogen bonds, which we reported in a previous publication [Humberg, N.; Bretel, R.; Eslam, A.; Le Moal, E.; Sokolowski, M. J. Phys. Chem. C 2020, 124, 24861–24873]. The vicinal surface leads to one additional chain orientation, which is parallel to the Ag step edges. However, most chains nucleate on the Ag terraces between steps with four distinct azimuthal orientations that are identical to those on Ag(100), and which are determined by the interactions with the (100) surface. At 300 K, the chains grow across the Ag steps, which do not break the azimuthal chain orientations. In contrast, during the deposition at sample temperatures of 400 and 500 K, the nucleation of the chains takes place at the Ag step edges. Hence, these have a strong influence on the azimuthal orientation of the molecules, resulting in a preferential growth of the chains in two of the four azimuthal orientations. We explain this by the adaptation of favorable adsorption sites, which involve the replacement of Ag atoms by QA molecules with specific azimuthal orientations at the step edges.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141115723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems 基于人工智能的纳米颗粒神经退行性疾病给药系统的添加式发现
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-15 DOI: 10.3762/bjnano.15.47
Shan He, Julen Segura Abarrategi, Harbil Bediaga, S. Arrasate, Humberto González-Díaz
Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood–brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.
神经退行性疾病的特征是神经细胞缓慢死亡。由于药物溶解性差、生物利用度低以及无法有效穿过血脑屏障,传统的药物治疗策略往往会失败。因此,开发新的神经退行性疾病药物(NDDs)刻不容缓。纳米粒子(NP)系统在将 NDDs 运送到中枢神经系统方面越来越受到关注。然而,发现有效的纳米颗粒神经元疾病给药系统(N2D3Ss)具有挑战性,因为纳米颗粒和 NDD 化合物的组合数量庞大,而且涉及各种检测方法。人工智能/机器学习(AI/ML)算法可以预测最有前景的 NDD 和 NP 候选化合物,从而加速这一过程。然而,与化验的 NDD 相比,有关 N2D3S 活性的报告数据相对有限,这使得 AI/ML 分析具有挑战性。在这项工作中,我们采用了 IFPTML 技术来应对这一挑战,该技术结合了信息融合(IF)、扰动理论(PT)和机器学习(ML)。最初,我们将 ChEMBL 中的 4403 项 NDD 检测和期刊论文中的 260 项 NP 细胞毒性检测融合到一个统一的数据集中。通过重新取样过程,生成了三个新的工作数据集,每个数据集包含 500,000 个病例。我们利用线性判别分析(LDA)以及人工神经网络(ANN)算法,如多层感知器(MLP)和深度学习网络(DLN),构建了线性和非线性 IFPTML 模型。IFPTML-LDA 模型的灵敏度(Sn)和特异度(Sp)值分别为 70% 至 73%(大于 375,000 个训练病例)和 70% 至 80%(大于 125,000 个验证病例)。相比之下,IFPTML-MLP 和 IFPTML-DLN 在训练和验证序列中的 Sn 值和 Sp 值均在 85% 到 86% 之间。此外,IFPTML-ANN 模型的接收器工作曲线下面积(AUROC)约为 0.93 至 0.95。这些结果表明,IFPTML 模型可以作为设计神经科学药物输送系统的重要工具。
{"title":"On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems","authors":"Shan He, Julen Segura Abarrategi, Harbil Bediaga, S. Arrasate, Humberto González-Díaz","doi":"10.3762/bjnano.15.47","DOIUrl":"https://doi.org/10.3762/bjnano.15.47","url":null,"abstract":"Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood–brain barrier. Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP) systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparticle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work, the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was employed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network (ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73% (>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the IFPTML-MLP and IFPTML-DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent 用于阿仑膦酸钠靶向递送的胆固醇纳米archaeosomes,作为一种抗内皮功能障碍药物
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-13 DOI: 10.3762/bjnano.15.46
H. Jerez, Yamila Roxana Simioni, Kajal Ghosal, M. Morilla, E. Romero
Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, −40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 μg/mL TL + 2.5 μg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.
阿仑膦酸钠(ALN)是一种水溶性很强、渗透性很差的分子,可用作抗骨质吸收剂,并具有抗血管钙化能力。将阿仑膦酸钠装入靶向纳米颗粒后,其抗炎活性可能会被放大到骨外和非钙化靶细胞,如严重受刺激的血管内皮细胞。本文测定了人内皮静脉细胞(HUVECs)在内吞含 ALN 的纳米archaeosomes(nanoARC-Chol(ALN),由 Halorubrum tebenquichense 的极性脂质制成:胆固醇 7:3 w/w,166 ± 5 nm,0.16 ± 0.02 PDI,-40.8 ± 5.4 mV 电位,84.7 ± 21 µg/mg ALN/总脂类,TL)。纳米ARC-Chol(ALN)对严重发炎的 HUVEC 的影响得到了进一步评估。为此,HUVEC 生长在一个多孔的屏障上,屏障顶部的基底区种有巨噬细胞或人类泡沫细胞。通过在顶端区或顶端区和基底区添加脂多糖(LPS),模拟了一种较轻和一种较重的炎症环境。据观察,纳米ARC-Chol(ALN)的内吞作用可部分减少 HUVECs 的内皮-间质转化。此外,虽然 10 mg/mL 地塞米松、7.6 mM 游离 ALN 和 ALN 负载脂质体均无效,但 50 μg/mL TL + 2.5 μg/mL ALN(即 nanoARC-Chol(ALN))可使轻度炎症模型中的 IL-6 和 IL-8 水平分别降低 75% 和 65%,使重度炎症模型中的 IL-6 和 IL-8 水平分别降低 60% 和 40%。这是首次报道表明,即使在强烈刺激的条件下,HUVECs 内吞纳米ARC-Chol(ALN)也能放大 ALN 的抗炎活性,不仅超过了游离 ALN 的抗炎活性,也超过了地塞米松的抗炎活性。
{"title":"Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent","authors":"H. Jerez, Yamila Roxana Simioni, Kajal Ghosal, M. Morilla, E. Romero","doi":"10.3762/bjnano.15.46","DOIUrl":"https://doi.org/10.3762/bjnano.15.46","url":null,"abstract":"Sodium alendronate (ALN) is a very hydrosoluble and poorly permeable molecule used as an antiresorptive agent and with vascular anticalcifying capacity. Loaded into targeted nanovesicles, its anti-inflammatory activity may be amplified towards extra-osseous and noncalcified target cells, such as severely irritated vascular endothelium. Here cytotoxicity, mitochondrial membrane potential, ATP content, and membrane fluidity of human endothelial venous cells (HUVECs) were determined after endocytosis of ALN-loaded nanoarchaeosomes (nanoARC-Chol(ALN), made of polar lipids from Halorubrum tebenquichense: cholesterol 7:3 w/w, 166 ± 5 nm, 0.16 ± 0.02 PDI, −40.8 ± 5.4 mV potential, 84.7 ± 21 µg/mg ALN/total lipids, TL). The effect of nanoARC-Chol(ALN) was further assessed on severely inflamed HUVECs. To that aim, HUVECs were grown on a porous barrier on top of a basal compartment seeded either with macrophages or human foam cells. One lighter and one more pronounced inflammatory context was modelled by adding lipopolysaccharide (LPS) to the apical or the apical and basal compartments. The endocytosis of nanoARC-Chol(ALN), was observed to partly reduce the endothelial-mesenchymal transition of HUVECs. Besides, while 10 mg/mL dexamethasone, 7.6 mM free ALN and ALN-loaded liposomes failed, 50 μg/mL TL + 2.5 μg/mL ALN (i.e., nanoARC-Chol(ALN)) reduced the IL-6 and IL-8 levels by, respectively, 75% and 65% in the mild and by, respectively, 60% and 40% in the pronounced inflammation model. This is the first report showing that the endocytosis of nanoARC-Chol(ALN) by HUVECs magnifies the anti-inflammatory activity of ALN even under conditions of intense irritation, not only surpassing that of free ALN but also that of dexamethasone.","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 - effect of MA ligand and process conditions. 使用 Fe(CO)4MA 和 Fe(CO)5 进行电子诱导沉积--MA 配体和工艺条件的影响。
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-08 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.45
Hannah Boeckers, Atul Chaudhary, Petra Martinović, Amy V Walker, Lisa McElwee-White, Petra Swiderek

The electron-induced decomposition of Fe(CO)4MA (MA = methyl acrylate), which is a potential new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)4MA and Fe(CO)5 revealed the effect of the modified ligand architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the deposits obtained from Fe(CO)4MA and Fe(CO)5 were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)4MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)4MA and Fe(CO)5 on an Fe seed layer prepared by EBID was compared. While Fe(CO)5 sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)4MA. The heteroleptic precursor Fe(CO)4MA, thus, offers the possibility to suppress contributions of thermal reactions, which can compromise control over the deposit shape and size in FEBID processes.

在超高真空条件下,通过表面科学实验研究了Fe(CO)4MA(MA=丙烯酸甲酯)的电子诱导分解过程,Fe(CO)4MA是一种潜在的聚焦电子束诱导沉积(FEBID)新前驱体。欧杰电子能谱用于监测沉积物的形成。通过对 Fe(CO)4MA 和 Fe(CO)5 进行比较,发现在模拟 FEBID 和低温 FEBID 过程的电子辐照实验中,改性配体结构对沉积形成的影响。电子激发解吸和辐照后热解吸光谱法用于深入了解电子辐照时配体的去向。一个重要发现是,Fe(CO)4MA 和 Fe(CO)5 的沉积物惊人地相似,Fe(CO)4MA 制备的沉积物中碳的相对含量大大低于 MA 配体中的碳含量。这表明电子辐照能有效地从前驱体中裂解出中性的 MA 配体。除了通过电子辐照形成沉积物外,还比较了通过 EBID 制备的铁种子层上的 Fe(CO)4MA 和 Fe(CO)5 的热分解情况。Fe(CO)5能维持沉积物的自催化生长,而Fe(CO)4MA的MA配体则阻碍了热分解。因此,Fe(CO)4MA 这种异质前驱体提供了抑制热反应的可能性,而热反应会影响对 FEBID 过程中沉积物形状和尺寸的控制。
{"title":"Electron-induced deposition using Fe(CO)<sub>4</sub>MA and Fe(CO)<sub>5</sub> - effect of MA ligand and process conditions.","authors":"Hannah Boeckers, Atul Chaudhary, Petra Martinović, Amy V Walker, Lisa McElwee-White, Petra Swiderek","doi":"10.3762/bjnano.15.45","DOIUrl":"10.3762/bjnano.15.45","url":null,"abstract":"<p><p>The electron-induced decomposition of Fe(CO)<sub>4</sub>MA (MA = methyl acrylate), which is a potential new precursor for focused electron beam-induced deposition (FEBID), was investigated by surface science experiments under UHV conditions. Auger electron spectroscopy was used to monitor deposit formation. The comparison between Fe(CO)<sub>4</sub>MA and Fe(CO)<sub>5</sub> revealed the effect of the modified ligand architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the deposits obtained from Fe(CO)<sub>4</sub>MA and Fe(CO)<sub>5</sub> were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)<sub>4</sub>MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)<sub>4</sub>MA and Fe(CO)<sub>5</sub> on an Fe seed layer prepared by EBID was compared. While Fe(CO)<sub>5</sub> sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)<sub>4</sub>MA. The heteroleptic precursor Fe(CO)<sub>4</sub>MA, thus, offers the possibility to suppress contributions of thermal reactions, which can compromise control over the deposit shape and size in FEBID processes.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods. 在牺牲 ZnO 微四面体的三维网络上通过物理气相传输制备 Aero-ZnS。
IF 3.1 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.44
Veaceslav Ursaki, Tudor Braniste, Victor Zalamai, Emil Rusu, Vladimir Ciobanu, Vadim Morari, Daniel Podgornii, Pier Carlo Ricci, Rainer Adelung, Ion Tiginyanu

Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn2S3 crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.

航空材料是一类在各种应用中越来越有吸引力的材料。其中,气相锌盐是通过在由微四面体网络组成的牺牲性氧化锌模板上进行氢化物气相外延而制备的,并已被提出用于微流体应用。本文提出了一种具有成本效益的技术方法,以 Sn2S3 晶体和 ZnO 微网状物网络为前驱体,利用物理气相传输技术制造气态 ZnS。我们用扫描电子显微镜(SEM)研究了所制材料的形态,并分别用 X 射线衍射(XRD)分析和光致发光(PL)光谱评估了其结晶和光学质量。我们展示了通过工艺流程的长短来控制所制备气凝胶的成分和结晶相含量的可能性。从光致发光分析中推导出了气凝胶材料 ZnS 骨架中的深能级和电子跃迁方案,这表明所制备的气凝胶是光催化和传感器应用的潜在候选材料。
{"title":"Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods.","authors":"Veaceslav Ursaki, Tudor Braniste, Victor Zalamai, Emil Rusu, Vladimir Ciobanu, Vadim Morari, Daniel Podgornii, Pier Carlo Ricci, Rainer Adelung, Ion Tiginyanu","doi":"10.3762/bjnano.15.44","DOIUrl":"10.3762/bjnano.15.44","url":null,"abstract":"<p><p>Aeromaterials represent a class of increasingly attractive materials for various applications. Among them, aero-ZnS has been produced by hydride vapor phase epitaxy on sacrificial ZnO templates consisting of networks of microtetrapods and has been proposed for microfluidic applications. In this paper, a cost-effective technological approach is proposed for the fabrication of aero-ZnS by using physical vapor transport with Sn<sub>2</sub>S<sub>3</sub> crystals and networks of ZnO microtetrapods as precursors. The morphology of the produced material is investigated by scanning electron microscopy (SEM), while its crystalline and optical qualities are assessed by X-ray diffraction (XRD) analysis and photoluminescence (PL) spectroscopy, respectively. We demonstrate possibilities for controlling the composition and the crystallographic phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and sensor applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beilstein Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1