首页 > 最新文献

Beilstein Journal of Nanotechnology最新文献

英文 中文
Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites. 通过嵌入氨基葡萄糖/精氨酸纳米复合材料的原位合成金纳米粒子增强催化还原。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.99
Chi-Hien Dang, Le-Kim-Thuy Nguyen, Minh-Trong Tran, Van-Dung Le, Nguyen Minh Ty, T Ngoc Han Pham, Hieu Vu-Quang, Tran Thi Kim Chi, Tran Thi Huong Giang, Nguyen Thi Thanh Tu, Thanh-Danh Nguyen

This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH4 as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.

本研究介绍了一种在水环境中通过离子凝胶化机制在葡糖胺/精氨酸(GluN/Alg)纳米复合材料中合成金纳米粒子(AuNPs)的高效而简单的方法。利用 UV-vis、EDX、FTIR、SEM、TEM、SAED 和 XRD 分析对所得到的纳米复合材料 AuNPs@GluN/Alg 进行了全面的表征。球形 AuNPs 大小均匀,平均直径为 10.0 nm。纳米复合材料以 NaBH4 为还原剂,促进了有机染料(包括 2-硝基苯酚、4-硝基苯酚和甲基橙)的可循环还原。动力学研究进一步凸显了这种纳米复合材料作为多功能催化剂的潜力,在各个工业领域都有广阔的应用前景。
{"title":"Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites.","authors":"Chi-Hien Dang, Le-Kim-Thuy Nguyen, Minh-Trong Tran, Van-Dung Le, Nguyen Minh Ty, T Ngoc Han Pham, Hieu Vu-Quang, Tran Thi Kim Chi, Tran Thi Huong Giang, Nguyen Thi Thanh Tu, Thanh-Danh Nguyen","doi":"10.3762/bjnano.15.99","DOIUrl":"https://doi.org/10.3762/bjnano.15.99","url":null,"abstract":"<p><p>This study introduces a highly efficient and straightforward method for synthesizing gold nanoparticles (AuNPs) within a glucosamine/alginate (GluN/Alg) nanocomposite via an ionotropic gelation mechanism in aqueous environment. The resulting nanocomposite, AuNPs@GluN/Alg, underwent thorough characterization using UV-vis, EDX, FTIR, SEM, TEM, SAED, and XRD analyses. The spherical AuNPs exhibited uniform size with an average diameter of 10.0 nm. The nanocomposites facilitated the recyclable reduction of organic dyes, including 2-nitrophenol, 4-nitrophenol, and methyl orange, employing NaBH<sub>4</sub> as the reducing agent. Kinetic studies further underscored the potential of this nanocomposite as a versatile catalyst with promising applications across various industrial sectors.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1227-1237"},"PeriodicalIF":2.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. 利用超小型纳米粒子实现癌症纳米药物的主动靶向。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-30 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.98
André F Lima, Giselle Z Justo, Alioscka A Sousa

Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.

超小纳米粒子(usNPs)已成为癌症纳米医学领域前景广阔的治疗工具。超微纳米粒子的大小与球状蛋白质相当,具有独特的理化特性和生理行为,不同于较大的粒子,包括不形成蛋白电晕、肾清除率高、减少网状内皮系统的识别和螯合。在癌症治疗中,usNPs 具有良好的肿瘤穿透性和瘤内扩散性。主动靶向策略结合了与特定肿瘤受体结合的配体,可进一步提高 usNP 的肿瘤选择性和治疗效果。大量临床前研究已经证明了主动靶向 usNPs 的潜力,与非靶向药物相比,主动靶向 usNPs 的肿瘤蓄积和保留能力更强。在本综述中,我们将探讨主动靶向无机 usNPs,重点介绍它们的生物特性和行为,以及在临床前和临床环境中的应用。
{"title":"Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles.","authors":"André F Lima, Giselle Z Justo, Alioscka A Sousa","doi":"10.3762/bjnano.15.98","DOIUrl":"https://doi.org/10.3762/bjnano.15.98","url":null,"abstract":"<p><p>Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1208-1226"},"PeriodicalIF":2.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents. 用纳安培电流加工低热导材料的低千伏聚焦离子束策略。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.97
Annalena Wolff, Nico Klingner, William Thompson, Yinghong Zhou, Jinying Lin, Yin Xiao

Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.

在生物样品等热传导性低的试样中,离子束诱发的热损伤越来越受到科学界的关注。这部分是由于 FIB-SEM 在生物学中的应用越来越多,以及需要分析的聚合物等复杂材料的发展。本文介绍的工作研究了离子束与样品相互作用背后的物理学原理,以及入射离子能量(由加速电压设定)对样品温度升高和聚合物等低导热材料及生物样品潜在热损伤的影响。利用傅里叶传热定律、有限元模拟和数值建模结果计算了低加速电压下不同离子束电流的离子束诱导热,并与实验结果进行了比较。结果表明,在较低的加速器电压下,纳安培范围内较高的离子束电流可用于软材料和非树脂包埋生物样品的制图或成像,同时提高铣削速度并减少热损伤。
{"title":"A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents.","authors":"Annalena Wolff, Nico Klingner, William Thompson, Yinghong Zhou, Jinying Lin, Yin Xiao","doi":"10.3762/bjnano.15.97","DOIUrl":"10.3762/bjnano.15.97","url":null,"abstract":"<p><p>Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1197-1207"},"PeriodicalIF":2.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers. 负载多柔比星的双刺激响应智能纳米聚合物的合成、表征和抗癌效果。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.96
Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı

Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.

纳米聚合物是一类重要的疏水性药物输送载体。特别是,双刺激响应智能聚合物纳米材料在药物输送和释放方面可能非常有用。我们分析了在纳米聚合物复合物中加入已知抗肿瘤药物多柔比星(DOX)的可能性。因此,我们制备出了负载多柔比星的温度和 pH 值敏感的智能纳米聚合物(DOX-SNPs)。对合成的纳米结构进行了表征,包括 zeta 电位测量、傅立叶变换红外光谱和扫描电子显微镜。研究了纳米聚合物对 DOX 的负载能力,并进行了包封和释放研究。最后,研究了 DOX 纳米聚合物复合物在不同浓度和孵育时间下对 HeLa 癌细胞系的细胞毒性。DOX 的释放取决于释放介质的温度和 pH 值,pH 值为 6.0、温度为 41 ℃ 时释放量最大。这种效果与多柔比星商用脂质体制剂的效果相似。研究结果表明,智能纳米聚合物可以有效地用于制造新型多柔比星药物。
{"title":"Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers.","authors":"Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı","doi":"10.3762/bjnano.15.96","DOIUrl":"10.3762/bjnano.15.96","url":null,"abstract":"<p><p>Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1189-1196"},"PeriodicalIF":2.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives. 用人工智能辅助模型预测用 C60 富勒烯衍生物修饰的化疗药物。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-19 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.95
Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio

Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C60 fullerene and drug-carboxyfullerene C60-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.

本研究采用定量结构-活性关系(QSAR)/定量结构-性能关系(QSPR)模型,探讨了富勒烯衍生物作为乳腺癌化疗药物纳米载体的应用。以蛋白质 CXCR7 为分子对接目标,研究了独立药物和两种药物-富勒烯复合物(即药物-原始 C60 富勒烯和药物-羧基富勒烯 C60-COOH)。研究涉及 30 多种药物,并采用皮尔逊软硬酸碱理论和常见的 QSAR/QSPR 描述因子来建立对接得分预测模型。在基于密度泛函的紧密结合 DFTB3 水平上,利用量子化学计算了能量描述符。结果表明,药物-富勒烯复合物与 CXCR7 的相互作用比孤立药物更强。确定了特定的结合位点,每个药物复合物的结合位点各不相同。利用多元线性回归和 IBM Watson 人工智能(AI)开发的预测模型,在人工智能识别的关键变量的驱动下,平均绝对百分比误差低于 12%。预测模型主要包括从数据集收集的定量描述符和计算得出的描述符。此外,还使用了一种水溶性富勒烯来比较 DFTB3 与传统密度泛函理论方法得出的结果。这些发现有望利用富勒烯基药物纳米载体提高乳腺癌化疗效果。
{"title":"AI-assisted models to predict chemotherapy drugs modified with C<sub>60</sub> fullerene derivatives.","authors":"Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio","doi":"10.3762/bjnano.15.95","DOIUrl":"https://doi.org/10.3762/bjnano.15.95","url":null,"abstract":"<p><p>Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C<sub>60</sub> fullerene and drug-carboxyfullerene C<sub>60</sub>-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1170-1188"},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices. 单层 Ge2Se2 的量子到经典模型及其在光伏设备中的应用。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-11 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.94
Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam

Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The E-k dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge2Se2. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge2Se2-based solar cell, exhibiting a high open circuit voltage of V oc = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge2Se2 for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.

自 2004 年发现石墨烯以来,二维材料的独特特性引发了人们对其在各种光子应用中用作替代材料的浓厚研究兴趣。过渡金属二掺杂化合物单层已被提议用作光伏电池的传输层,但 IV-VI 族二掺杂化合物的良好特性仍有待深入研究。本手稿报告了单层 Ge2Se2(一种 IV-VI 族二卤化物)、其光电行为及其在光伏领域的潜在应用。当作为空穴传输层使用时,这种材料能产生惊人的器件性能。我们使用 ab initio 建模进行材料预测,同时使用经典漂移扩散驱动器件模拟。混合函数计算电子和光学特性,以保持高精度。声子光谱验证了结构的稳定性。E-k 色散揭示了所研究材料的关键电子特性。计算显示单层 Ge2Se2 的直接带隙为 1.12 eV。我们利用 Kubo-Greenwood 公式和 Kramers-Kronig 关系进一步提取了临界光学参数。明显较大的吸收系数和较高的介电常数激发了单层 Ge2Se2 太阳能电池的设计灵感,该电池在室温下具有 V oc = 1.11 V 的高开路电压、87.66% 的填充因子和超过 28% 的功率转换效率。我们的研究结果主张将单层 Ge2Se2 用于各种光电设备,包括下一代太阳能电池。本文介绍的量子到微观混合方法适用于更广泛的二维和三维材料与结构,为未来光伏材料的计算设计指明了道路。
{"title":"Quantum-to-classical modeling of monolayer Ge<sub>2</sub>Se<sub>2</sub> and its application in photovoltaic devices.","authors":"Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam","doi":"10.3762/bjnano.15.94","DOIUrl":"https://doi.org/10.3762/bjnano.15.94","url":null,"abstract":"<p><p>Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge<sub>2</sub>Se<sub>2</sub> (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The <i>E</i>-<i>k</i> dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge<sub>2</sub>Se<sub>2</sub>. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge<sub>2</sub>Se<sub>2</sub>-based solar cell, exhibiting a high open circuit voltage of <i>V</i> <sub>oc</sub> = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge<sub>2</sub>Se<sub>2</sub> for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1153-1169"},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles. 引入第三代元素周期表描述符,对金属氧化物纳米颗粒的斑马鱼毒性进行纳米-qRASTR建模。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.93
Supratik Kar, Siyun Yang

Metal oxide nanoparticles (MONPs) are widely used in medicine and environmental remediation because of their unique properties. However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellular or DNA damage. In this study, a nano-quantitative structure-toxicity relationship (nano-QSTR) model was initially developed to assess zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance the quality and predictive capability of the nano-QSTR model, a nano-quantitative read across structure-toxicity relationship (nano-qRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR approach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR model, despite having one less MONP. This study highlights the effective utilization of the nano-qRASTR algorithm in situations with limited data for modeling, demonstrating superior goodness-of-fit, robustness, and predictability (R 2 = 0.81, Q 2 LOO = 0.70, Q 2 F1/R 2 PRED = 0.76) compared to simple QSTR models. Finally, the developed nano-qRASTR model was applied to predict toxicity data for an external dataset comprising 35 MONPs, addressing gaps in zebrafish toxicity assessment.

金属氧化物纳米粒子(MONPs)因其独特的性能而被广泛应用于医学和环境修复领域。然而,它们的尺寸、表面积和反应性会导致毒性,可能导致氧化应激、炎症、细胞或 DNA 损伤。在本研究中,初步建立了一个纳米定量结构-毒性关系(nano-QSTR)模型,以评估 24 种 MONPs 的斑马鱼毒性。采用了之前建立的 23 个第一代和第二代元素周期表描述符,以及从元素周期表中新提出的 5 个第三代描述符。随后,为了提高纳米 QSTR 模型的质量和预测能力,又创建了一个纳米定量跨结构毒性关系(nano-qRASTR)模型。该模型整合了纳米 QSTR 方法中的跨读描述符和建模描述符。纳米 QRASTR 模型具有三个属性,尽管少了一个 MONP,但其性能优于之前报道的简单 QSTR 模型。这项研究强调了在建模数据有限的情况下对纳米 QRASTR 算法的有效利用,与简单 QSTR 模型相比,纳米 QRASTR 算法具有更高的拟合度、稳健性和可预测性(R 2 = 0.81,Q 2 LOO = 0.70,Q 2 F1/R 2 PRED = 0.76)。最后,所开发的纳米 QRASTR 模型被用于预测由 35 种 MONPs 组成的外部数据集的毒性数据,以填补斑马鱼毒性评估方面的空白。
{"title":"Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles.","authors":"Supratik Kar, Siyun Yang","doi":"10.3762/bjnano.15.93","DOIUrl":"https://doi.org/10.3762/bjnano.15.93","url":null,"abstract":"<p><p>Metal oxide nanoparticles (MONPs) are widely used in medicine and environmental remediation because of their unique properties. However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellular or DNA damage. In this study, a nano-quantitative structure-toxicity relationship (nano-QSTR) model was initially developed to assess zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance the quality and predictive capability of the nano-QSTR model, a nano-quantitative read across structure-toxicity relationship (nano-qRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR approach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR model, despite having one less MONP. This study highlights the effective utilization of the nano-qRASTR algorithm in situations with limited data for modeling, demonstrating superior goodness-of-fit, robustness, and predictability (<i>R</i> <sup>2</sup> = 0.81, <i>Q</i> <sup>2</sup> <sub>LOO</sub> = 0.70, <i>Q</i> <sup>2</sup> <sub>F1</sub>/<i>R</i> <sup>2</sup> <sub>PRED</sub> = 0.76) compared to simple QSTR models. Finally, the developed nano-qRASTR model was applied to predict toxicity data for an external dataset comprising 35 MONPs, addressing gaps in zebrafish toxicity assessment.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1142-1152"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic methane oxidation over a TiO2/SiNWs p-n junction catalyst at room temperature. 室温下 TiO2/SiNWs p-n 结催化剂的光催化甲烷氧化作用。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-02 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.92
Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen

Rapid recombination of charge carriers in semiconductors is a main drawback for photocatalytic oxidative coupling of methane (OCM) reactions. Herein, we propose a novel catalyst by developing a p-n junction titania-silicon nanowires (TiO2/SiNWs) heterostructure. The structure is fabricated by atomic layer deposition of TiO2 on p-type SiNWs. The TiO2/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO2 and p-type SiNWs, which forces generated charge carriers to move in opposite directions and suppresses charge recombination. Besides, surface morphology and optical properties of the the p-n TiO2/SiNWs catalyst are also beneficial for the photocatalytic activity. It is expected that the results of this study will provide massive guidance in synthesizing an efficient photocatalyst for CH4 conversion under mild conditions.

半导体中电荷载流子的快速重组是光催化甲烷氧化偶联(OCM)反应的主要缺点。在此,我们通过开发一种 p-n 结二氧化钛-硅纳米线(TiO2/SiNWs)异质结构,提出了一种新型催化剂。该结构是通过在 p 型硅纳米线上原子层沉积 TiO2 制成的。与单一成分相比,TiO2/SiNWs 异质结构在模拟太阳光照射下表现出卓越的 OCM 性能。效率的提高归功于 n 型 TiO2 和 p 型 SiNWs 之间形成的固有电场,该电场迫使产生的电荷载流子向相反的方向移动,从而抑制了电荷重组。此外,p-n TiO2/SiNWs 催化剂的表面形貌和光学特性也有利于提高光催化活性。预计本研究的结果将为在温和条件下合成一种用于转化 CH4 的高效光催化剂提供大量指导。
{"title":"Photocatalytic methane oxidation over a TiO<sub>2</sub>/SiNWs p-n junction catalyst at room temperature.","authors":"Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen","doi":"10.3762/bjnano.15.92","DOIUrl":"https://doi.org/10.3762/bjnano.15.92","url":null,"abstract":"<p><p>Rapid recombination of charge carriers in semiconductors is a main drawback for photocatalytic oxidative coupling of methane (OCM) reactions. Herein, we propose a novel catalyst by developing a p-n junction titania-silicon nanowires (TiO<sub>2</sub>/SiNWs) heterostructure. The structure is fabricated by atomic layer deposition of TiO<sub>2</sub> on p-type SiNWs. The TiO<sub>2</sub>/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO<sub>2</sub> and p-type SiNWs, which forces generated charge carriers to move in opposite directions and suppresses charge recombination. Besides, surface morphology and optical properties of the the p-n TiO<sub>2</sub>/SiNWs catalyst are also beneficial for the photocatalytic activity. It is expected that the results of this study will provide massive guidance in synthesizing an efficient photocatalyst for CH<sub>4</sub> conversion under mild conditions.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1132-1141"},"PeriodicalIF":2.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local work function on graphene nanoribbons. 石墨烯纳米带的局部功函数
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.91
Daniel Rothhardt, Amina Kimouche, Tillmann Klamroth, Regina Hoffmann-Vogel

Graphene nanoribbons show exciting electronic properties related to the exotic nature of the charge carriers and to local confinement as well as atomic-scale structural details. The local work function provides evidence for such structural, electronic, and chemical variations at surfaces. Kelvin prove force microscopy can be used to measure the local contact potential difference (LCPD) between a probe tip and a surface, related to the work function. Here we use this technique to map the LCPD of graphene nanoribbons grown on a Au(111) substrate. The LCPD data shows charge transfer between the graphene nanoribbons and the gold substrate. Our results are corroborated with density functional theory calculations, which verify that the maps reflect the doping of the nanoribbons. Our results help to understand the relation between atomic structure and electronic properties both in high-resolution images and in the distance dependence of the LCPD.

石墨烯纳米带显示出令人兴奋的电子特性,这与电荷载流子的奇异性质、局部约束以及原子尺度的结构细节有关。局部功函数为表面的这种结构、电子和化学变化提供了证据。开尔文证明力显微镜可用于测量探针尖端与表面之间与功函数相关的局部接触电位差(LCPD)。在此,我们使用该技术绘制了生长在金(111)基底上的石墨烯纳米带的 LCPD 图。LCPD 数据显示了石墨烯纳米带与金基底之间的电荷转移。密度泛函理论计算证实了我们的结果,该计算验证了图谱反映了纳米带的掺杂情况。我们的研究结果有助于理解高分辨率图像和 LCPD 的距离依赖性中原子结构与电子特性之间的关系。
{"title":"Local work function on graphene nanoribbons.","authors":"Daniel Rothhardt, Amina Kimouche, Tillmann Klamroth, Regina Hoffmann-Vogel","doi":"10.3762/bjnano.15.91","DOIUrl":"10.3762/bjnano.15.91","url":null,"abstract":"<p><p>Graphene nanoribbons show exciting electronic properties related to the exotic nature of the charge carriers and to local confinement as well as atomic-scale structural details. The local work function provides evidence for such structural, electronic, and chemical variations at surfaces. Kelvin prove force microscopy can be used to measure the local contact potential difference (LCPD) between a probe tip and a surface, related to the work function. Here we use this technique to map the LCPD of graphene nanoribbons grown on a Au(111) substrate. The LCPD data shows charge transfer between the graphene nanoribbons and the gold substrate. Our results are corroborated with density functional theory calculations, which verify that the maps reflect the doping of the nanoribbons. Our results help to understand the relation between atomic structure and electronic properties both in high-resolution images and in the distance dependence of the LCPD.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1125-1131"},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct electron beam writing of silver using a β-diketonate precursor: first insights. 使用β-二酮酸酯前驱体的直接电子束写银:初探。
IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.90
Katja Höflich, Krzysztof Maćkosz, Chinmai S Jureddy, Aleksei Tsarapkin, Ivo Utke

Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe3 operates at an evaporation temperature of 70-80 °C and is compatible with commercially available gas injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to varying compositions of the deposit and internal inhomogeneities such as the formation of a layered structure consisting of a pure silver layer at the interface to the substrate covered by a deposit layer with low silver content. Imaging after the deposition process revealed morphological changes such as the growth of silver particles on the surface. While these effects complicate the application for 3D printing, the unique deposit structure with a thin, compact silver film beneath the deposit body is interesting from a fundamental point of view and may offer additional opportunities for applications.

直接电子束写入是一种功能强大的工具,只需一步即可制造出复杂的纳米结构。电子束在局部裂解吸附的气态前驱体分子,形成沉积物,类似于三维打印,但无需光刻胶或显影步骤。在这里,我们首次采用了β-二酮酸银前驱体进行聚焦电子束诱导沉积(FEBID)。所使用的 (hfac)AgPMe3 化合物的蒸发温度为 70-80 °C,与任何标准扫描电子显微镜中使用的市售气体注入系统兼容。尽管沉积体积中的银含量较低,但在电子束紧密聚焦的情况下,也能生长出光滑的三维几何形状。事实证明,电子束诱导沉积对辐照条件非常敏感,会导致沉积物成分的变化和内部的不均匀性,例如形成分层结构,在与基底的界面上形成纯银层,银含量较低的沉积层覆盖在纯银层上。沉积过程后的成像显示了形态变化,如表面银颗粒的生长。虽然这些影响使三维打印的应用变得复杂,但从根本上看,沉积体下方有一层薄而紧密的银膜的独特沉积结构非常有趣,并可能为应用提供更多机会。
{"title":"Direct electron beam writing of silver using a β-diketonate precursor: first insights.","authors":"Katja Höflich, Krzysztof Maćkosz, Chinmai S Jureddy, Aleksei Tsarapkin, Ivo Utke","doi":"10.3762/bjnano.15.90","DOIUrl":"10.3762/bjnano.15.90","url":null,"abstract":"<p><p>Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe<sub>3</sub> operates at an evaporation temperature of 70-80 °C and is compatible with commercially available gas injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to varying compositions of the deposit and internal inhomogeneities such as the formation of a layered structure consisting of a pure silver layer at the interface to the substrate covered by a deposit layer with low silver content. Imaging after the deposition process revealed morphological changes such as the growth of silver particles on the surface. While these effects complicate the application for 3D printing, the unique deposit structure with a thin, compact silver film beneath the deposit body is interesting from a fundamental point of view and may offer additional opportunities for applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1117-1124"},"PeriodicalIF":2.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beilstein Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1