首页 > 最新文献

Beneficial microbes最新文献

英文 中文
Probiotic reduces vaginal HPV abundance, improves immunity and quality of life in HPV-positive women: a randomised, placebo-controlled and double-blind study. 益生菌减少阴道HPV丰度,提高HPV阳性女性的免疫力和生活质量:一项随机、安慰剂对照和双盲研究。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-05-12 DOI: 10.1163/18762891-bja00079
P Xu, U Mageswary, A A Nisaa, S D Balasubramaniam, S B Samsudin, N I B M Rusdi, A R A Jerip, C E Oon, M H A Bakar, D Rajendran, J J Tan, F F Roslan, S Sreenivasan, V Balakrishnan, S B Sany, C S Tan, M T Liong

The Human Papillomavirus (HPV) is one of the main causes of cervical cancer in women, while there are currently no treatment nor intervention to reduce the concentration of cervical HPV. We thus aimed to investigate the effects of a probiotic Lactiplantibacillus plantarum Probio87 (orally administered at 9 log CFU/day) or placebo for 12-weeks, on reducing the abundance of vaginal HPV in HPV-positive women. A parallel, randomised, double-blind and placebo-controlled study was performed where women were randomised to either the probiotic (n = 44, mean age 41.70 ± 1.06 years) or placebo (n = 45, mean age 41.13 ± 1.20 years). After 12 weeks, the probiotic group showed reduced vaginal HPV abundance ( P = 0.001) and Nugent scores ( P < 0.001) as compared to the placebo. VAS and VuAS questionnaires showed that the probiotic group had improved vulvar dryness ( P = 0.023), soreness ( P = 0.049), social interactions, daily activities ( P < 0.05), and sexual activity ( P = 0.022) compared to the placebo group. Blood gene expressions showed that the placebo group had higher upregulation of pro-inflammatory cytokines (IL-1β, P = 0.006; IFN-γ, P = 0.028) and T-cell markers (CD44, P = 0.008; CXCR5, P = 0.040; CD4, P = 0.016) compared to the placebo group, indicating increased inflammation. Neurotrophic factors BDNF and CREB were upregulated in the placebo group ( P < 0.05), with higher IDO ( P = 0.001) and TDO ( P = 0.036) expressions compared to the probiotic group, suggesting increased kynurenine pathway activity and stress. Overall, probiotic supplementation appeared to reduce the abundance of vaginal HPV, possibly by lowering inflammation and enhancing immunity while mitigating the negative impacts of HPV infection on quality of life in HPV-positive women. Clinical trial registration: ClinicalTrials.gov (NCT05316064).

人乳头瘤病毒(HPV)是导致妇女宫颈癌的主要原因之一,而目前没有治疗或干预措施来降低宫颈HPV的浓度。因此,我们的目的是研究益生菌植物乳杆菌Probio87(口服剂量为9 log CFU/天)或安慰剂对降低HPV阳性妇女阴道HPV丰度的影响。在一项平行、随机、双盲和安慰剂对照研究中,女性被随机分为益生菌组(n = 44,平均年龄41.70±1.06岁)和安慰剂组(n = 45,平均年龄41.13±1.20岁)。12周后,与安慰剂组相比,益生菌组阴道HPV丰度(P = 0.001)和纽金特评分(P < 0.001)降低。VAS和VuAS问卷调查显示,与安慰剂组相比,益生菌组在外阴干燥(P = 0.023)、疼痛(P = 0.049)、社会交往、日常活动(P < 0.05)和性活动(P = 0.022)方面均有改善。血液基因表达显示,安慰剂组促炎细胞因子(IL-1β, P = 0.006;IFN-γ, P = 0.028)和t细胞标志物(CD44, P = 0.008;Cxcr5, p = 0.040;CD4, P = 0.016)与安慰剂组相比,表明炎症增加。与益生菌组相比,安慰剂组神经营养因子BDNF和CREB表达上调(P < 0.05), IDO (P = 0.001)和TDO (P = 0.036)表达升高,提示犬尿氨酸途径活性和应激增加。总的来说,补充益生菌似乎可以减少阴道HPV的丰度,可能是通过降低炎症和增强免疫力,同时减轻HPV感染对HPV阳性妇女生活质量的负面影响。临床试验注册:ClinicalTrials.gov (NCT05316064)。
{"title":"Probiotic reduces vaginal HPV abundance, improves immunity and quality of life in HPV-positive women: a randomised, placebo-controlled and double-blind study.","authors":"P Xu, U Mageswary, A A Nisaa, S D Balasubramaniam, S B Samsudin, N I B M Rusdi, A R A Jerip, C E Oon, M H A Bakar, D Rajendran, J J Tan, F F Roslan, S Sreenivasan, V Balakrishnan, S B Sany, C S Tan, M T Liong","doi":"10.1163/18762891-bja00079","DOIUrl":"10.1163/18762891-bja00079","url":null,"abstract":"<p><p>The Human Papillomavirus (HPV) is one of the main causes of cervical cancer in women, while there are currently no treatment nor intervention to reduce the concentration of cervical HPV. We thus aimed to investigate the effects of a probiotic Lactiplantibacillus plantarum Probio87 (orally administered at 9 log CFU/day) or placebo for 12-weeks, on reducing the abundance of vaginal HPV in HPV-positive women. A parallel, randomised, double-blind and placebo-controlled study was performed where women were randomised to either the probiotic (n = 44, mean age 41.70 ± 1.06 years) or placebo (n = 45, mean age 41.13 ± 1.20 years). After 12 weeks, the probiotic group showed reduced vaginal HPV abundance ( P = 0.001) and Nugent scores ( P < 0.001) as compared to the placebo. VAS and VuAS questionnaires showed that the probiotic group had improved vulvar dryness ( P = 0.023), soreness ( P = 0.049), social interactions, daily activities ( P < 0.05), and sexual activity ( P = 0.022) compared to the placebo group. Blood gene expressions showed that the placebo group had higher upregulation of pro-inflammatory cytokines (IL-1β, P = 0.006; IFN-γ, P = 0.028) and T-cell markers (CD44, P = 0.008; CXCR5, P = 0.040; CD4, P = 0.016) compared to the placebo group, indicating increased inflammation. Neurotrophic factors BDNF and CREB were upregulated in the placebo group ( P < 0.05), with higher IDO ( P = 0.001) and TDO ( P = 0.036) expressions compared to the probiotic group, suggesting increased kynurenine pathway activity and stress. Overall, probiotic supplementation appeared to reduce the abundance of vaginal HPV, possibly by lowering inflammation and enhancing immunity while mitigating the negative impacts of HPV infection on quality of life in HPV-positive women. Clinical trial registration: ClinicalTrials.gov (NCT05316064).</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"667-684"},"PeriodicalIF":3.1,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143952883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of human elafin by genetically modified Lactococcus lactis: evaluation of its anti-inflammatory effects in a murine model of intestinal mucositis. 转基因乳酸乳球菌生产人elafin:在小鼠肠黏膜炎模型中对其抗炎作用的评价。
IF 3 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-05-08 DOI: 10.1163/18762891-bja00078
R Levit, A de Moreno de LeBlanc, S Gontier, A Aucouturier, P Langella, L G Bermúdez-Humarán, J G LeBlanc

The aim of this study was to develop a recombinant strain of Lactococcus lactis designed to produce human elafin, a serine protease inhibitor, through a Stress-Inducible Controlled Expression (SICE) System, and to evaluate its anti-inflammatory potential both in vitro and in vivo. The impact of this recombinant strain on the efficacy of 5-Fluorouracil (5-FU) was evaluated by in vitro assays with Caco-2 (human colonic cancer cells) and IEC-18 (non-cancerous intestinal cells) exposed to 5-FU with or without the recombinant bacterium. In vivo, a mouse model of intestinal mucositis (IM) was induced by daily injections of 5-FU, followed by oral administration of the recombinant strain twice daily. Key assessments included the occurrence of diarrhea, small intestinal morphology and histopathology, and serum cytokines levels. In vitro results showed that the elafin-producing strain enhanced 5-FU cytotoxicity against Caco-2 cells, while preserving IEC-18 cell viability in the presence of 5-FU. In vivo, the strain significantly reduced the occurrence of diarrhea, improved the villus height/crypt depth ratio and attenuated intestinal inflammation. In addition, the recombinant strain reduced serum levels of the pro-inflammatory cytokines IL-6 and TNF-α, while significantly increasing the anti-inflammatory cytokine IL-10. Importantly, the strain did not compromise the anti-cancer efficacy of 5-FU on tumor cells and protected non-cancer cells. These results confirm the in vivo anti-inflammatory effects of this elafin-producing strain against IM.

本研究的目的是通过应激诱导控制表达(SICE)系统培养一株重组乳酸乳球菌,以产生丝氨酸蛋白酶抑制剂人elafin,并在体外和体内评价其抗炎能力。用Caco-2(人结肠癌细胞)和IEC-18(非癌性肠细胞)暴露于5-FU(含或不含重组细菌),通过体外实验评估该重组菌株对5-氟尿嘧啶(5-FU)疗效的影响。在体内,每日注射5-FU诱导小鼠肠黏膜炎(IM)模型,然后每日口服重组菌株2次。主要评估包括腹泻的发生、小肠形态和组织病理学以及血清细胞因子水平。体外实验结果表明,产elafin菌株增强了5-FU对Caco-2细胞的细胞毒性,同时在5-FU存在下保持了IEC-18细胞的活力。在体内,该菌株显著减少了腹泻的发生,提高了绒毛高度/隐窝深度比,减轻了肠道炎症。此外,重组菌株降低了血清中促炎因子IL-6和TNF-α的水平,同时显著提高了抗炎因子IL-10的水平。重要的是,该菌株不影响5-FU对肿瘤细胞的抗癌作用,并保护非癌细胞。这些结果证实了这种产elin菌株对IM的体内抗炎作用。
{"title":"Production of human elafin by genetically modified Lactococcus lactis: evaluation of its anti-inflammatory effects in a murine model of intestinal mucositis.","authors":"R Levit, A de Moreno de LeBlanc, S Gontier, A Aucouturier, P Langella, L G Bermúdez-Humarán, J G LeBlanc","doi":"10.1163/18762891-bja00078","DOIUrl":"https://doi.org/10.1163/18762891-bja00078","url":null,"abstract":"<p><p>The aim of this study was to develop a recombinant strain of Lactococcus lactis designed to produce human elafin, a serine protease inhibitor, through a Stress-Inducible Controlled Expression (SICE) System, and to evaluate its anti-inflammatory potential both in vitro and in vivo. The impact of this recombinant strain on the efficacy of 5-Fluorouracil (5-FU) was evaluated by in vitro assays with Caco-2 (human colonic cancer cells) and IEC-18 (non-cancerous intestinal cells) exposed to 5-FU with or without the recombinant bacterium. In vivo, a mouse model of intestinal mucositis (IM) was induced by daily injections of 5-FU, followed by oral administration of the recombinant strain twice daily. Key assessments included the occurrence of diarrhea, small intestinal morphology and histopathology, and serum cytokines levels. In vitro results showed that the elafin-producing strain enhanced 5-FU cytotoxicity against Caco-2 cells, while preserving IEC-18 cell viability in the presence of 5-FU. In vivo, the strain significantly reduced the occurrence of diarrhea, improved the villus height/crypt depth ratio and attenuated intestinal inflammation. In addition, the recombinant strain reduced serum levels of the pro-inflammatory cytokines IL-6 and TNF-α, while significantly increasing the anti-inflammatory cytokine IL-10. Importantly, the strain did not compromise the anti-cancer efficacy of 5-FU on tumor cells and protected non-cancer cells. These results confirm the in vivo anti-inflammatory effects of this elafin-producing strain against IM.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-13"},"PeriodicalIF":3.0,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143962320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starch-degrading gut microbes Ruminococcus bromii and Bifidobacterium adolescentis differ in their ability to degrade resistant starch type 3. 淀粉降解肠道微生物溴瘤胃球菌和青少年双歧杆菌降解抗性淀粉3型的能力不同。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-29 DOI: 10.1163/18762891-bja00077
C E Klostermann, M Fassarella, E G Zoetendal, H A Schols

Intrinsic resistant starch type 3 (RS-3) is retrograded starch that is highly resistant to pancreatic digestion (≥80% RS) and will therefore transit to the colon largely intact. Two gut microbes, known as RS degraders, Ruminococcus bromii ATCC27255 and Bifidobacterium adolescentis L2-32, were studied for their ability to degrade intrinsic RS-3 with defined crystal type and chain length (A-type, degree of polymerisation (DP) 16 or DP 21; B-type, DP 32 or DP 76). Remaining glucose, malto-oligosaccharides and non-degraded insoluble RS-3 were quantified over time and remaining RS-3 was visualized by Scanning Electron Microscopy (SEM) over time and compared to degradation of granular maize and potato starch. R. bromii was not limited by any specific physico-chemical starch characteristic and degraded all substrates gradually to primarily maltose and glucose, although these sugars were not further utilised. In contrast, B. adolescentis was unable to degrade B-type intrinsic RS-3 and only slightly fermented A-type intrinsic RS-3 to acetate, whereas granular maize and potato starch were fermented readily to acetate and lactate. The extensive use of SEM in this study revealed the unique morphology of the RS-3 structures and the difference in degradation approach by the two gut microbes. It can be concluded that efficient degradation of intrinsic RS-3 requires microbes with specific enzyme machineries such as those present in R. bromii.

内在抗性淀粉3型(RS-3)是逆行淀粉,高度抵抗胰腺消化(≥80% RS),因此将基本完整地转运到结肠。研究了两种被称为RS降解者的肠道微生物,即溴化Ruminococcus bromii ATCC27255和青少年双歧杆菌L2-32,研究了它们降解具有特定晶体类型和链长(a型,聚合度(DP) 16或DP 21)的内在RS-3的能力;b型,DP 32或DP 76)。剩余的葡萄糖、麦芽寡糖和未降解的不溶性RS-3随着时间的推移被量化,剩余的RS-3随着时间的推移通过扫描电子显微镜(SEM)被可视化,并与颗粒状玉米和马铃薯淀粉的降解进行比较。R. bromii不受任何特定的物理化学淀粉特性的限制,并逐渐降解所有底物,主要是麦芽糖和葡萄糖,尽管这些糖没有进一步利用。相比之下,青霉无法降解b型内在RS-3,只能将a型内在RS-3发酵为乙酸盐,而颗粒状玉米和马铃薯淀粉则容易发酵为醋酸盐和乳酸盐。在本研究中广泛使用的扫描电镜揭示了RS-3结构的独特形态和两种肠道微生物降解方式的差异。因此,内生RS-3的有效降解需要具有特定酶机制的微生物,如溴酸霉中的微生物。
{"title":"Starch-degrading gut microbes Ruminococcus bromii and Bifidobacterium adolescentis differ in their ability to degrade resistant starch type 3.","authors":"C E Klostermann, M Fassarella, E G Zoetendal, H A Schols","doi":"10.1163/18762891-bja00077","DOIUrl":"10.1163/18762891-bja00077","url":null,"abstract":"<p><p>Intrinsic resistant starch type 3 (RS-3) is retrograded starch that is highly resistant to pancreatic digestion (≥80% RS) and will therefore transit to the colon largely intact. Two gut microbes, known as RS degraders, Ruminococcus bromii ATCC27255 and Bifidobacterium adolescentis L2-32, were studied for their ability to degrade intrinsic RS-3 with defined crystal type and chain length (A-type, degree of polymerisation (DP) 16 or DP 21; B-type, DP 32 or DP 76). Remaining glucose, malto-oligosaccharides and non-degraded insoluble RS-3 were quantified over time and remaining RS-3 was visualized by Scanning Electron Microscopy (SEM) over time and compared to degradation of granular maize and potato starch. R. bromii was not limited by any specific physico-chemical starch characteristic and degraded all substrates gradually to primarily maltose and glucose, although these sugars were not further utilised. In contrast, B. adolescentis was unable to degrade B-type intrinsic RS-3 and only slightly fermented A-type intrinsic RS-3 to acetate, whereas granular maize and potato starch were fermented readily to acetate and lactate. The extensive use of SEM in this study revealed the unique morphology of the RS-3 structures and the difference in degradation approach by the two gut microbes. It can be concluded that efficient degradation of intrinsic RS-3 requires microbes with specific enzyme machineries such as those present in R. bromii.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"687-706"},"PeriodicalIF":3.1,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifid Triple Viable Capsules alleviate constipation by modulating gut microbiota and maintaining the integrity of the intestinal epithelial barrier. Bifid三联活菌胶囊通过调节肠道菌群和维持肠上皮屏障的完整性来缓解便秘。
IF 3 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-29 DOI: 10.1163/18762891-bja00076
D Sun, J Yu, Y Zhan, X Cheng, J Zhang, Y Li, Q Li, Y Xiong, W Liu

Constipation is a widespread gastrointestinal disorder that significantly impacts individuals' health and quality of life. Although various treatment options are available, many patients experience unsatisfactory results, creating a demand for alternative therapeutic strategies. This study explores the efficacy of Bifid Triple Viable Capsules, containing Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecium, in alleviating loperamide-induced constipation in a rat model. Rats were administered high or low doses of Bifid after induction of constipation with loperamide. Our findings demonstrate that high-dose Bifid treatment significantly improves body weight and intestinal propulsion rate in constipated rats. Histopathological analysis reveals that Bifid restores colon tissue integrity, reducing inflammation and maintaining the intestinal epithelial barrier. Using 16S rRNA sequencing, we identified an increase in the gut microbial diversity and composition, with higher levels of beneficial norank_f_norank_o_Coriobacteriales and Anaerofustis bacteria. Transcriptomic analysis of colon tissues showed that high-dose Bifid treatment modulates gene expression involved in immune system regulation and epithelial barrier integrity. Differentially expressed genes (DEGs) were enriched in pathways related to the immune response and integral component of membrane, particularly those associated with the intestinal immune network and bile acid metabolism. These results suggest that Bifid alleviates constipation by balancing the gut microbiota, regulating the gut innate immune response, and maintaining the intestinal epithelial barrier. Our study provides a foundational basis for further research and therapeutic applications of probiotics in treating gastrointestinal diseases.

便秘是一种广泛存在的胃肠道疾病,严重影响个人健康和生活质量。尽管有多种治疗方案可供选择,但许多患者的治疗效果并不理想,这就产生了对替代治疗策略的需求。本研究探讨了含有长双歧杆菌、嗜酸乳杆菌和屎肠球菌的Bifid三联活菌胶囊在大鼠模型中缓解洛哌丁胺引起的便秘的疗效。大鼠在洛哌丁胺诱导便秘后给予高剂量或低剂量的Bifid。我们的研究结果表明,大剂量Bifid治疗可显著改善便秘大鼠的体重和肠道推进率。组织病理学分析显示,Bifid可恢复结肠组织完整性,减少炎症并维持肠上皮屏障。通过16S rRNA测序,我们发现肠道微生物多样性和组成增加,有益的norank_f_norank_o_Coriobacteriales和厌氧菌(Anaerofustis)水平更高。结肠组织转录组学分析显示,高剂量Bifid治疗可调节参与免疫系统调节和上皮屏障完整性的基因表达。差异表达基因(DEGs)富集于与免疫反应和膜组成相关的通路,特别是与肠道免疫网络和胆汁酸代谢相关的通路。这些结果表明,Bifid通过平衡肠道微生物群、调节肠道先天免疫反应和维持肠上皮屏障来缓解便秘。本研究为益生菌治疗胃肠道疾病的进一步研究和应用提供了基础。
{"title":"Bifid Triple Viable Capsules alleviate constipation by modulating gut microbiota and maintaining the integrity of the intestinal epithelial barrier.","authors":"D Sun, J Yu, Y Zhan, X Cheng, J Zhang, Y Li, Q Li, Y Xiong, W Liu","doi":"10.1163/18762891-bja00076","DOIUrl":"https://doi.org/10.1163/18762891-bja00076","url":null,"abstract":"<p><p>Constipation is a widespread gastrointestinal disorder that significantly impacts individuals' health and quality of life. Although various treatment options are available, many patients experience unsatisfactory results, creating a demand for alternative therapeutic strategies. This study explores the efficacy of Bifid Triple Viable Capsules, containing Bifidobacterium longum, Lactobacillus acidophilus, and Enterococcus faecium, in alleviating loperamide-induced constipation in a rat model. Rats were administered high or low doses of Bifid after induction of constipation with loperamide. Our findings demonstrate that high-dose Bifid treatment significantly improves body weight and intestinal propulsion rate in constipated rats. Histopathological analysis reveals that Bifid restores colon tissue integrity, reducing inflammation and maintaining the intestinal epithelial barrier. Using 16S rRNA sequencing, we identified an increase in the gut microbial diversity and composition, with higher levels of beneficial norank_f_norank_o_Coriobacteriales and Anaerofustis bacteria. Transcriptomic analysis of colon tissues showed that high-dose Bifid treatment modulates gene expression involved in immune system regulation and epithelial barrier integrity. Differentially expressed genes (DEGs) were enriched in pathways related to the immune response and integral component of membrane, particularly those associated with the intestinal immune network and bile acid metabolism. These results suggest that Bifid alleviates constipation by balancing the gut microbiota, regulating the gut innate immune response, and maintaining the intestinal epithelial barrier. Our study provides a foundational basis for further research and therapeutic applications of probiotics in treating gastrointestinal diseases.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-14"},"PeriodicalIF":3.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143956049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of feeding habit and duration on infant gut microbiome - a 6 month pilot study. 喂养习惯和持续时间对婴儿肠道微生物群的影响——一项为期6个月的初步研究。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-25 DOI: 10.1163/18762891-bja00075
D V Patangia, G Grimaud, K Lyons, E Dempsey, C A Ryan, C-A O'Shea, R P Ross, C Stanton

While the importance of breastfeeding on the developing infant gut microbiota has been established, few studies have compared the effect of breastfeeding duration on infant gut microbiota development. In this pilot study, we included 23 infants, divided into 4 groups to compare the effect of breastfeeding duration for first 4 (BreastFed_4) or 8 weeks (BreastFed_8) compared to exclusive breast (Exc Breast Fed) or formula feeding (Formula Fed) for 6 months. We used metagenomics shotgun sequencing of 88 infant stool samples and 64 corresponding maternal milk samples to examine the microbial composition. Breast milk samples showed the presence of previously defined core bacteria including spp. belonging to Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium, Rothia and Pseudomonas. We report that the Exc Breast Fed infant group had the lowest alpha diversity and a distinct microbial composition compared to the Formula Fed group. BreastFed_4 clustered distinctly from all other groups, indicating the impact of duration and time of feeding on infant microbiota. Certain Bifidobacterium spp. were more associated to certain groups, in particular, B. infantis was more associated to Exc Breast Fed while Bacteroides/Phocaeicola with BreastFed_8. Exc Breast Fed showed the highest frequency of persisters with B. infantis being the dominant persister, while B. bifidum was the dominant persister in Formula Fed group. Persisters showed significantly higher abundance of several glycoside hydrolases (GH) important in early life across all groups compared to non-persisters. This study highlights infant gut microbiota changes associated with breastfeeding duration, warranting more detailed studies on the impact of breastfeeding duration on long-term health outcomes.

虽然母乳喂养对婴儿肠道菌群发育的重要性已经确立,但很少有研究比较母乳喂养时间对婴儿肠道菌群发育的影响。在这项初步研究中,我们纳入了23名婴儿,分为4组,比较前4周(BreastFed_4)或8周(BreastFed_8)母乳喂养时间与纯母乳喂养(Exc breast Fed)或6个月配方奶喂养(formula Fed)的影响。我们对88份婴儿粪便样本和64份相应的母乳样本进行了宏基因组鸟枪测序,以检测微生物组成。母乳样本显示存在先前确定的核心细菌,包括葡萄球菌、链球菌、棒状杆菌、表皮杆菌、罗氏菌和假单胞菌属。我们报告说,与配方奶组相比,Exc母乳喂养婴儿组具有最低的α多样性和独特的微生物组成。BreastFed_4与所有其他组明显聚集,表明喂养时间和时间对婴儿微生物群的影响。某些双歧杆菌与某些群体的相关性更强,特别是婴儿双歧杆菌与Exc母乳喂养的相关性更强,而拟杆菌/Phocaeicola与BreastFed_8的相关性更强。Exc母乳组持续存在的频率最高,以婴儿双歧杆菌为优势持续存在,而配方奶组以双歧杆菌为优势持续存在。与非坚持者相比,坚持者在所有组的早期生活中都表现出明显更高的几种糖苷水解酶(GH)丰度。这项研究强调了婴儿肠道微生物群的变化与母乳喂养持续时间的关系,需要对母乳喂养持续时间对长期健康结果的影响进行更详细的研究。
{"title":"Influence of feeding habit and duration on infant gut microbiome - a 6 month pilot study.","authors":"D V Patangia, G Grimaud, K Lyons, E Dempsey, C A Ryan, C-A O'Shea, R P Ross, C Stanton","doi":"10.1163/18762891-bja00075","DOIUrl":"10.1163/18762891-bja00075","url":null,"abstract":"<p><p>While the importance of breastfeeding on the developing infant gut microbiota has been established, few studies have compared the effect of breastfeeding duration on infant gut microbiota development. In this pilot study, we included 23 infants, divided into 4 groups to compare the effect of breastfeeding duration for first 4 (BreastFed_4) or 8 weeks (BreastFed_8) compared to exclusive breast (Exc Breast Fed) or formula feeding (Formula Fed) for 6 months. We used metagenomics shotgun sequencing of 88 infant stool samples and 64 corresponding maternal milk samples to examine the microbial composition. Breast milk samples showed the presence of previously defined core bacteria including spp. belonging to Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium, Rothia and Pseudomonas. We report that the Exc Breast Fed infant group had the lowest alpha diversity and a distinct microbial composition compared to the Formula Fed group. BreastFed_4 clustered distinctly from all other groups, indicating the impact of duration and time of feeding on infant microbiota. Certain Bifidobacterium spp. were more associated to certain groups, in particular, B. infantis was more associated to Exc Breast Fed while Bacteroides/Phocaeicola with BreastFed_8. Exc Breast Fed showed the highest frequency of persisters with B. infantis being the dominant persister, while B. bifidum was the dominant persister in Formula Fed group. Persisters showed significantly higher abundance of several glycoside hydrolases (GH) important in early life across all groups compared to non-persisters. This study highlights infant gut microbiota changes associated with breastfeeding duration, warranting more detailed studies on the impact of breastfeeding duration on long-term health outcomes.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"631-645"},"PeriodicalIF":3.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143960220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactiplantibacillus plantarum Lp815 decreases anxiety in people with mild to moderate anxiety: a direct-to-consumer, randomised, double-blind, placebo-controlled study. 植物乳杆菌Lp815减少轻度至中度焦虑患者的焦虑:一项直接面向消费者的、随机、双盲、安慰剂对照研究。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-24 DOI: 10.1163/18762891-bja00073
A D Grant, M C B Erfe, C J Delebecque, D Keller, N P Zimmerman, P L Oliver, B Youssef, J Moos, V Luna, N Craft

The major inhibitory neurotransmitter gamma-aminobutyric acid or GABA plays a pivotal role in mood and sleep. GABA exerts sedative and anxiolytic effects both within the central nervous system and through the gut-brain axis, which has generated interest in the potential for gut GABA to modulate mood and sleep. Several bacterial strains can produce GABA, yet their real-world impacts are poorly understood. We investigated the impact of 2 doses of the strain Lactiplantibacillus plantarum Lp815 on anxiety, sleep, mood, quality of life, cognition, heart rate variability and adverse events in adults with mild to moderate anxiety over a 6-week period. The trial was structured as a double-blinded, randomised, placebo-controlled trial with optional open label extension. Participants were blindly assigned to receive either a placebo, 1 billion colony-forming units (CFU), or 5 billion CFU of the oral capsule per day. Participants completed biweekly anxiety, insomnia and cognition measures, daily mood, sleep, and quality of life surveys, and collected wearable heart rate variability. 83 individuals were evaluated, aged 39 ± 13 years, 63% female and 64% Caucasian. Participants receiving 5 billion CFU exhibited significantly lower anxiety (GAD-7) scores at weeks 4 and 6 compared to placebo (Kruskal-Wallis P < 0.05). This result was clinically meaningful, with 68% of participants in the 5 billion CFU cohort exhibiting improvement by more than one category in their GAD-7 scores at week 6, compared to 37% in the 1 billion CFU group and 26% in the placebo group (e.g. from moderate to no anxiety) (Fisher's exact test P = 0.002 for 5 billion CFU vs Placebo). No serious adverse events occurred. A daily capsule containing 5 billion CFU Lp815 significantly reduced anxiety in a diverse cohort of adults at 4 and 6 weeks following daily consumption. GABA-producing probiotics may offer a safe option for anxiety reduction in people with mild to moderate anxiety. Trial Registration. The trial was IRB approved and registered with ClinicalTrials.gov (NCT06466603).

主要的抑制性神经递质γ -氨基丁酸或GABA在情绪和睡眠中起着关键作用。GABA在中枢神经系统和肠-脑轴中都有镇静和抗焦虑作用,这引起了人们对肠道GABA调节情绪和睡眠的潜力的兴趣。几种细菌菌株可以产生GABA,但它们对现实世界的影响却知之甚少。我们研究了2剂植物乳杆菌Lp815菌株在6周内对轻度至中度焦虑成人的焦虑、睡眠、情绪、生活质量、认知、心率变异性和不良事件的影响。该试验结构为双盲、随机、安慰剂对照试验,可选择开放标签扩展。参与者被盲目分配接受安慰剂,每天10亿菌落形成单位(CFU)或50亿CFU的口服胶囊。参与者每两周完成一次焦虑、失眠和认知测量,每日情绪、睡眠和生活质量调查,并收集可穿戴心率变异性。83例,年龄39±13岁,63%为女性,64%为白人。与安慰剂相比,接受50亿CFU治疗的参与者在第4周和第6周的焦虑(GAD-7)评分显著降低(Kruskal-Wallis P < 0.05)。这一结果具有临床意义,在50亿CFU队列中,68%的参与者在第6周的GAD-7评分中表现出不止一个类别的改善,而10亿CFU组为37%,安慰剂组为26%(例如,从中度到无焦虑)(50亿CFU vs安慰剂的Fisher精确检验P = 0.002)。未发生严重不良事件。每日服用含有50亿CFU Lp815的胶囊,可在每日服用后4周和6周显著降低不同成年人的焦虑。产生gaba的益生菌可能为轻度至中度焦虑的人提供一种安全的减少焦虑的选择。试验注册。该试验已获得IRB批准并在ClinicalTrials.gov注册(NCT06466603)。
{"title":"Lactiplantibacillus plantarum Lp815 decreases anxiety in people with mild to moderate anxiety: a direct-to-consumer, randomised, double-blind, placebo-controlled study.","authors":"A D Grant, M C B Erfe, C J Delebecque, D Keller, N P Zimmerman, P L Oliver, B Youssef, J Moos, V Luna, N Craft","doi":"10.1163/18762891-bja00073","DOIUrl":"10.1163/18762891-bja00073","url":null,"abstract":"<p><p>The major inhibitory neurotransmitter gamma-aminobutyric acid or GABA plays a pivotal role in mood and sleep. GABA exerts sedative and anxiolytic effects both within the central nervous system and through the gut-brain axis, which has generated interest in the potential for gut GABA to modulate mood and sleep. Several bacterial strains can produce GABA, yet their real-world impacts are poorly understood. We investigated the impact of 2 doses of the strain Lactiplantibacillus plantarum Lp815 on anxiety, sleep, mood, quality of life, cognition, heart rate variability and adverse events in adults with mild to moderate anxiety over a 6-week period. The trial was structured as a double-blinded, randomised, placebo-controlled trial with optional open label extension. Participants were blindly assigned to receive either a placebo, 1 billion colony-forming units (CFU), or 5 billion CFU of the oral capsule per day. Participants completed biweekly anxiety, insomnia and cognition measures, daily mood, sleep, and quality of life surveys, and collected wearable heart rate variability. 83 individuals were evaluated, aged 39 ± 13 years, 63% female and 64% Caucasian. Participants receiving 5 billion CFU exhibited significantly lower anxiety (GAD-7) scores at weeks 4 and 6 compared to placebo (Kruskal-Wallis P < 0.05). This result was clinically meaningful, with 68% of participants in the 5 billion CFU cohort exhibiting improvement by more than one category in their GAD-7 scores at week 6, compared to 37% in the 1 billion CFU group and 26% in the placebo group (e.g. from moderate to no anxiety) (Fisher's exact test P = 0.002 for 5 billion CFU vs Placebo). No serious adverse events occurred. A daily capsule containing 5 billion CFU Lp815 significantly reduced anxiety in a diverse cohort of adults at 4 and 6 weeks following daily consumption. GABA-producing probiotics may offer a safe option for anxiety reduction in people with mild to moderate anxiety. Trial Registration. The trial was IRB approved and registered with ClinicalTrials.gov (NCT06466603).</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"521-532"},"PeriodicalIF":3.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143960910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Traditional Asian Diet on dietary fibre requirement, gut microbiome composition, and faecal and urine metabolomes in healthy Asian women: a pilot study. 传统亚洲饮食对健康亚洲女性膳食纤维需求、肠道微生物组成和粪便和尿液代谢组的影响:一项试点研究
IF 3 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-22 DOI: 10.1163/18762891-bja00074
N-F Sahran, C W Chong, I H Ismail, F Taib, P S Hoo, U D Palanisamy, U Sundralingam, C S J Teh, Z X Kong, Q Ayub, F Yoke Ling, S N H Hazlan, M Azlan, S Abdul Razak, T A D A-A Tengku Din, N Abdullah, N Tagiling, V Tee, M Ehab Ayad, F M Zheng, E El-Omar, Y Y Lee

The Traditional Asian Diet (TAD) is characterised by high dietary fibre and functional foods. This study investigated TAD's effects on meeting fibre requirements, gut microbiome, and faecal and urine metabolomes. A four-week randomised controlled trial was conducted among healthy Asian women allocated into the TAD group (n = 11) following a newly developed TAD program and the control group (n = 11). Assessments included dietary intake, gut health (symptoms, faecal form, frequency), serum fatty acids binding protein-2 (FABP-2) levels, faecal microbiome via 16s rRNA sequencing, and faecal and urine metabolites which were analysed using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR), respectively. The TAD group showed significant increases in dietary fibre ( P < 0.001), reduced fat ( P < 0.05), and improved faecal form ( P = 0.009) compared to the control group. The TAD group was enriched with Parabacteroides merdae, while Bacteroides uniformis was more abundant in the control group. Individuals with baseline Prevotella copri showed its enrichment following TAD and higher butyrate levels, unlike the control group. The TAD led to lower urine levels of creatinine, dimethylamine, and phenethylamine compared to the control diet. In conclusion, the TAD program has proven beneficial effects in achieving dietary fibre, enriching the beneficial microbiota and metabolites, reducing harmful metabolites, and improving faecal form compared to a control diet. Clinical trial registration: NCT04885959, clinicaltrials.gov.

传统的亚洲饮食(TAD)的特点是高膳食纤维和功能性食品。本研究探讨了TAD对满足纤维需求、肠道微生物组、粪便和尿液代谢组的影响。在一项为期四周的随机对照试验中,健康的亚洲女性被分为新开发的TAD计划后的TAD组(n = 11)和对照组(n = 11)。评估包括饮食摄入、肠道健康(症状、粪便形式、频率)、血清脂肪酸结合蛋白-2 (FABP-2)水平、粪便微生物组(通过16s rRNA测序)以及粪便和尿液代谢物(分别使用气相色谱-质谱(GC-MS)和核磁共振(NMR)分析)。与对照组相比,TAD组的膳食纤维含量显著增加(P < 0.001),脂肪含量显著减少(P < 0.05),粪便形态显著改善(P = 0.009)。TAD组富含merabobacteroides,而对照组则含有较多的Bacteroides uniformis。与对照组不同,具有基线copri普雷沃氏菌的个体在TAD和较高的丁酸盐水平后显示其富集。与对照组相比,TAD降低了尿中肌酐、二甲胺和苯乙胺的含量。总之,与对照饮食相比,TAD计划已被证明在获得膳食纤维,丰富有益微生物群和代谢物,减少有害代谢物和改善粪便形态方面具有有益作用。临床试验注册:NCT04885959, clinicaltrials.gov。
{"title":"Effects of Traditional Asian Diet on dietary fibre requirement, gut microbiome composition, and faecal and urine metabolomes in healthy Asian women: a pilot study.","authors":"N-F Sahran, C W Chong, I H Ismail, F Taib, P S Hoo, U D Palanisamy, U Sundralingam, C S J Teh, Z X Kong, Q Ayub, F Yoke Ling, S N H Hazlan, M Azlan, S Abdul Razak, T A D A-A Tengku Din, N Abdullah, N Tagiling, V Tee, M Ehab Ayad, F M Zheng, E El-Omar, Y Y Lee","doi":"10.1163/18762891-bja00074","DOIUrl":"https://doi.org/10.1163/18762891-bja00074","url":null,"abstract":"<p><p>The Traditional Asian Diet (TAD) is characterised by high dietary fibre and functional foods. This study investigated TAD's effects on meeting fibre requirements, gut microbiome, and faecal and urine metabolomes. A four-week randomised controlled trial was conducted among healthy Asian women allocated into the TAD group (n = 11) following a newly developed TAD program and the control group (n = 11). Assessments included dietary intake, gut health (symptoms, faecal form, frequency), serum fatty acids binding protein-2 (FABP-2) levels, faecal microbiome via 16s rRNA sequencing, and faecal and urine metabolites which were analysed using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR), respectively. The TAD group showed significant increases in dietary fibre ( P < 0.001), reduced fat ( P < 0.05), and improved faecal form ( P = 0.009) compared to the control group. The TAD group was enriched with Parabacteroides merdae, while Bacteroides uniformis was more abundant in the control group. Individuals with baseline Prevotella copri showed its enrichment following TAD and higher butyrate levels, unlike the control group. The TAD led to lower urine levels of creatinine, dimethylamine, and phenethylamine compared to the control diet. In conclusion, the TAD program has proven beneficial effects in achieving dietary fibre, enriching the beneficial microbiota and metabolites, reducing harmful metabolites, and improving faecal form compared to a control diet. Clinical trial registration: NCT04885959, clinicaltrials.gov.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-14"},"PeriodicalIF":3.0,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
d-Allulose and erythritol increase butyrate production and impact the gut microbiota in healthy adults and adults with type-2 diabetes ex vivo. d-Allulose和赤藓糖醇可增加健康成人和2型糖尿病患者体内丁酸盐的生成并影响肠道微生物群。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-10 DOI: 10.1163/18762891-bja00071
K Adolphus, P Van den Abbeele, J Poppe, S Deyaert, A Baudot, I Laurie, K Karnik, D Risso

Type-2 diabetes mellitus (T2DM) is associated with a reduction of butyrate-producing gut bacteria. d-allulose and erythritol are low-no-calorie sweeteners (LNCS) used as sugar substitutes to reduce high free sugar intakes associated with non-communicable diseases, including T2DM. This is the first study to investigate the impact of representative and physiologically relevant doses of d-allulose and erythritol on the human gut microbiota of T2DM ( n = 6) and co-living healthy adults ( n = 6). Using the clinically predictive ex vivo SIFR® technology, d-allulose and erythritol were shown to significantly increase butyrate production 24-48 h after treatment and significantly increased the abundance of particular microbial families or species in both healthy individuals and those with T2DM compared to the no-substrate control (NSC). d-Allulose significantly increased the abundance of Anaerostipes hadrus and Lachnospiraceae_unclassified_species ( u _ s) at 48 h in healthy adults and adults with T2DM compared to the NSC. Erythritol significantly increased the abundance of Eubacteriaceae and Barnesiellaceae families at 48 h in healthy adults and adults with T2DM but had no significant effects on microbial species compared to the NSC. d-Allulose resulted in a larger increase in butyrate between 6-24 h whereas erythritol resulted in a larger increased butyrate between 24-48 h. The findings suggest prebiotic potential of d-allulose and erythritol worth of investigation in human clinical trials, as blending d-allulose and erythritol could be a promising strategy to reduce free sugar intakes and increase butyrate production in both healthy and T2DM individuals, resulting in beneficial effects on glycemic control.

2型糖尿病(T2DM)与产生丁酸盐的肠道细菌减少有关。d-allulose和赤藓糖醇是低热量甜味剂(LNCS),用作糖替代品,以减少与非传染性疾病(包括2型糖尿病)相关的高游离糖摄入量。这是第一个研究具有代表性和生理相关剂量的d-allulose和赤藓糖醇对2型糖尿病患者(n = 6)和共同生活的健康成年人(n = 6)肠道微生物群影响的研究。使用临床预测离体SIFR®技术,与无底物对照组(NSC)相比,d-allulose和erythritol在治疗后24-48小时显着增加丁酸盐产量,并显着增加健康个体和T2DM患者特定微生物家族或物种的丰度。与NSC相比,d-Allulose显著增加了健康成人和T2DM患者48 h时hadrus厌氧菌和lachnospirae未分类种(u _s)的丰度。赤藓糖醇在48 h显著增加了健康成人和T2DM成人的真杆菌科和巴氏杆菌科的丰度,但与NSC相比,对微生物种类没有显著影响。d-Allulose导致6-24小时之间丁酸盐的增加,而赤藓糖醇导致24-48小时之间丁酸盐的增加。研究结果表明,d-Allulose和赤藓糖醇的益生元潜力值得在人体临床试验中进行研究,因为混合d-Allulose和赤藓糖醇可能是一种有希望的策略,可以减少健康和2型糖尿病个体的游离糖摄入量,增加丁酸盐的产生,从而对血糖控制产生有益的影响。
{"title":"d-Allulose and erythritol increase butyrate production and impact the gut microbiota in healthy adults and adults with type-2 diabetes ex vivo.","authors":"K Adolphus, P Van den Abbeele, J Poppe, S Deyaert, A Baudot, I Laurie, K Karnik, D Risso","doi":"10.1163/18762891-bja00071","DOIUrl":"10.1163/18762891-bja00071","url":null,"abstract":"<p><p>Type-2 diabetes mellitus (T2DM) is associated with a reduction of butyrate-producing gut bacteria. d-allulose and erythritol are low-no-calorie sweeteners (LNCS) used as sugar substitutes to reduce high free sugar intakes associated with non-communicable diseases, including T2DM. This is the first study to investigate the impact of representative and physiologically relevant doses of d-allulose and erythritol on the human gut microbiota of T2DM ( n = 6) and co-living healthy adults ( n = 6). Using the clinically predictive ex vivo SIFR® technology, d-allulose and erythritol were shown to significantly increase butyrate production 24-48 h after treatment and significantly increased the abundance of particular microbial families or species in both healthy individuals and those with T2DM compared to the no-substrate control (NSC). d-Allulose significantly increased the abundance of Anaerostipes hadrus and Lachnospiraceae_unclassified_species ( u _ s) at 48 h in healthy adults and adults with T2DM compared to the NSC. Erythritol significantly increased the abundance of Eubacteriaceae and Barnesiellaceae families at 48 h in healthy adults and adults with T2DM but had no significant effects on microbial species compared to the NSC. d-Allulose resulted in a larger increase in butyrate between 6-24 h whereas erythritol resulted in a larger increased butyrate between 24-48 h. The findings suggest prebiotic potential of d-allulose and erythritol worth of investigation in human clinical trials, as blending d-allulose and erythritol could be a promising strategy to reduce free sugar intakes and increase butyrate production in both healthy and T2DM individuals, resulting in beneficial effects on glycemic control.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"573-591"},"PeriodicalIF":3.1,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotic Lacticaseibacillus paracasei from human gut microbiome against colistin-resistant Klebsiella pneumoniae: in vitro, in vivo and probiogenomic approaches. 来自人肠道微生物群的益生菌副干酪乳杆菌抗耐粘菌素肺炎克雷伯菌:体外,体内和益生菌基因组学方法。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-09 DOI: 10.1163/18762891-bja00065
Devika J Das, Vishnu Sunil Jaikumar, Karthika Suryaletha, Merin Paul, Aparna Shankar, Swapna R Nath, Sabu Thomas

Antibiotic treatment regimens fail to address Klebsiella pneumoniae exhibiting resistance to multiple drugs, including the last resort antibiotic, colistin. The use of probiotics as candidates for alternative antimicrobial therapy or as a source of new antibiotics is considered as an emerging trend in therapeutics. Rejuvenating the human gut with probiotics offers an intriguing therapeutic approach in various enteric diseases. However, the precise role of probiotics in non-enteric infections, particularly those caused by colistin-resistant Klebsiella pneumoniae remains unresolved, prompting further comprehensive research. Therefore, we propose an innovative prophylactic approach using Lacticaseibacilli of human gut origin against this pathogen. Probiotic characterisation like tolerance to acid, bile and sodium chloride were performed to evaluate its gastric survival. In vitro experiments revealed that non-neutralised cell-free supernatant (CFS) of Lacticaseibacillus has the potential to inhibit pathogenic K. pneumoniae. The observed growth reduction is suggestive of the cumulative effect of organic acids and other antimicrobial substances in CFS. The two Lacticaseibacillus paracasei isolates exhibited promising activity (with suspected proteinaceous heat labile molecules) against K. pneumoniae and those with better adhesion to CaCo-2 cell lines were selected for downstream studies. Scanning electron microscopic analysis of CFS treated pathogen cells revealed cell surface distortions and pore formations. The prophylactic potential of Lacticaseibacillus (live and heat-inactivated forms) in Balb/c mice model showed a reduction in histopathological and microbiological alterations caused by K. pneumoniae, when compared with untreated pathogen control. Whole genome analysis of the potential probiotic isolate revealed the genome is devoid of any antibiotic resistance genes and other virulence markers indicating its safety in vivo. Furthermore, the in vitro pathogen inhibition results were reinforced by antiSMASH and BAGEL analysis, which predicted the presence of putative bacteriocin genes. Hence, this multiapproach research study has revealed a promising prophylactic probiotic from human gut microbiome against multi-drug resistant K. pneumoniae.

抗生素治疗方案不能解决肺炎克雷伯菌表现出对多种药物的耐药性,包括最后的手段抗生素粘菌素。使用益生菌作为替代抗菌治疗的候选药物或作为新抗生素的来源被认为是治疗学的新兴趋势。用益生菌恢复人体肠道的活力为各种肠道疾病提供了一种有趣的治疗方法。然而,益生菌在非肠道感染中的确切作用,特别是那些由耐粘菌素肺炎克雷伯菌引起的感染,仍未得到解决,需要进一步的全面研究。因此,我们提出了一种创新的预防方法,利用人类肠道来源的乳酸杆菌来对抗这种病原体。益生菌的特性如对酸、胆汁和氯化钠的耐受性来评估其胃存活率。体外实验表明,乳酸菌非中和无细胞上清液(CFS)具有抑制致病性肺炎克雷伯菌的潜力。观察到的生长减少表明有机酸和其他抗菌物质在CFS中的累积效应。这两株副干酪乳杆菌对肺炎克雷伯菌表现出良好的活性(疑似含有蛋白性热不稳定分子),并选择对CaCo-2细胞系粘附较好的菌株进行下游研究。CFS处理的病原体细胞扫描电镜分析显示细胞表面变形和孔隙形成。在Balb/c小鼠模型中,乳酸杆菌(活的和热灭活的形式)的预防潜力显示,与未经治疗的病原体对照相比,肺炎克雷伯菌引起的组织病理学和微生物学改变减少。对潜在的益生菌分离物的全基因组分析表明,该基因组不含任何抗生素抗性基因和其他毒力标记,表明其在体内是安全的。此外,抗smash和BAGEL分析进一步证实了体外病原菌抑制结果,预测了细菌素基因的存在。因此,这项多途径的研究揭示了一种有前景的来自人类肠道微生物群的预防性益生菌,用于对抗多重耐药肺炎克雷伯菌。
{"title":"Probiotic Lacticaseibacillus paracasei from human gut microbiome against colistin-resistant Klebsiella pneumoniae: in vitro, in vivo and probiogenomic approaches.","authors":"Devika J Das, Vishnu Sunil Jaikumar, Karthika Suryaletha, Merin Paul, Aparna Shankar, Swapna R Nath, Sabu Thomas","doi":"10.1163/18762891-bja00065","DOIUrl":"10.1163/18762891-bja00065","url":null,"abstract":"<p><p>Antibiotic treatment regimens fail to address Klebsiella pneumoniae exhibiting resistance to multiple drugs, including the last resort antibiotic, colistin. The use of probiotics as candidates for alternative antimicrobial therapy or as a source of new antibiotics is considered as an emerging trend in therapeutics. Rejuvenating the human gut with probiotics offers an intriguing therapeutic approach in various enteric diseases. However, the precise role of probiotics in non-enteric infections, particularly those caused by colistin-resistant Klebsiella pneumoniae remains unresolved, prompting further comprehensive research. Therefore, we propose an innovative prophylactic approach using Lacticaseibacilli of human gut origin against this pathogen. Probiotic characterisation like tolerance to acid, bile and sodium chloride were performed to evaluate its gastric survival. In vitro experiments revealed that non-neutralised cell-free supernatant (CFS) of Lacticaseibacillus has the potential to inhibit pathogenic K. pneumoniae. The observed growth reduction is suggestive of the cumulative effect of organic acids and other antimicrobial substances in CFS. The two Lacticaseibacillus paracasei isolates exhibited promising activity (with suspected proteinaceous heat labile molecules) against K. pneumoniae and those with better adhesion to CaCo-2 cell lines were selected for downstream studies. Scanning electron microscopic analysis of CFS treated pathogen cells revealed cell surface distortions and pore formations. The prophylactic potential of Lacticaseibacillus (live and heat-inactivated forms) in Balb/c mice model showed a reduction in histopathological and microbiological alterations caused by K. pneumoniae, when compared with untreated pathogen control. Whole genome analysis of the potential probiotic isolate revealed the genome is devoid of any antibiotic resistance genes and other virulence markers indicating its safety in vivo. Furthermore, the in vitro pathogen inhibition results were reinforced by antiSMASH and BAGEL analysis, which predicted the presence of putative bacteriocin genes. Hence, this multiapproach research study has revealed a promising prophylactic probiotic from human gut microbiome against multi-drug resistant K. pneumoniae.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"443-463"},"PeriodicalIF":3.1,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactiplantibacillus plantarum strains with enhanced animal growth promoting capabilities in well fed animals. 植物乳杆菌菌株在良好饲养动物中具有增强的促进动物生长的能力。
IF 3.1 4区 医学 Q2 MICROBIOLOGY Pub Date : 2025-04-03 DOI: 10.1163/18762891-bja00070
Maria Elena Martino, Martin Schwarzer, Pauline Joncour, Hugo Gervais, Stéphanie Geoffroy, Benjamin Gillet, Sandrine Hughes, François Leulier

The gut microbiota has a profound impact on animal physiology, improving organ function and promoting growth under different nutritional conditions. Complex mechanisms underlying growth-promotion by the gut microbiota have been described. In particular, strains of the same bacterial species within different genera exhibit strain-specific growth promotion. In a previous study, we used artificial selection on a poorly growth-promoting strain of Lactiplantibacillus plantarum (NIZO2877) and isolated evolved strains with enhanced growth-promoting capabilities in insects. However, it remains unclear to what extent existing growth-promoting strains can further optimise their benefits and whether these effects persist in well-fed mammals. Here, we experimentally evolved a Drosophila growth-promoting strain of L. plantarum (WJL) under conditions of nutrient deprivation. This strain had not undergone any prior evolutionary adaptation. Our aim was to maximize its growth-promoting benefits while evaluating the translation of this phenotype in different animal models. After artificial selection across ten Drosophila generations, we identified an evolved strain (L. plantarum IGFL1) that significantly improved Drosophila juvenile growth compared to the ancestral strain. Administration of IGFL1 to conventional C57Bl/6j male mice under both nutrient deprivation and normal dietary conditions significantly increased body length and weight growth rates compared to placebo-fed animals. These effects were comparable to those of the ancestral strain, suggesting a context-dependent phenotype. Genome sequencing of IGFL1 revealed the presence of four mutations that may be related to more effective utilization of nutrients. Our results demonstrate the high adaptive potential of L. plantarum, although functional improvements in promoting animal growth are strictly context-dependent. Despite this specificity in adaptation, both strains (the ancestral WJL and the evolved IGFL1) show transferable potential in terms of animal growth promotion, as they are both highly beneficial in flies and mice. These results pave the way for testing these strains to enhance the growth performance of agricultural target species.

肠道菌群在不同营养条件下对动物生理、改善器官功能和促进生长具有深远的影响。肠道菌群促进生长的复杂机制已经被描述。特别是,不同属内同一菌种的菌株表现出菌株特异性生长促进作用。在之前的研究中,我们对植物乳杆菌(Lactiplantibacillus plantarum, NIZO2877)的促生长能力较差的菌株进行了人工选择,并在昆虫中分离出促生长能力较强的进化菌株。然而,目前尚不清楚现有的促生长菌株能在多大程度上进一步优化它们的益处,以及这些影响是否会在营养充足的哺乳动物中持续存在。在营养匮乏的条件下,我们实验进化出了一株促进果蝇生长的L. plantarum (WJL)菌株。这个菌株没有经历过任何先前的进化适应。我们的目的是最大化其促进生长的益处,同时评估该表型在不同动物模型中的翻译。经过十代果蝇的人工选择,我们发现了一个进化菌株(L. plantarum IGFL1),与祖先菌株相比,它显著改善了果蝇幼体的生长。在营养剥夺和正常饮食条件下,对常规C57Bl/6j雄性小鼠给予IGFL1,与安慰剂喂养的动物相比,显著增加了体长和体重的生长率。这些影响与祖先菌株相当,表明环境依赖表型。IGFL1的基因组测序显示存在四个突变,可能与更有效地利用营养物质有关。虽然植物乳杆菌促进动物生长的功能改善严格依赖于环境,但我们的研究结果表明植物乳杆菌具有很高的适应潜力。尽管具有这种适应性特异性,但这两种菌株(祖先WJL和进化后的IGFL1)在促进动物生长方面显示出可转移的潜力,因为它们对果蝇和小鼠都非常有益。这些结果为测试这些菌株以提高农业目标物种的生长性能铺平了道路。
{"title":"Lactiplantibacillus plantarum strains with enhanced animal growth promoting capabilities in well fed animals.","authors":"Maria Elena Martino, Martin Schwarzer, Pauline Joncour, Hugo Gervais, Stéphanie Geoffroy, Benjamin Gillet, Sandrine Hughes, François Leulier","doi":"10.1163/18762891-bja00070","DOIUrl":"10.1163/18762891-bja00070","url":null,"abstract":"<p><p>The gut microbiota has a profound impact on animal physiology, improving organ function and promoting growth under different nutritional conditions. Complex mechanisms underlying growth-promotion by the gut microbiota have been described. In particular, strains of the same bacterial species within different genera exhibit strain-specific growth promotion. In a previous study, we used artificial selection on a poorly growth-promoting strain of Lactiplantibacillus plantarum (NIZO2877) and isolated evolved strains with enhanced growth-promoting capabilities in insects. However, it remains unclear to what extent existing growth-promoting strains can further optimise their benefits and whether these effects persist in well-fed mammals. Here, we experimentally evolved a Drosophila growth-promoting strain of L. plantarum (WJL) under conditions of nutrient deprivation. This strain had not undergone any prior evolutionary adaptation. Our aim was to maximize its growth-promoting benefits while evaluating the translation of this phenotype in different animal models. After artificial selection across ten Drosophila generations, we identified an evolved strain (L. plantarum IGFL1) that significantly improved Drosophila juvenile growth compared to the ancestral strain. Administration of IGFL1 to conventional C57Bl/6j male mice under both nutrient deprivation and normal dietary conditions significantly increased body length and weight growth rates compared to placebo-fed animals. These effects were comparable to those of the ancestral strain, suggesting a context-dependent phenotype. Genome sequencing of IGFL1 revealed the presence of four mutations that may be related to more effective utilization of nutrients. Our results demonstrate the high adaptive potential of L. plantarum, although functional improvements in promoting animal growth are strictly context-dependent. Despite this specificity in adaptation, both strains (the ancestral WJL and the evolved IGFL1) show transferable potential in terms of animal growth promotion, as they are both highly beneficial in flies and mice. These results pave the way for testing these strains to enhance the growth performance of agricultural target species.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"545-555"},"PeriodicalIF":3.1,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Beneficial microbes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1