Pub Date : 2024-07-17DOI: 10.1163/18762891-bja00019
M Zhou, C Peng, Z Miao, K Wang, H Zhou, Y Li, G Xiao, X Wu
Childhood obesity is a crucial public health concern worldwide. Dietary intervention is the most common intervention for the treatment of obesity. Therefore, we tested an improved diet-based nutritional interventions to improve the childhood obesity and its gut microbiota. Thirty obese children received a 12-week intervention with the adjust-energy-restricted dietary pattern (A-CRD). Body composition was measured by bioelectrical impedance (Inbody S10) and faecal microbes were profiled by sequencing 16S rRNA. Compared to the NTB group (at 0 week), the NTA group (at 12 weeks) had a significantly greater decrease in body weight, body mass index (BMI) and percent body fat (PBF) ( P < 0.001, respectively), whereas skeletal muscle mass (SMM) and fat free mass (FFM) were not statistically significantly different ( P > 0.05). The gut microbiota was found significantly different between the NTB and NTA groups based on alpha and beta diversity. Bifidobacterium, Blautia, and Streptococcus was significantly increased, whereas Bacteroides and Megamonas was significantly decreased in the NTA group ( P < 0.05, respectively). Meanwhile, NTA group significantly increased the ability to produce short-chain fatty acids (SCFAs; e.g. acetic acid/total dietary energy) and changed he predictive metabolic functional features of the microbiota communities ( P < 0.05, respectively) than the NTB group. In conclusion, A-CRD can significantly improve childhood obesity, and the underlying mechanism may be its effect on gut microbiota and metabolism. Therefore, the diet-based nutrition intervention targeting gut microbiota will be more effective management of body weight and prevention of obesity. Chinese Clinical Trial Register: ChiCTR2300074571.
{"title":"Improved diet-based nutritional interventions can improve childhood obesity with the synergistic regulation of gut microbiota.","authors":"M Zhou, C Peng, Z Miao, K Wang, H Zhou, Y Li, G Xiao, X Wu","doi":"10.1163/18762891-bja00019","DOIUrl":"10.1163/18762891-bja00019","url":null,"abstract":"<p><p>Childhood obesity is a crucial public health concern worldwide. Dietary intervention is the most common intervention for the treatment of obesity. Therefore, we tested an improved diet-based nutritional interventions to improve the childhood obesity and its gut microbiota. Thirty obese children received a 12-week intervention with the adjust-energy-restricted dietary pattern (A-CRD). Body composition was measured by bioelectrical impedance (Inbody S10) and faecal microbes were profiled by sequencing 16S rRNA. Compared to the NTB group (at 0 week), the NTA group (at 12 weeks) had a significantly greater decrease in body weight, body mass index (BMI) and percent body fat (PBF) ( P < 0.001, respectively), whereas skeletal muscle mass (SMM) and fat free mass (FFM) were not statistically significantly different ( P > 0.05). The gut microbiota was found significantly different between the NTB and NTA groups based on alpha and beta diversity. Bifidobacterium, Blautia, and Streptococcus was significantly increased, whereas Bacteroides and Megamonas was significantly decreased in the NTA group ( P < 0.05, respectively). Meanwhile, NTA group significantly increased the ability to produce short-chain fatty acids (SCFAs; e.g. acetic acid/total dietary energy) and changed he predictive metabolic functional features of the microbiota communities ( P < 0.05, respectively) than the NTB group. In conclusion, A-CRD can significantly improve childhood obesity, and the underlying mechanism may be its effect on gut microbiota and metabolism. Therefore, the diet-based nutrition intervention targeting gut microbiota will be more effective management of body weight and prevention of obesity. Chinese Clinical Trial Register: ChiCTR2300074571.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"495-513"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1163/18762891-bja00025
K Shimamoto, R Amamoto, S Park, T Suwa, H Makino, S Matsubara, Y Aoyagi
Physical deterioration in the elderly can lead to disability and mortality. Although the intake of fermented milk has been recently attracting attention as a proposed measure to prevent physical weakness, studies and findings are limited. Here, we investigated the effect of intake of fermented milk products on suppression of age-related decline in physical fitness through a long-term epidemiological study of community-dwelling elderly people who are capable of independent living. A retrospective analysis was conducted on 581 elderly people aged 65-92 years from the Nakanojo Study, with the addition of a 5-year prospective analysis on 240 elderlies. Subjects were arbitrarily grouped on the basis of questionnaire estimates of fermented milk products intake (<3 or ≥3 days/week) and pedometer/accelerometer-determined patterns of physical activity (<7,000 or ≥7,000 steps/day). After adjustment for potential confounders, the retrospective study showed that the group consuming fermented milk products ≥3 days/week showed significantly faster walking speeds than the <3 days/week group. The group taking ≥7,000 steps/day had a significantly faster walking speed than the group taking <7,000 steps/day. Those who did both walked the fastest, indicating an additive effect. Adding protein or energy intake as a covariate to the potential confounders found a correlation between the intake of fermented milk products and walking speed, suggesting that the effect of fermented milk products consumption is independent of nutritional intake status, due to the beneficial properties of bacteria included in fermented milk. The 5-year prospective study confirmed a clear relationship between the frequency of consumption of fermented milk products and the suppression of preferred walking speed decline. Our findings suggest that habitual intake of fermented milk contributes to the suppression of walking speed decline in elderly people.
{"title":"Effects of fermented milk intake and physical activity on the suppression of age-related decline in physical fitness among the elderly.","authors":"K Shimamoto, R Amamoto, S Park, T Suwa, H Makino, S Matsubara, Y Aoyagi","doi":"10.1163/18762891-bja00025","DOIUrl":"10.1163/18762891-bja00025","url":null,"abstract":"<p><p>Physical deterioration in the elderly can lead to disability and mortality. Although the intake of fermented milk has been recently attracting attention as a proposed measure to prevent physical weakness, studies and findings are limited. Here, we investigated the effect of intake of fermented milk products on suppression of age-related decline in physical fitness through a long-term epidemiological study of community-dwelling elderly people who are capable of independent living. A retrospective analysis was conducted on 581 elderly people aged 65-92 years from the Nakanojo Study, with the addition of a 5-year prospective analysis on 240 elderlies. Subjects were arbitrarily grouped on the basis of questionnaire estimates of fermented milk products intake (<3 or ≥3 days/week) and pedometer/accelerometer-determined patterns of physical activity (<7,000 or ≥7,000 steps/day). After adjustment for potential confounders, the retrospective study showed that the group consuming fermented milk products ≥3 days/week showed significantly faster walking speeds than the <3 days/week group. The group taking ≥7,000 steps/day had a significantly faster walking speed than the group taking <7,000 steps/day. Those who did both walked the fastest, indicating an additive effect. Adding protein or energy intake as a covariate to the potential confounders found a correlation between the intake of fermented milk products and walking speed, suggesting that the effect of fermented milk products consumption is independent of nutritional intake status, due to the beneficial properties of bacteria included in fermented milk. The 5-year prospective study confirmed a clear relationship between the frequency of consumption of fermented milk products and the suppression of preferred walking speed decline. Our findings suggest that habitual intake of fermented milk contributes to the suppression of walking speed decline in elderly people.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"449-463"},"PeriodicalIF":3.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1163/18762891-bja00023
J Łukasik, T Dierikx, B C Johnston, T de Meij, H Szajewska
The effectiveness of probiotics in preventing or reversing antibiotic-induced microbiome disruption remains uncertain, and claims of microbiome restoration to its pre-antibiotic state may be overestimated. In this review, we aimed to assess the efficacy of probiotics in preventing or ameliorating disruptions in microbiome composition and function induced by antibiotic treatment. We searched Medline, Embase, and CENTRAL for randomised controlled and non-randomised trials. Participants were individuals of any age who were on systemic antibiotics with a low risk of baseline dysbiosis. The intervention consisted of probiotics during or after antibiotic treatment, compared to placebo, alternative interventions, or no intervention. Outcomes included microbiome composition and diversity analysed using high-throughput molecular methods, alongside microbial function and resistome assessments. Seven studies, reported in eight papers, were reviewed. One study showed probiotics counteracting antibiotic-induced diversity changes, another showed exacerbation of these changes, and four others showed no effect. Effects on taxa abundance ranged from mitigating dysbiosis to selective modulation, no effect, or delayed recovery. One study observed no impact on the resistome, while another reported an increase in antibiotic resistance genes. In conclusion, heterogeneous results preclude a definitive conclusion on the effectiveness of any specific probiotic in restoring antibiotic-exposed microbiomes. For a clearer understanding, future research should be more standardised and long-term, employing advanced methods, such as 16S rRNA gene sequencing and metagenomic sequencing. These studies should strive to include larger, diverse populations to enhance generalisability and clearly define what constitutes a healthy microbiome. Finally, linking changes in the microbiome to specific clinical outcomes is essential for clinical decision making. PROSPERO registration number: CRD42023446214.
益生菌在预防或逆转抗生素引起的微生物组破坏方面的效果仍不确定,而将微生物组恢复到抗生素前状态的说法可能被高估了。在本综述中,我们旨在评估益生菌在预防或改善抗生素治疗引起的微生物组组成和功能紊乱方面的功效。我们在 Medline、Embase 和 CENTRAL 中检索了随机对照试验和非随机对照试验。参与者为任何年龄段、正在接受全身性抗生素治疗且基线菌群失调风险较低的个体。干预措施包括在抗生素治疗期间或之后使用益生菌,并与安慰剂、替代干预措施或不使用干预措施进行比较。研究结果包括使用高通量分子方法分析的微生物组组成和多样性,以及微生物功能和抗性组评估。共审查了八篇论文中报告的七项研究。一项研究表明,益生菌可抵消抗生素引起的多样性变化,另一项研究表明益生菌加剧了这些变化,还有四项研究表明益生菌没有影响。对分类群丰度的影响从减轻菌群失调到选择性调节、无影响或延迟恢复不等。一项研究观察到对抗性基因组没有影响,而另一项研究则报告抗生素抗性基因有所增加。总之,不同的研究结果无法就任何特定益生菌在恢复抗生素暴露的微生物组方面的有效性得出明确结论。为了更清楚地了解情况,未来的研究应该更加标准化和长期化,采用先进的方法,如 16S rRNA 基因测序和元基因组测序。这些研究应努力纳入更大、更多样化的人群,以增强普遍性,并明确界定健康微生物群的构成要素。最后,将微生物组的变化与特定的临床结果联系起来对于临床决策至关重要。PROSPERO 注册号:CRD42023446214。
{"title":"Systematic review: effect of probiotics on antibiotic-induced microbiome disruption.","authors":"J Łukasik, T Dierikx, B C Johnston, T de Meij, H Szajewska","doi":"10.1163/18762891-bja00023","DOIUrl":"10.1163/18762891-bja00023","url":null,"abstract":"<p><p>The effectiveness of probiotics in preventing or reversing antibiotic-induced microbiome disruption remains uncertain, and claims of microbiome restoration to its pre-antibiotic state may be overestimated. In this review, we aimed to assess the efficacy of probiotics in preventing or ameliorating disruptions in microbiome composition and function induced by antibiotic treatment. We searched Medline, Embase, and CENTRAL for randomised controlled and non-randomised trials. Participants were individuals of any age who were on systemic antibiotics with a low risk of baseline dysbiosis. The intervention consisted of probiotics during or after antibiotic treatment, compared to placebo, alternative interventions, or no intervention. Outcomes included microbiome composition and diversity analysed using high-throughput molecular methods, alongside microbial function and resistome assessments. Seven studies, reported in eight papers, were reviewed. One study showed probiotics counteracting antibiotic-induced diversity changes, another showed exacerbation of these changes, and four others showed no effect. Effects on taxa abundance ranged from mitigating dysbiosis to selective modulation, no effect, or delayed recovery. One study observed no impact on the resistome, while another reported an increase in antibiotic resistance genes. In conclusion, heterogeneous results preclude a definitive conclusion on the effectiveness of any specific probiotic in restoring antibiotic-exposed microbiomes. For a clearer understanding, future research should be more standardised and long-term, employing advanced methods, such as 16S rRNA gene sequencing and metagenomic sequencing. These studies should strive to include larger, diverse populations to enhance generalisability and clearly define what constitutes a healthy microbiome. Finally, linking changes in the microbiome to specific clinical outcomes is essential for clinical decision making. PROSPERO registration number: CRD42023446214.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"431-447"},"PeriodicalIF":3.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1163/18762891-bja00024
J Lozano, S Fabius, S Fernández-Ciganda, J Urbanavicius, C Piccini, C Scorza, P Zunino
In a previous study, we reported the in vitro potential probiotic and gamma-aminobutyric acid (GABA) production, of several strains from a collection of Lactiplantibacillus (Lpb) strains within the community of natural whey starters from the artisanal cheese industry. GABA is a non-protein amino acid widely distributed in nature and produced in animals, plants, and microorganisms. However, the best known role of GABA is its function as the major inhibitory neurotransmitter of the central nervous system. Preclinical and clinical evidence suggests that the GABAergic system has a relevant role in mental health disorders, such as anxiety and major depression. The modulation of the GABAergic system has been suggested as a potential strategy for treatment, one such mechanism of modulation is the influence of the microbiota-gut-brain axis through probiotic treatments. The present study was designed to investigate the in vivo probiotic potential of LPB145, a Lactiplantibacillus strain previously characterised as a GABA-producing potentially probiotic strain. Therefore, we evaluated the behavioural effects of chronic oral administration of LPB145 on rats' anxiety- and depression-like behaviours, using the elevated plus maze, open field, and the forced swimming test. The impact of LPB145 strain treatment on the gut microbiota structure and diversity was assessed to discern a possible mechanism of action of the LPB145 treatment through the microbiota-gut-brain axis. Our results showed that LPB145 administration induced an antidepressive-like behaviour without changes in locomotor activity. In contrast, the treatment did not modify the experimental anxiety. The structure and diversity of the intestinal microbiota remained unaffected by the treatment when compared to the control. However, specific clades that could be implicated in the behavioural changes did show differences in their relative abundance. These findings provide evidence regarding the potential of probiotic strains isolated from alimentary sources, to modulate the microbiota-gut-brain axis and positively impact mental health.
{"title":"Beneficial effect of GABA-producing Lactiplantibacillus strain LPB145 isolated from cheese starters evaluated in anxiety- and depression-like behaviours in rats.","authors":"J Lozano, S Fabius, S Fernández-Ciganda, J Urbanavicius, C Piccini, C Scorza, P Zunino","doi":"10.1163/18762891-bja00024","DOIUrl":"10.1163/18762891-bja00024","url":null,"abstract":"<p><p>In a previous study, we reported the in vitro potential probiotic and gamma-aminobutyric acid (GABA) production, of several strains from a collection of Lactiplantibacillus (Lpb) strains within the community of natural whey starters from the artisanal cheese industry. GABA is a non-protein amino acid widely distributed in nature and produced in animals, plants, and microorganisms. However, the best known role of GABA is its function as the major inhibitory neurotransmitter of the central nervous system. Preclinical and clinical evidence suggests that the GABAergic system has a relevant role in mental health disorders, such as anxiety and major depression. The modulation of the GABAergic system has been suggested as a potential strategy for treatment, one such mechanism of modulation is the influence of the microbiota-gut-brain axis through probiotic treatments. The present study was designed to investigate the in vivo probiotic potential of LPB145, a Lactiplantibacillus strain previously characterised as a GABA-producing potentially probiotic strain. Therefore, we evaluated the behavioural effects of chronic oral administration of LPB145 on rats' anxiety- and depression-like behaviours, using the elevated plus maze, open field, and the forced swimming test. The impact of LPB145 strain treatment on the gut microbiota structure and diversity was assessed to discern a possible mechanism of action of the LPB145 treatment through the microbiota-gut-brain axis. Our results showed that LPB145 administration induced an antidepressive-like behaviour without changes in locomotor activity. In contrast, the treatment did not modify the experimental anxiety. The structure and diversity of the intestinal microbiota remained unaffected by the treatment when compared to the control. However, specific clades that could be implicated in the behavioural changes did show differences in their relative abundance. These findings provide evidence regarding the potential of probiotic strains isolated from alimentary sources, to modulate the microbiota-gut-brain axis and positively impact mental health.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"465-479"},"PeriodicalIF":3.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1163/18762891-bja00027
Z Weizman, Y Vandenplas
Clinical guidelines are recommendations for healthcare providers regarding patients with specific conditions. These guidelines should be based on practice experience and the best available research evidence. However, guidelines developed by various health organisations worldwide often do not agree with each other. This is also true for the current guidelines for the clinical use of probiotics. This article aims to provide examples of conflicting clinical guidelines for probiotics, define reasons for this phenomenon, describe standard tools for improving their quality, and suggest ways to enhance the development and assessment of suitable clinical guidelines for the appropriate clinical use of probiotics in specific conditions.
{"title":"Why do clinical guidelines for probiotics differ?","authors":"Z Weizman, Y Vandenplas","doi":"10.1163/18762891-bja00027","DOIUrl":"10.1163/18762891-bja00027","url":null,"abstract":"<p><p>Clinical guidelines are recommendations for healthcare providers regarding patients with specific conditions. These guidelines should be based on practice experience and the best available research evidence. However, guidelines developed by various health organisations worldwide often do not agree with each other. This is also true for the current guidelines for the clinical use of probiotics. This article aims to provide examples of conflicting clinical guidelines for probiotics, define reasons for this phenomenon, describe standard tools for improving their quality, and suggest ways to enhance the development and assessment of suitable clinical guidelines for the appropriate clinical use of probiotics in specific conditions.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"411-415"},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1163/18762891-bja00022
J Gu, Y Chen, J Wang, Y Gao, Z Gai, Y Zhao, F Xu
This study investigated the effect of Lacticaseibacillus rhamnosus LRa05 on alcoholic fatty liver disease (ALD) and its mechanism for liver protection. Mice were randomly divided into three groups: a control (CLT) group, an ALD group, and a LRa05 intervention group. The ALD mouse model was established by Lieber-DeCarli chronic alcohol feeding. Tissues staining, enzyme-linked immunosorbent assay (ELISA) was performed to detect changes in histopathology and inflammatory cytokines, respectively. Moreover, intestinal permeability was evaluated by the level of dextran-fluorescein isothiocyanate (Dx-FITC) in serum and tight junction protein in the colon. Changes in the composition of the gut microbiota were assessed by 16S rRNA sequencing. Alcohol consumption induced liver damage in mice with significantly increased levels of triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), and inflammatory cytokines. Moreover, alcohol further induced the increase of intestinal permeability and disruption of gut microbiota in mice, with an increase in the relative abundance of potentially pathogenic bacteria Enterococcus, Parabacteroides, and Alistipes. LRa05 intervention significantly attenuated alcohol-induced liver injury by reducing the contents of TG, ALT, and AST, and suppressing the inflammatory responses. Meanwhile, by stimulating the expression of ZO-1, Occludin, and Claudin in the colon tissue, LRa05 additionally strengthened the intestine barrier function. Furthermore, gut microbiota analysis suggested that LRa05 partially ameliorated gut microbiota disorders in ALD mice and up-regulated the abundance of Desulfovibrio and Akkermansia, which were negatively correlated with the indicators of ALD progression. The reconstructive effects of LRa05 on the gut microbiota might be related to the efficacy of LRa05 in improving gut permeability and further protecting against ALD.
{"title":"Lacticaseibacillus rhamnosus LRa05 alleviated liver injury in mice with alcoholic fatty liver disease by improving intestinal permeability and balancing gut microbiota.","authors":"J Gu, Y Chen, J Wang, Y Gao, Z Gai, Y Zhao, F Xu","doi":"10.1163/18762891-bja00022","DOIUrl":"10.1163/18762891-bja00022","url":null,"abstract":"<p><p>This study investigated the effect of Lacticaseibacillus rhamnosus LRa05 on alcoholic fatty liver disease (ALD) and its mechanism for liver protection. Mice were randomly divided into three groups: a control (CLT) group, an ALD group, and a LRa05 intervention group. The ALD mouse model was established by Lieber-DeCarli chronic alcohol feeding. Tissues staining, enzyme-linked immunosorbent assay (ELISA) was performed to detect changes in histopathology and inflammatory cytokines, respectively. Moreover, intestinal permeability was evaluated by the level of dextran-fluorescein isothiocyanate (Dx-FITC) in serum and tight junction protein in the colon. Changes in the composition of the gut microbiota were assessed by 16S rRNA sequencing. Alcohol consumption induced liver damage in mice with significantly increased levels of triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), and inflammatory cytokines. Moreover, alcohol further induced the increase of intestinal permeability and disruption of gut microbiota in mice, with an increase in the relative abundance of potentially pathogenic bacteria Enterococcus, Parabacteroides, and Alistipes. LRa05 intervention significantly attenuated alcohol-induced liver injury by reducing the contents of TG, ALT, and AST, and suppressing the inflammatory responses. Meanwhile, by stimulating the expression of ZO-1, Occludin, and Claudin in the colon tissue, LRa05 additionally strengthened the intestine barrier function. Furthermore, gut microbiota analysis suggested that LRa05 partially ameliorated gut microbiota disorders in ALD mice and up-regulated the abundance of Desulfovibrio and Akkermansia, which were negatively correlated with the indicators of ALD progression. The reconstructive effects of LRa05 on the gut microbiota might be related to the efficacy of LRa05 in improving gut permeability and further protecting against ALD.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"481-493"},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1163/18762891-bja00018
Y He, L Zhang, Z Chen, P K S Chan, T F Leung, W H Tam
Previous studies reporting the association between gut microbiota dysbiosis and maternal obesity were mostly confined at the phylum level or at postpartum period. This study aimed to investigate the dynamic changes in gut microbial communities associated with maternal obesity at different time points of pregnancy. We performed 16S rRNA gene V3-V4 amplicon sequencing on stool samples from 110 women in all three trimesters and 1-month postpartum. Maternal gut microbial communities associated with maternal pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) were explored. The influence of maternal obesity on gut microbiota trajectories was determined based on longitudinal shifts in community clusters across the trimesters. The richness index of alpha diversity decreased with the progression of pregnancy, particularly in women with excessive GWG. The evenness index in 2nd trimester was found inversely associated with GWG. Various taxonomic differences in 1st trimester were associated with excessive GWG, whereas limited taxonomic differences in 2nd and 3rd trimesters were associated with pre-pregnancy BMI or GWG. Meanwhile, the gut microbiota trajectory with especially depleted genus Faecalibacterium in 1st trimester was associated with excessive GWG (adjusted odds ratio 5.7, 95% confidence interval 1.2-28.1). Moreover, the longitudinal abundances of genus Lachnospiraceae ND3007 group across gestations were depleted in women with overweight/obese pre-pregnancy BMI, while genus Bifidobacterium enriched in women with excessive GWG. Our study shows that dysbiosis of the gut microbiota in early pregnancy may have a significant impact on excess GWG. The abundance of the genus Faecalibacterium in 1st trimester may be a potential risk factor. Clinical trial number: NCT03785093 (https://classic.clinicaltrials.gov/ct2/show/NCT03785093).
{"title":"The associations of pre-pregnancy BMI and gestational weight gain with maternal gut microbiota.","authors":"Y He, L Zhang, Z Chen, P K S Chan, T F Leung, W H Tam","doi":"10.1163/18762891-bja00018","DOIUrl":"10.1163/18762891-bja00018","url":null,"abstract":"<p><p>Previous studies reporting the association between gut microbiota dysbiosis and maternal obesity were mostly confined at the phylum level or at postpartum period. This study aimed to investigate the dynamic changes in gut microbial communities associated with maternal obesity at different time points of pregnancy. We performed 16S rRNA gene V3-V4 amplicon sequencing on stool samples from 110 women in all three trimesters and 1-month postpartum. Maternal gut microbial communities associated with maternal pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) were explored. The influence of maternal obesity on gut microbiota trajectories was determined based on longitudinal shifts in community clusters across the trimesters. The richness index of alpha diversity decreased with the progression of pregnancy, particularly in women with excessive GWG. The evenness index in 2nd trimester was found inversely associated with GWG. Various taxonomic differences in 1st trimester were associated with excessive GWG, whereas limited taxonomic differences in 2nd and 3rd trimesters were associated with pre-pregnancy BMI or GWG. Meanwhile, the gut microbiota trajectory with especially depleted genus Faecalibacterium in 1st trimester was associated with excessive GWG (adjusted odds ratio 5.7, 95% confidence interval 1.2-28.1). Moreover, the longitudinal abundances of genus Lachnospiraceae ND3007 group across gestations were depleted in women with overweight/obese pre-pregnancy BMI, while genus Bifidobacterium enriched in women with excessive GWG. Our study shows that dysbiosis of the gut microbiota in early pregnancy may have a significant impact on excess GWG. The abundance of the genus Faecalibacterium in 1st trimester may be a potential risk factor. Clinical trial number: NCT03785093 (https://classic.clinicaltrials.gov/ct2/show/NCT03785093).</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"397-410"},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1163/18762891-bja00020
X He, W Chen, Y Wang, H Chen, X Xu, X Zhao, D Zhou, M Yue, J Wei, T Chen
Constipation during pregnancy can induce serious complications, including miscarriage and preterm labour, while the evidence of probiotics in improving constipation during pregnancy was little. In this study, 29 healthy pregnant women and 65 constipated pregnant women were enrolled to assess the effectiveness of probiotics on constipation during pregnancy. Our results showed that the probiotics were effective in improving the Constipation Severity Scale (CSS) and Bristol Stool Scale (BSS) scores, including increasing defecation frequency, decreasing defecation time, and improving fecal characteristics. 16S rRNA sequencing revealed that the probiotics effectively restored the diversity of intestinal microbiota. At the phylum level, Firmicutes (13.27% vs 57.20%) and Actinobacteria (3.77% vs 12.80%) were increased, while Bacteroidetes (77.82% vs 20.24%) was decreased. At the level of the genus, Faecalibacterium (2.03% vs 10.33%), Bifidobacterium (1.21% vs 8.56%), and Phascolarctobacterium (0.05% vs 2.88%), the beneficial bacteria were increased, while the Bacteroides (29.23% vs 12.28%) and Prevotella (24.32% vs 4.92%) were decreased. In conclusion, these results indicated that probiotics can effectively relieve the constipation symptoms by improving the diversity of intestinal microbiota, regulating the disturbance of microflorae, and restoring the balance of microflorae to exert a stronger moderating effect than diet and lifestyle modification. Our results provided clinical data and a theoretical basis for the exploitation of probiotics in treating constipation during pregnancy. Chinese Clinical Trial Registry: ChiCTR2100052069.
孕期便秘会诱发严重的并发症,包括流产和早产,而益生菌改善孕期便秘的证据却很少。本研究招募了 29 名健康孕妇和 65 名便秘孕妇,以评估益生菌对孕期便秘的效果。结果显示,益生菌能有效改善便秘严重程度量表(CSS)和布里斯托粪便量表(BSS)的评分,包括增加排便次数、减少排便时间和改善粪便特征。16S rRNA 测序显示,益生菌有效恢复了肠道微生物群的多样性。在门一级,固着菌(13.27% 对 57.20%)和放线菌(3.77% 对 12.80%)增加了,而类杆菌(77.82% 对 20.24%)减少了。在属的层面上,有益菌中的粪杆菌(2.03% vs 10.33%)、双歧杆菌(1.21% vs 8.56%)和法氏囊杆菌(0.05% vs 2.88%)有所增加,而乳杆菌(29.23% vs 12.28%)和普雷沃特氏菌(24.32% vs 4.92%)则有所减少。总之,这些结果表明,益生菌可通过改善肠道微生物群的多样性、调节微生态群的紊乱、恢复微生态群的平衡来有效缓解便秘症状,其缓和作用比饮食和生活方式的改变更强。我们的研究结果为利用益生菌治疗妊娠期便秘提供了临床数据和理论依据。中国临床试验注册中心:ChiCTR2100052069。
{"title":"Probiotics combination effectively improves constipation in pregnancy by modifying the gut microbiota composition.","authors":"X He, W Chen, Y Wang, H Chen, X Xu, X Zhao, D Zhou, M Yue, J Wei, T Chen","doi":"10.1163/18762891-bja00020","DOIUrl":"10.1163/18762891-bja00020","url":null,"abstract":"<p><p>Constipation during pregnancy can induce serious complications, including miscarriage and preterm labour, while the evidence of probiotics in improving constipation during pregnancy was little. In this study, 29 healthy pregnant women and 65 constipated pregnant women were enrolled to assess the effectiveness of probiotics on constipation during pregnancy. Our results showed that the probiotics were effective in improving the Constipation Severity Scale (CSS) and Bristol Stool Scale (BSS) scores, including increasing defecation frequency, decreasing defecation time, and improving fecal characteristics. 16S rRNA sequencing revealed that the probiotics effectively restored the diversity of intestinal microbiota. At the phylum level, Firmicutes (13.27% vs 57.20%) and Actinobacteria (3.77% vs 12.80%) were increased, while Bacteroidetes (77.82% vs 20.24%) was decreased. At the level of the genus, Faecalibacterium (2.03% vs 10.33%), Bifidobacterium (1.21% vs 8.56%), and Phascolarctobacterium (0.05% vs 2.88%), the beneficial bacteria were increased, while the Bacteroides (29.23% vs 12.28%) and Prevotella (24.32% vs 4.92%) were decreased. In conclusion, these results indicated that probiotics can effectively relieve the constipation symptoms by improving the diversity of intestinal microbiota, regulating the disturbance of microflorae, and restoring the balance of microflorae to exert a stronger moderating effect than diet and lifestyle modification. Our results provided clinical data and a theoretical basis for the exploitation of probiotics in treating constipation during pregnancy. Chinese Clinical Trial Registry: ChiCTR2100052069.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"357-371"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1163/18762891-bja00021
A Gálvez, E Dı Az de Terán, J Á Espinosa, J Pérez-Pedregosa, J L Bartha-Rasero, J G Del Valle, M J Cuerva, E Jiménez, C Badiola
Group B Streptococcus (GBS) is the leading cause of bacterial neonatal sepsis. This study aimed to confirm the effect of Ligilactobacillus salivarius V4II-90 on GBS colonisation during pregnancy. A randomised, multicentre, double-blind, placebo-controlled, parallel-group study was conducted in seven hospitals in Madrid, Spain. The sample was broken down into two groups with 20 participants each (n = 40) in order to show reduced GBS colonisation frequency in the probiotic versus the placebo group. Pregnant participants positive for vaginal-rectal colonisation before or during the 13th week of gestation were randomly assigned to either the placebo or the probiotic group. The probiotic, L. salivarius V4II-90 at 1 × 109 cfu/day was administered for 12 weeks, starting at week 21-23 of gestation. The primary outcome was the percentage of participants with vaginal and/or rectal GBS colonisation at the end of the intervention period (35 weeks of gestation). Secondary outcomes were changes in the microbial composition of vaginal and rectal exudates; premature delivery; premature rupture of membranes; intrapartum antibiotics; new-borns with early or late-onset GBS sepsis; adverse events (AEs); and GBS test results performed at the hospital at week 35 of gestation. Of the 481 participants included, 44 were vaginal-rectal colonised with GBS and randomised. 43 completed the study (20 in the probiotic group and 23 in the placebo group). After intervention, GBS was eradicated in six participants (27%) from the placebo group and in twelve participants (63%) from the probiotic group ( P = 0.030). None of the 185 AEs reported were identified as possibly, probably, or definitely related to the investigational product. In conclusion, oral administration of L. salivarius V4II-90 is a safe and successful strategy to significantly decrease the rates of GBS colonisation at the end of pregnancy and, therefore, to reduce the exposure of subjects and their infants to intrapartum antibiotic prophylaxis. Trial registered at ClinicalTrials.gov: number NCT03669094.
{"title":"Ligilactobacillus salivarius V4II-90 eradicates Group B Streptococcus colonisation during pregnancy: a randomised, double-blind, placebo-controlled trial.","authors":"A Gálvez, E Dı Az de Terán, J Á Espinosa, J Pérez-Pedregosa, J L Bartha-Rasero, J G Del Valle, M J Cuerva, E Jiménez, C Badiola","doi":"10.1163/18762891-bja00021","DOIUrl":"10.1163/18762891-bja00021","url":null,"abstract":"<p><p>Group B Streptococcus (GBS) is the leading cause of bacterial neonatal sepsis. This study aimed to confirm the effect of Ligilactobacillus salivarius V4II-90 on GBS colonisation during pregnancy. A randomised, multicentre, double-blind, placebo-controlled, parallel-group study was conducted in seven hospitals in Madrid, Spain. The sample was broken down into two groups with 20 participants each (n = 40) in order to show reduced GBS colonisation frequency in the probiotic versus the placebo group. Pregnant participants positive for vaginal-rectal colonisation before or during the 13th week of gestation were randomly assigned to either the placebo or the probiotic group. The probiotic, L. salivarius V4II-90 at 1 × 109 cfu/day was administered for 12 weeks, starting at week 21-23 of gestation. The primary outcome was the percentage of participants with vaginal and/or rectal GBS colonisation at the end of the intervention period (35 weeks of gestation). Secondary outcomes were changes in the microbial composition of vaginal and rectal exudates; premature delivery; premature rupture of membranes; intrapartum antibiotics; new-borns with early or late-onset GBS sepsis; adverse events (AEs); and GBS test results performed at the hospital at week 35 of gestation. Of the 481 participants included, 44 were vaginal-rectal colonised with GBS and randomised. 43 completed the study (20 in the probiotic group and 23 in the placebo group). After intervention, GBS was eradicated in six participants (27%) from the placebo group and in twelve participants (63%) from the probiotic group ( P = 0.030). None of the 185 AEs reported were identified as possibly, probably, or definitely related to the investigational product. In conclusion, oral administration of L. salivarius V4II-90 is a safe and successful strategy to significantly decrease the rates of GBS colonisation at the end of pregnancy and, therefore, to reduce the exposure of subjects and their infants to intrapartum antibiotic prophylaxis. Trial registered at ClinicalTrials.gov: number NCT03669094.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"387-396"},"PeriodicalIF":3.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1163/18762891-bja00017
G A M Kortman, E R Hester, A Schaafsma, J Mulder, L Mallee, A Nauta
Sleep quality and duration can be impacted by diet, and has been linked to gut microbiota composition and function as the result of communication via the microbiota-gut-brain axis. As one strategy to improve sleep quality could be through the modulation of the gut microbiome, we assessed the effects of a dairy-based product containing whey protein, galacto-oligosaccharides, tryptophan, vitamins and minerals after a 3 weeks intervention on gut microbiota composition and (gut-brain related) functions on basis of 67 healthy subjects with moderate sleep disturbances. Associations of the gut microbiota with sleep quality and with response/non-response to the treatment were revealed by shotgun metagenomics sequencing of faecal DNA samples, and subsequent analyses of microbiota taxonomy and generic functionality. A database of manually curated Gut-Brain Modules (GBMs) was applied to analyse specific microbial functions/pathways that have the potential to interact with the brain. A moderate discriminating effect of the DP treatment on gut microbiota composition was revealed which could be mainly attributed to a decrease in Pseudomonas resinovorans, Flintibacter sp. KGM00164, Intestinimonas butyriciproducens, and Flavonifractor plautii. As interindividual variance in microbiota composition could have given rise to a heterogenous responsiveness of the subjects in the intervention group, we zoomed in on the differences between responders and non-responders. A significant difference in baseline microbiota composition between responders and non-responders was apparent, showing lower Bifidobacterium longum and Bifidobacterium adolescentis, and higher Faecalibacterium prausnitzii relative abundances in responders. The findings provide leads with respect to the effectiveness and potential underlying mechanisms of mode of action in sleep improvement that could support future nutritional interventions to aid sleep improvement.
睡眠质量和持续时间会受到饮食的影响,并与肠道微生物群的组成和功能有关,这是通过微生物群-肠道-大脑轴进行交流的结果。由于改善睡眠质量的一种策略是通过调节肠道微生物群,因此我们以67名患有中度睡眠障碍的健康受试者为基础,评估了含有乳清蛋白、半乳糖寡糖、色氨酸、维生素和矿物质的乳制品在经过3周干预后对肠道微生物群组成和(肠道-大脑相关)功能的影响。通过对粪便 DNA 样本进行散弹枪元基因组学测序以及随后的微生物群分类和通用功能分析,揭示了肠道微生物群与睡眠质量以及对治疗的反应/无反应之间的关系。人工编辑的肠脑模块(GBMs)数据库被用于分析可能与大脑相互作用的特定微生物功能/途径。结果表明,DP处理对肠道微生物群组成有适度的鉴别作用,这主要归因于树脂假单胞菌(Pseudomonas resinovorans)、弗林特杆菌(Flintibacter sp. KGM00164)、丁酸肠杆菌(Intestinimonas butyriciproducens)和黄杆菌(Flavonifractor plautii)的减少。由于微生物群组成的个体差异可能会导致干预组受试者的反应不一致,因此我们放大了反应者和非反应者之间的差异。应答者和非应答者的基线微生物群组成存在明显差异,应答者的长双歧杆菌和青春期双歧杆菌含量较低,而普氏粪杆菌的相对丰度较高。这些发现提供了有关改善睡眠的有效性和潜在潜在作用机制的线索,有助于未来采取营养干预措施来帮助改善睡眠。
{"title":"Gut microbiome composition and functionality impact the responsiveness to a dairy-based product containing galacto-oligosaccharides for improving sleep quality in adults.","authors":"G A M Kortman, E R Hester, A Schaafsma, J Mulder, L Mallee, A Nauta","doi":"10.1163/18762891-bja00017","DOIUrl":"10.1163/18762891-bja00017","url":null,"abstract":"<p><p>Sleep quality and duration can be impacted by diet, and has been linked to gut microbiota composition and function as the result of communication via the microbiota-gut-brain axis. As one strategy to improve sleep quality could be through the modulation of the gut microbiome, we assessed the effects of a dairy-based product containing whey protein, galacto-oligosaccharides, tryptophan, vitamins and minerals after a 3 weeks intervention on gut microbiota composition and (gut-brain related) functions on basis of 67 healthy subjects with moderate sleep disturbances. Associations of the gut microbiota with sleep quality and with response/non-response to the treatment were revealed by shotgun metagenomics sequencing of faecal DNA samples, and subsequent analyses of microbiota taxonomy and generic functionality. A database of manually curated Gut-Brain Modules (GBMs) was applied to analyse specific microbial functions/pathways that have the potential to interact with the brain. A moderate discriminating effect of the DP treatment on gut microbiota composition was revealed which could be mainly attributed to a decrease in Pseudomonas resinovorans, Flintibacter sp. KGM00164, Intestinimonas butyriciproducens, and Flavonifractor plautii. As interindividual variance in microbiota composition could have given rise to a heterogenous responsiveness of the subjects in the intervention group, we zoomed in on the differences between responders and non-responders. A significant difference in baseline microbiota composition between responders and non-responders was apparent, showing lower Bifidobacterium longum and Bifidobacterium adolescentis, and higher Faecalibacterium prausnitzii relative abundances in responders. The findings provide leads with respect to the effectiveness and potential underlying mechanisms of mode of action in sleep improvement that could support future nutritional interventions to aid sleep improvement.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"373-385"},"PeriodicalIF":3.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}