Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (DeltaDeltaG < 1.0 kT) and 36.3% mutants are unstable (DeltaDeltaG > 3.0 kT), 12.2% mutants are with 1.0 kT < DeltaDeltaG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally, correlation with functional data shows that most mutations which retain functions are stable, and most mutations that gain functions are unstable, indicating destabilized and deformed p53 proteins are more likely to find new binding partners.PACS codes: 87.14.E-
{"title":"Structural and functional implications of p53 missense cancer mutations.","authors":"Yuhong Tan, Ray Luo","doi":"10.1186/1757-5036-2-5","DOIUrl":"10.1186/1757-5036-2-5","url":null,"abstract":"<p><p> Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (DeltaDeltaG < 1.0 kT) and 36.3% mutants are unstable (DeltaDeltaG > 3.0 kT), 12.2% mutants are with 1.0 kT < DeltaDeltaG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally, correlation with functional data shows that most mutations which retain functions are stable, and most mutations that gain functions are unstable, indicating destabilized and deformed p53 proteins are more likely to find new binding partners.PACS codes: 87.14.E-</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2009-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28269051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osvaldo A Martín, Myriam E Villegas, Carlos F Aguilar
The acidic C-terminal peptides from Trypanosoma cruzi ribosomal P proteins are the major target of the antibody response in patients suffering Chagas chronic heart disease. It has been proposed that the disease is triggered by the cross-reaction of these antibodies with the second extra cellular loop of the beta1-adrenoreceptor, brought about by the molecular mimicry between the acidic C-terminal peptides and the receptor's loop. To improve the understanding of the structural basis of the autoimmune response against heart receptors, the 3-dimensional structure of the C-terminal peptides of Trypanosoma cruzi ribosomal proteins P0 (EDDDDDFGMGALF) and P2beta (EEEDDDMGFGLFD) were solved using the Electrostaticaly Driven MonteCarlo method. Their structures were compared with the second extra-cellular loop of our homology model of human rhodopsin and the existing experimental NMR structures of the C-terminal peptides from human P0 (EESDDDMGFGLFD) and from Leishmania braziliensis P0 (EEADDDMGFGLFD). Docking of Trypanosoma cruzi peptides P0, P2beta and human rhodopsin loop into our anti-P2beta monoclonal antibody homology model allowed to explore their interactions.The solution structure of peptides P0 and P2beta can be briefly described as a bend. Although the global conformations of the peptides are not identical they shared a common region of four residues (3 to 6) that have a similar structure. The structural alignment of the five peptides also showed a surprising conformational similarity for the same residues. The antibody model and docking studies revealed a most remarkable feature in the active site, a positively charged, narrow and deep cavity where the acidic residues 3 to 6 were accommodated. These results suggest that the most important elements in the molecular peptide recognition by the antibody may be the shape of the loop and the presence of negative charges in positions 3-5 (P0, P2beta) or a negative charge in position 4 (rhodopsin loop). This work describes clearly the interactions of the structural elements involved in the autoimmune mechanism of anti-P auto-antibodies cross-reaction and stimulation of the beta1-adrenoreceptor and the visual pigment rhodopsin. Results from this study could lead eventually to the development of treatments to abolish receptor mediated symptoms in Chagas. PACS code: 87.15.-v.
{"title":"Three-dimensional studies of pathogenic peptides from the c-terminal of Trypanosoma cruzi ribosomal P proteins and their interaction with a monoclonal antibody structural model.","authors":"Osvaldo A Martín, Myriam E Villegas, Carlos F Aguilar","doi":"10.1186/1757-5036-2-4","DOIUrl":"https://doi.org/10.1186/1757-5036-2-4","url":null,"abstract":"<p><p> The acidic C-terminal peptides from Trypanosoma cruzi ribosomal P proteins are the major target of the antibody response in patients suffering Chagas chronic heart disease. It has been proposed that the disease is triggered by the cross-reaction of these antibodies with the second extra cellular loop of the beta1-adrenoreceptor, brought about by the molecular mimicry between the acidic C-terminal peptides and the receptor's loop. To improve the understanding of the structural basis of the autoimmune response against heart receptors, the 3-dimensional structure of the C-terminal peptides of Trypanosoma cruzi ribosomal proteins P0 (EDDDDDFGMGALF) and P2beta (EEEDDDMGFGLFD) were solved using the Electrostaticaly Driven MonteCarlo method. Their structures were compared with the second extra-cellular loop of our homology model of human rhodopsin and the existing experimental NMR structures of the C-terminal peptides from human P0 (EESDDDMGFGLFD) and from Leishmania braziliensis P0 (EEADDDMGFGLFD). Docking of Trypanosoma cruzi peptides P0, P2beta and human rhodopsin loop into our anti-P2beta monoclonal antibody homology model allowed to explore their interactions.The solution structure of peptides P0 and P2beta can be briefly described as a bend. Although the global conformations of the peptides are not identical they shared a common region of four residues (3 to 6) that have a similar structure. The structural alignment of the five peptides also showed a surprising conformational similarity for the same residues. The antibody model and docking studies revealed a most remarkable feature in the active site, a positively charged, narrow and deep cavity where the acidic residues 3 to 6 were accommodated. These results suggest that the most important elements in the molecular peptide recognition by the antibody may be the shape of the loop and the presence of negative charges in positions 3-5 (P0, P2beta) or a negative charge in position 4 (rhodopsin loop). This work describes clearly the interactions of the structural elements involved in the autoimmune mechanism of anti-P auto-antibodies cross-reaction and stimulation of the beta1-adrenoreceptor and the visual pigment rhodopsin. Results from this study could lead eventually to the development of treatments to abolish receptor mediated symptoms in Chagas. PACS code: 87.15.-v.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-2-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28200110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled.PACS Codes: 87.14.Cc, 82.70.Uv.
{"title":"The multiple faces of self-assembled lipidic systems.","authors":"Guillaume Tresset","doi":"10.1186/1757-5036-2-3","DOIUrl":"10.1186/1757-5036-2-3","url":null,"abstract":"<p><p> Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled.PACS Codes: 87.14.Cc, 82.70.Uv.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2009-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695813/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28115142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anders Irbäck, Simon Mitternacht, Sandipan Mohanty
We describe and test an implicit solvent all-atom potential for simulations of protein folding and aggregation. The potential is developed through studies of structural and thermodynamic properties of 17 peptides with diverse secondary structure. Results obtained using the final form of the potential are presented for all these peptides. The same model, with unchanged parameters, is furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta protein and a three-helix-bundle protein, with very good results. The computational efficiency of the potential makes it possible to investigate the free-energy landscape of these 49-67-residue systems with high statistical accuracy, using only modest computational resources by today's standards.PACS Codes: 87.14.E-, 87.15.A-, 87.15.Cc.
{"title":"An effective all-atom potential for proteins.","authors":"Anders Irbäck, Simon Mitternacht, Sandipan Mohanty","doi":"10.1186/1757-5036-2-2","DOIUrl":"https://doi.org/10.1186/1757-5036-2-2","url":null,"abstract":"<p><p> We describe and test an implicit solvent all-atom potential for simulations of protein folding and aggregation. The potential is developed through studies of structural and thermodynamic properties of 17 peptides with diverse secondary structure. Results obtained using the final form of the potential are presented for all these peptides. The same model, with unchanged parameters, is furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta protein and a three-helix-bundle protein, with very good results. The computational efficiency of the potential makes it possible to investigate the free-energy landscape of these 49-67-residue systems with high statistical accuracy, using only modest computational resources by today's standards.PACS Codes: 87.14.E-, 87.15.A-, 87.15.Cc.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2009-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-2-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28101271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality.PACS codes: 87.14.ep, 87.14.cc, 87.16.D.
{"title":"Membrane protein dynamics: limited lipid control.","authors":"Balázs Szalontai","doi":"10.1186/1757-5036-2-1","DOIUrl":"10.1186/1757-5036-2-1","url":null,"abstract":"<p><p> Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality.PACS codes: 87.14.ep, 87.14.cc, 87.16.D.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"2 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2009-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28098903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Finding the global probabilistic nature of a non-equilibrium circadian clock is essential for addressing important issues of robustness and function. We have uncovered the underlying potential energy landscape of a simple cyanobacteria biochemical network, and the corresponding flux which is the driving force for the oscillation. We found that the underlying potential landscape for the oscillation in the presence of small statistical fluctuations is like an explicit ring valley or doughnut shape in the three dimensional protein concentration space. We found that the barrier height separating the oscillation ring and other area is a quantitative measure of the oscillation robustness and decreases when the fluctuations increase. We also found that the entropy production rate characterizing the dissipation or heat loss decreases as the fluctuations decrease. In addition, we found that, as the fluctuations increase, the period and the amplitude of the oscillations is more dispersed, and the phase coherence decreases. We also found that the properties from exploring the effects of the inherent chemical rate parameters on the robustness. Our approach is quite general and can be applied to other oscillatory cellular network.PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt.
{"title":"Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives.","authors":"Jin Wang, Li Xu, Erkang Wang","doi":"10.1186/1757-5036-1-7","DOIUrl":"https://doi.org/10.1186/1757-5036-1-7","url":null,"abstract":"<p><p> Finding the global probabilistic nature of a non-equilibrium circadian clock is essential for addressing important issues of robustness and function. We have uncovered the underlying potential energy landscape of a simple cyanobacteria biochemical network, and the corresponding flux which is the driving force for the oscillation. We found that the underlying potential landscape for the oscillation in the presence of small statistical fluctuations is like an explicit ring valley or doughnut shape in the three dimensional protein concentration space. We found that the barrier height separating the oscillation ring and other area is a quantitative measure of the oscillation robustness and decreases when the fluctuations increase. We also found that the entropy production rate characterizing the dissipation or heat loss decreases as the fluctuations decrease. In addition, we found that, as the fluctuations increase, the period and the amplitude of the oscillations is more dispersed, and the phase coherence decreases. We also found that the properties from exploring the effects of the inherent chemical rate parameters on the robustness. Our approach is quite general and can be applied to other oscillatory cellular network.PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28097524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analysis of fluorescent spectra from complex biological systems containing various fluorescent probes with overlapping emission bands is a challenging task. Valuable information can be extracted from the full spectra, however, by using multivariate analysis (MA) of measurements at different wavelengths. We applied MA to spectral data of purified Torpedo nicotinic acetylcholine receptor (AChR) protein reconstituted into liposomes made up of dioleoylphosphatidic acid (DOPA) and dioleoylphosphatidylcholine (DOPC) doped with two extrinsic fluorescent probes (NBD-cholesterol/pyrene-PC). Förster resonance energy transfer (FRET) was observed between the protein and pyrene-PC and between pyrene-PC and NBD-cholesterol, leading to overlapping emission bands. Partial least squares analysis was applied to fluorescence spectra of pyrene-PC in liposomes with different DOPC/DOPA ratios, generating a model that was tested by an internal validation (leave-one-out cross-validation) and was further used to predict the apparent lipid molar ratio in AChR-containing samples. The values predicted for DOPA, the lipid with the highest Tm, indicate that the protein exerts a rigidifying effect on its lipid microenvironment. A similar conclusion was reached from excimer formation of pyrene-PC, a collisional-dependent phenomenon. The excimer/monomer ratio (E/M) at different DOPC/DOPA molar ratios revealed the restricted diffusion of the probe in AChR-containing samples in comparison to pure lipid samples devoid of protein. FRET from the AChR (donor) to pyrene-PC (acceptor) as a function of temperature was found to increase with increasing temperature, suggesting a shorter distance between AChR and pyrene PC. Taken together, the results obtained by MA on complex spectra indicate that the AChR rigidifies its surrounding lipid and prefers DOPA rather than DOPC in its immediate microenvironment. PACS Codes: 32.50.+d, 33.50.Dq.
{"title":"Resolution of complex fluorescence spectra of lipids and nicotinic acetylcholine receptor by multivariate analysis reveals protein-mediated effects on the receptor's immediate lipid microenvironment.","authors":"Jorge J Wenz, Francisco J Barrantes","doi":"10.1186/1757-5036-1-6","DOIUrl":"https://doi.org/10.1186/1757-5036-1-6","url":null,"abstract":"<p><p> Analysis of fluorescent spectra from complex biological systems containing various fluorescent probes with overlapping emission bands is a challenging task. Valuable information can be extracted from the full spectra, however, by using multivariate analysis (MA) of measurements at different wavelengths. We applied MA to spectral data of purified Torpedo nicotinic acetylcholine receptor (AChR) protein reconstituted into liposomes made up of dioleoylphosphatidic acid (DOPA) and dioleoylphosphatidylcholine (DOPC) doped with two extrinsic fluorescent probes (NBD-cholesterol/pyrene-PC). Förster resonance energy transfer (FRET) was observed between the protein and pyrene-PC and between pyrene-PC and NBD-cholesterol, leading to overlapping emission bands. Partial least squares analysis was applied to fluorescence spectra of pyrene-PC in liposomes with different DOPC/DOPA ratios, generating a model that was tested by an internal validation (leave-one-out cross-validation) and was further used to predict the apparent lipid molar ratio in AChR-containing samples. The values predicted for DOPA, the lipid with the highest Tm, indicate that the protein exerts a rigidifying effect on its lipid microenvironment. A similar conclusion was reached from excimer formation of pyrene-PC, a collisional-dependent phenomenon. The excimer/monomer ratio (E/M) at different DOPC/DOPA molar ratios revealed the restricted diffusion of the probe in AChR-containing samples in comparison to pure lipid samples devoid of protein. FRET from the AChR (donor) to pyrene-PC (acceptor) as a function of temperature was found to increase with increasing temperature, suggesting a shorter distance between AChR and pyrene PC. Taken together, the results obtained by MA on complex spectra indicate that the AChR rigidifies its surrounding lipid and prefers DOPA rather than DOPC in its immediate microenvironment. PACS Codes: 32.50.+d, 33.50.Dq.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28098902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We discuss a stochastic approach for reconstructing the native structures of proteins from the knowledge of the "effective connectivity", which is a one-dimensional structural profile constructed as a linear combination of the eigenvectors of the contact map of the target structure. The structural profile is used to bias a search of the conformational space towards the target structure in a Monte Carlo scheme operating on a Calpha-chain of uniform, finite thickness. Structure information thus enters the folding dynamics via the effective connectivity, but the interaction is not restricted to pairs of amino acids that form native contacts, resulting in a free energy landscape which does not rely on the assumption of minimal frustration. Moreover, effective connectivity vectors can be predicted more readily from the amino acid sequence of proteins than the corresponding contact maps, thus suggesting that the stochastic protocol presented here could be effectively combined with other current methods for predicting native structures. PACS codes: 87.14.Ee.
{"title":"Stochastic reconstruction of protein structures from effective connectivity profiles.","authors":"Katrin Wolff, Michele Vendruscolo, Markus Porto","doi":"10.1186/1757-5036-1-5","DOIUrl":"https://doi.org/10.1186/1757-5036-1-5","url":null,"abstract":"<p><p> We discuss a stochastic approach for reconstructing the native structures of proteins from the knowledge of the \"effective connectivity\", which is a one-dimensional structural profile constructed as a linear combination of the eigenvectors of the contact map of the target structure. The structural profile is used to bias a search of the conformational space towards the target structure in a Monte Carlo scheme operating on a Calpha-chain of uniform, finite thickness. Structure information thus enters the folding dynamics via the effective connectivity, but the interaction is not restricted to pairs of amino acids that form native contacts, resulting in a free energy landscape which does not rely on the assumption of minimal frustration. Moreover, effective connectivity vectors can be predicted more readily from the amino acid sequence of proteins than the corresponding contact maps, thus suggesting that the stochastic protocol presented here could be effectively combined with other current methods for predicting native structures. PACS codes: 87.14.Ee.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28098901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kemper Talley, Carmen Ng, Michael Shoppell, Petras Kundrotas, Emil Alexov
Calculations of electrostatic properties of protein-protein complexes are usually done within framework of a model with a certain set of parameters. In this paper we present a comprehensive statistical analysis of the sensitivity of the electrostatic component of binding free energy (DeltaDeltaGel) with respect with different force fields (Charmm, Amber, and OPLS), different values of the internal dielectric constant, and different presentations of molecular surface (different values of the probe radius). The study was done using the largest so far set of entries comprising 260 hetero and 2148 homo protein-protein complexes extracted from a previously developed database of protein complexes (ProtCom). To test the sensitivity of the energy calculations with respect to the structural details, all structures were energy minimized with corresponding force field, and the energies were recalculated. The results indicate that the absolute value of the electrostatic component of the binding free energy (DeltaDeltaGel) is very sensitive to the force field parameters, the minimization procedure, the values of the internal dielectric constant, and the probe radius. Nevertheless our results indicate that certain trends in DeltaDeltaGel behavior are much less sensitive to the calculation parameters. For instance, the fraction of the homo-complexes, for which the electrostatics was found to oppose binding, is 80% regardless of the force fields and parameters used. For the hetero-complexes, however, the percentage of the cases for which electrostatics opposed binding varied from 43% to 85%, depending on the protocol and parameters employed. A significant correlation was found between the effects caused by raising the internal dielectric constant and decreasing the probe radius. Correlations were also found among the results obtained with different force fields. However, despite of the correlations found, the absolute DeltaDeltaGel calculated with different force field parameters could differ more than tens of kcal/mol in some cases. Set of rules of obtaining confident predictions of absolute DeltaDeltaGel and DeltaDeltaGel sign are provided in the conclusion section.PACS codes: 87.15.A-, 87.15. km.
{"title":"On the electrostatic component of protein-protein binding free energy.","authors":"Kemper Talley, Carmen Ng, Michael Shoppell, Petras Kundrotas, Emil Alexov","doi":"10.1186/1757-5036-1-2","DOIUrl":"10.1186/1757-5036-1-2","url":null,"abstract":"<p><p> Calculations of electrostatic properties of protein-protein complexes are usually done within framework of a model with a certain set of parameters. In this paper we present a comprehensive statistical analysis of the sensitivity of the electrostatic component of binding free energy (DeltaDeltaGel) with respect with different force fields (Charmm, Amber, and OPLS), different values of the internal dielectric constant, and different presentations of molecular surface (different values of the probe radius). The study was done using the largest so far set of entries comprising 260 hetero and 2148 homo protein-protein complexes extracted from a previously developed database of protein complexes (ProtCom). To test the sensitivity of the energy calculations with respect to the structural details, all structures were energy minimized with corresponding force field, and the energies were recalculated. The results indicate that the absolute value of the electrostatic component of the binding free energy (DeltaDeltaGel) is very sensitive to the force field parameters, the minimization procedure, the values of the internal dielectric constant, and the probe radius. Nevertheless our results indicate that certain trends in DeltaDeltaGel behavior are much less sensitive to the calculation parameters. For instance, the fraction of the homo-complexes, for which the electrostatics was found to oppose binding, is 80% regardless of the force fields and parameters used. For the hetero-complexes, however, the percentage of the cases for which electrostatics opposed binding varied from 43% to 85%, depending on the protocol and parameters employed. A significant correlation was found between the effects caused by raising the internal dielectric constant and decreasing the probe radius. Correlations were also found among the results obtained with different force fields. However, despite of the correlations found, the absolute DeltaDeltaGel calculated with different force field parameters could differ more than tens of kcal/mol in some cases. Set of rules of obtaining confident predictions of absolute DeltaDeltaGel and DeltaDeltaGel sign are provided in the conclusion section.PACS codes: 87.15.A-, 87.15. km.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28098897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anja Henning, Jörg Henkel, Frank F Bier, Ralph Hölzel
A purely electrical sensing scheme is presented that determines the concentration of macromolecules in solution by measuring the capacitance between planar microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples of 1 muL volume. The method has been applied to the characterisation of the dielectrophoretic response of DNA without the need for any chemical modifications. The influence of electrical parameters like duty cycle, voltage and frequency has been investigated. The results are in good agreement with data from dielectrophoretic studies on fluorescently labelled DNA. Extension of the method down to the single molecule level appears feasible.PACS: 87.50.ch, 87.80.Fe, 87.85.fK.
{"title":"Label-free electrical quantification of the dielectrophoretic response of DNA.","authors":"Anja Henning, Jörg Henkel, Frank F Bier, Ralph Hölzel","doi":"10.1186/1757-5036-1-4","DOIUrl":"https://doi.org/10.1186/1757-5036-1-4","url":null,"abstract":"<p><p> A purely electrical sensing scheme is presented that determines the concentration of macromolecules in solution by measuring the capacitance between planar microelectrodes. Concentrations of DNA in the ng/mL range have been used in samples of 1 muL volume. The method has been applied to the characterisation of the dielectrophoretic response of DNA without the need for any chemical modifications. The influence of electrical parameters like duty cycle, voltage and frequency has been investigated. The results are in good agreement with data from dielectrophoretic studies on fluorescently labelled DNA. Extension of the method down to the single molecule level appears feasible.PACS: 87.50.ch, 87.80.Fe, 87.85.fK.</p>","PeriodicalId":88297,"journal":{"name":"PMC biophysics","volume":"1 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1757-5036-1-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28098899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}