Wenyan Guan, Ning Zhang, Arjan Bains, Mourad Sadqi, Cynthia M. Dupureur, Patricia J. LiWang
Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in Escherichia coli, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a Kd for vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.
{"title":"Efficient production of fluorophore-labeled CC chemokines for biophysical studies using recombinant enterokinase and recombinant sortase","authors":"Wenyan Guan, Ning Zhang, Arjan Bains, Mourad Sadqi, Cynthia M. Dupureur, Patricia J. LiWang","doi":"10.1002/bip.23557","DOIUrl":"10.1002/bip.23557","url":null,"abstract":"<p>Chemokines are important immune system proteins, many of which mediate inflammation due to their function to activate and cause chemotaxis of leukocytes. An important anti-inflammatory strategy is therefore to bind and inhibit chemokines, which leads to the need for biophysical studies of chemokines as they bind various possible partners. Because a successful anti-chemokine drug should bind at low concentrations, techniques such as fluorescence anisotropy that can provide nanomolar signal detection are required. To allow fluorescence experiments to be carried out on chemokines, a method is described for the production of fluorescently labeled chemokines. First, a fusion-tagged chemokine is produced in <i>Escherichia coli</i>, then efficient cleavage of the N-terminal fusion partner is carried out with lab-produced enterokinase, followed by covalent modification with a fluorophore, mediated by the lab-produced sortase enzyme. This overall process reduces the need for expensive commercial enzymatic reagents. Finally, we utilize the product, vMIP-fluor, in binding studies with the chemokine binding protein vCCI, which has great potential as an anti-inflammatory therapeutic, showing a binding constant for vCCI:vMIP-fluor of 0.37 ± 0.006 nM. We also show how a single modified chemokine homolog (vMIP-fluor) can be used in competition assays with other chemokines and we report a <i>K</i><sub>d</sub> for vCCI:CCL17 of 14 μM. This work demonstrates an efficient method of production and fluorescent labeling of chemokines for study across a broad range of concentrations.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9667286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhayan Das, Koushik Bhattacharya, Jonny J. Blaker, Nikhil K. Singha, Mahitosh Mandal
In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.
{"title":"Beyond traditional therapy: Mucoadhesive polymers as a new frontier in oral cancer management","authors":"Subhayan Das, Koushik Bhattacharya, Jonny J. Blaker, Nikhil K. Singha, Mahitosh Mandal","doi":"10.1002/bip.23556","DOIUrl":"10.1002/bip.23556","url":null,"abstract":"<p>In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 9","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10627948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Svetlana V. Shilova, Grigory M. Mirgaleev, Ksenia A. Romanova, Yury G. Galyametdinov
This work reports synthesis of pH-responsive alginate/chitosan hydrogel spheres with the average diameter of 2.0 ± 0.05 mm, which contain cefotaxime that is an antibiotic of the cefalosporine group. The spheres provided the cefotaxime encapsulation efficiency of 95 ± 1%. An in vitro release of cefotaxime from the spheres in the media that simulate human biological fluids in peroral delivery conditions was found to be a pH-dependent process. The analysis of cefotaxime release kinetics by the Korsmeyer–Peppas model revealed a non-Fickian mechanism of its diffusion, which may be related to intermolecular interactions occurring between the antibiotic and chitosan. Conductometry, UV spectroscopy, and IR spectroscopy were used to study complexation of chitosan with cefotaxime in aqueous media with varied pH, characterize the composition of the complexes, and calculate their stability constants. The composition of the cefotaxime–chitosan complexes was found to correspond to the 1.0:4.0 and 1.0:2.0 molar ratios of the components at pH 2.0 and 5.6, respectively. Quantum chemical modeling was used to evaluate energy characteristics of chitosan–cefotaxime complexation considering the influence of a solvent.
{"title":"Alginate/chitosan hydrogels as perspective transport systems for cefotaxime","authors":"Svetlana V. Shilova, Grigory M. Mirgaleev, Ksenia A. Romanova, Yury G. Galyametdinov","doi":"10.1002/bip.23555","DOIUrl":"10.1002/bip.23555","url":null,"abstract":"<p>This work reports synthesis of pH-responsive alginate/chitosan hydrogel spheres with the average diameter of 2.0 ± 0.05 mm, which contain cefotaxime that is an antibiotic of the cefalosporine group. The spheres provided the cefotaxime encapsulation efficiency of 95 ± 1%. An in vitro release of cefotaxime from the spheres in the media that simulate human biological fluids in peroral delivery conditions was found to be a pH-dependent process. The analysis of cefotaxime release kinetics by the Korsmeyer–Peppas model revealed a non-Fickian mechanism of its diffusion, which may be related to intermolecular interactions occurring between the antibiotic and chitosan. Conductometry, UV spectroscopy, and IR spectroscopy were used to study complexation of chitosan with cefotaxime in aqueous media with varied pH, characterize the composition of the complexes, and calculate their stability constants. The composition of the cefotaxime–chitosan complexes was found to correspond to the 1.0:4.0 and 1.0:2.0 molar ratios of the components at pH 2.0 and 5.6, respectively. Quantum chemical modeling was used to evaluate energy characteristics of chitosan–cefotaxime complexation considering the influence of a solvent.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Before reaching their targets, sequence-specific DNA-binding proteins nonspecifically bind to DNA through electrostatic interactions and stochastically change their locations on DNA. Investigations into the dynamics of DNA-scanning by proteins are nontrivial due to the simultaneous presence of multiple translocation mechanisms and many sites for the protein to nonspecifically bind to DNA. Nuclear magnetic resonance (NMR) spectroscopy can provide information about the target DNA search processes at an atomic level. Paramagnetic relaxation enhancement (PRE) is particularly useful to study how the proteins scan DNA in the search process. Previously, relatively simple two-state or three-state exchange models were used to explain PRE data reflecting the target search process. In this work, using more realistic discrete-state stochastic kinetics models embedded into an NMR master equation, we analyzed the PRE data for the HoxD9 homeodomain interacting with DNA. The kinetic models that incorporate sliding, dissociation, association, and intersegment transfer can reproduce the PRE profiles observed at some different ionic strengths. The analysis confirms the previous interpretation of the PRE data and shows that the protein's probability distribution among nonspecific sites is nonuniform during the target DNA search process.
{"title":"Analyzing paramagnetic NMR data on target DNA search by proteins using a discrete-state kinetic model for translocation","authors":"Binhan Yu, Junji Iwahara","doi":"10.1002/bip.23553","DOIUrl":"10.1002/bip.23553","url":null,"abstract":"<p>Before reaching their targets, sequence-specific DNA-binding proteins nonspecifically bind to DNA through electrostatic interactions and stochastically change their locations on DNA. Investigations into the dynamics of DNA-scanning by proteins are nontrivial due to the simultaneous presence of multiple translocation mechanisms and many sites for the protein to nonspecifically bind to DNA. Nuclear magnetic resonance (NMR) spectroscopy can provide information about the target DNA search processes at an atomic level. Paramagnetic relaxation enhancement (PRE) is particularly useful to study how the proteins scan DNA in the search process. Previously, relatively simple two-state or three-state exchange models were used to explain PRE data reflecting the target search process. In this work, using more realistic discrete-state stochastic kinetics models embedded into an NMR master equation, we analyzed the PRE data for the HoxD9 homeodomain interacting with DNA. The kinetic models that incorporate sliding, dissociation, association, and intersegment transfer can reproduce the PRE profiles observed at some different ionic strengths. The analysis confirms the previous interpretation of the PRE data and shows that the protein's probability distribution among nonspecific sites is nonuniform during the target DNA search process.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9553340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Robinson, Elaine Tao, Teresa Neeman, Benjamin Kaehler, Ben Corry
In the CryoEM-structure of the hSkMNaV1.4 ion channel (PDB:6AGF), the 59-residue DIS5-S6 linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete hSkMNaV1.4 channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to SkMNaV1.4 structure and function.
{"title":"New insights from modelling studies and molecular dynamics simulations of the DIS5-S6 extracellular linker of the skeletal muscle sodium channel NaV1.4","authors":"Anna Robinson, Elaine Tao, Teresa Neeman, Benjamin Kaehler, Ben Corry","doi":"10.1002/bip.23540","DOIUrl":"https://doi.org/10.1002/bip.23540","url":null,"abstract":"<p>In the CryoEM-structure of the <i>hSkMNaV1.4</i> ion channel (PDB:6AGF), the 59-residue DI<sub>S5-S6</sub> linker peptide was omitted due to absence of electron density. This peptide is intriguing – comprised of unique sequence and found only in mammalian skeletal muscle sodium ion channels. To probe potential physiological and evolutionary significance, we constructed an homology model of the complete <i>hSkMNaV1.4</i> channel. Rather than a flexible random coil potentiating drift across the channel, the linker folds into a compact configuration through self-assembling secondary structural elements. Analogous sequences from 48 mammalian organisms show hypervariability with between 40% and 100% sequence similarity. To investigate structural implications, sequences from 14 representative organisms were additionally modelled. All showed highly conserved N-and C-terminal residues closely superimposed, suggesting a critical functional role. An optimally located asparagine residue within the conserved region was investigated for N-linked glycosylation and MD simulations carried out. Results suggest a complex glycan added at this site in the linker may form electrostatic interactions with the DIV voltage sensing domain and be mechanistically involved in channel gating. The relationship of unique sequence, compact configuration, potential glycosylation and MD simulations are discussed relative to <i>SkMNaV1.4</i> structure and function.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 7","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23540","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate–polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2CO3-degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.
{"title":"A high molecular weight silk fibroin scaffold that resists degradation and promotes cell proliferation","authors":"Mengmeng Wang, Ying Wang, Peng Pan, Xueping Liu, Wenjing Zhang, Cheng Hu, Mingzhong Li","doi":"10.1002/bip.23554","DOIUrl":"10.1002/bip.23554","url":null,"abstract":"<p>The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate–polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na<sub>2</sub>CO<sub>3</sub>-degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 7","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9791709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher K. Sue, Nicole A. Cheung, Brendan J. Mahoney, Scott A. McConnell, Jack M. Scully, Janine Y. Fu, Chungyu Chang, Hung Ton-That, Joseph A. Loo, Robert T. Clubb
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the CdSrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that CdSrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (NSpaA) that is also crosslinked by CdSrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed “latch” mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting NSpaA for access to a shared thioester enzyme–substrate reaction intermediate.
许多种类的致病性革兰氏阳性细菌显示出共价交联的蛋白质聚合物(称为纤毛或缘毛),可介导微生物粘附到宿主组织上。这些结构由纤毛虫特异性分选酶组装而成,这种酶通过赖氨酸-异肽键将纤毛蛋白成分连接在一起。白喉棒状杆菌(Corynebacterium diphtheriae)的原型 SpaA 拟杆菌是由 Cd SrtA 拟杆菌特异性分选酶构建的,它能交联 SpaA 和 SpaB 拟杆菌内的赖氨酸残基,分别构建拟杆菌的轴和基部。在这里,我们发现 Cd SrtA 通过 K139(SpaB)-T494(SpaA)赖氨酸异肽键将 SpaB 与 SpaA 交联。尽管只有有限的序列同源性,但 SpaB 的核磁共振结构显示它与同样被 Cd SrtA 交联的 SpaA(N SpaA)的 N 端结构域有惊人的相似之处。特别是,这两种蛋白都含有位置相似的活性赖氨酸残基和相邻的无序 AB 环,据预测,它们都参与了最近提出的异肽键形成的 "闩锁 "机制。使用非活性 SpaB 变体进行的竞争实验以及其他核磁共振研究表明,SpaB 通过与 N SpaA 竞争以获得共享的硫酯酶-底物反应中间体,从而终止 SpaA 的聚合。
{"title":"The basal and major pilins in the Corynebacterium diphtheriae SpaA pilus adopt similar structures that competitively react with the pilin polymerase","authors":"Christopher K. Sue, Nicole A. Cheung, Brendan J. Mahoney, Scott A. McConnell, Jack M. Scully, Janine Y. Fu, Chungyu Chang, Hung Ton-That, Joseph A. Loo, Robert T. Clubb","doi":"10.1002/bip.23539","DOIUrl":"10.1002/bip.23539","url":null,"abstract":"<p>Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from <i>Corynebacterium diphtheriae</i> is built by the <sup>Cd</sup>SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that <sup>Cd</sup>SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (<sup>N</sup>SpaA) that is also crosslinked by <sup>Cd</sup>SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed “latch” mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting <sup>N</sup>SpaA for access to a shared thioester enzyme–substrate reaction intermediate.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9558659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosalina Lara-Rico, Claudia M. López-Badillo, Jesús A. Claudio-Rizo, Denis. A. Cabrera-Munguía, Juan J. Becerra-Rodríguez, Roberto Espinosa-Neira, Brenda R. Cruz-Ortiz
In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of Escherichia coli is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.
{"title":"Smart hydrogels based on semi-interpenetrating polymeric networks of collagen-polyurethane-alginate for soft/hard tissue healing, drug delivery devices, and anticancer therapies","authors":"Rosalina Lara-Rico, Claudia M. López-Badillo, Jesús A. Claudio-Rizo, Denis. A. Cabrera-Munguía, Juan J. Becerra-Rodríguez, Roberto Espinosa-Neira, Brenda R. Cruz-Ortiz","doi":"10.1002/bip.23538","DOIUrl":"10.1002/bip.23538","url":null,"abstract":"<p>In this work, hydrogels based on semi-interpenetrating polymeric networks (semi-IPN) based on collagen-polyurethane-alginate were studied physicochemically and from different approaches for biomedical application. It was determined that the matrices in the hydrogel state are crosslinked by the formation of urea and amide bonds between the biopolymer chains and the polyurethane crosslinker. The increment in alginate content (0–40 wt%) significantly increases the swelling capacity, generating semi-crystalline granular structures with improved storage modulus and resistance to thermal, hydrolytic, and proteolytic degradation. The in vitro bioactivity results indicated that the composition of these novel hydrogels stimulates the metabolic activity of monocytes and fibroblasts, benefiting their proliferation; while in cancer cell lines, it was determined that the composition of these biomaterials decreases the metabolic activity of breast cancer cells after 48 h of stimulation, and for colon cancer cells their metabolic activity decreases after 72 h of contact for the hydrogel with 40 wt% alginate. The matrices show a behavior of multidose release of ketorolac, and a higher concentration of analgesic is released in the semi-IPN matrix. The inhibition capacity of <i>Escherichia coli</i> is higher if the polysaccharide concentration is low (10 wt%). The in vitro wound closure test (scratch test) results indicate that the hydrogel with 20 wt% alginate shows an improvement in wound closure at 15 days of contact. Finally, the bioactivity of mineralization was evaluated to demonstrate that these hydrogels can induce the formation of carbonated apatite on their surface. The engineered hydrogels show biomedical multifunctionality and they could be applied in soft and hard tissue healing strategies, anticancer therapies, and drug release devices.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10044970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The simplest way to account for the influence of diffusion on the kinetics of multisite phosphorylation is to modify the rate constants in the conventional rate equations of chemical kinetics. We have previously shown that this is not enough and new transitions between the reactants must also be introduced. Here we extend our results by considering enzymes that are inactive after modifying the substrate and need time to become active again. This generalization leads to a surprising result. The introduction of enzyme reactivation results in a diffusion-modified kinetic scheme with a new transition that has a negative rate constant. The reason for this is that mapping non-Markovian rate equations onto Markovian ones with time-independent rate constants is not a good approximation at short times. We then developed a non-Markovian theory that involves memory kernels instead of rate constants. This theory is now valid at short times, but is more challenging to use. As an example, the diffusion-modified kinetic scheme with new connections was used to calculate kinetics of double phosphorylation and steady-state response in a phosphorylation-dephosphorylation cycle. We have reproduced the loss of bistability in the phosphorylation-dephosphorylation cycle when the enzyme reactivation time decreases, which was obtained by particle-based computer simulations.
{"title":"Kinetics of diffusion-influenced multisite phosphorylation with enzyme reactivation","authors":"Irina V. Gopich, Attila Szabo","doi":"10.1002/bip.23533","DOIUrl":"10.1002/bip.23533","url":null,"abstract":"<p>The simplest way to account for the influence of diffusion on the kinetics of multisite phosphorylation is to modify the rate constants in the conventional rate equations of chemical kinetics. We have previously shown that this is not enough and new transitions between the reactants must also be introduced. Here we extend our results by considering enzymes that are inactive after modifying the substrate and need time to become active again. This generalization leads to a surprising result. The introduction of enzyme reactivation results in a diffusion-modified kinetic scheme with a new transition that has a negative rate constant. The reason for this is that mapping non-Markovian rate equations onto Markovian ones with time-independent rate constants is not a good approximation at short times. We then developed a non-Markovian theory that involves memory kernels instead of rate constants. This theory is now valid at short times, but is more challenging to use. As an example, the diffusion-modified kinetic scheme with new connections was used to calculate kinetics of double phosphorylation and steady-state response in a phosphorylation-dephosphorylation cycle. We have reproduced the loss of bistability in the phosphorylation-dephosphorylation cycle when the enzyme reactivation time decreases, which was obtained by particle-based computer simulations.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9205111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beste Çağdaş Tunalı, Eda Çelik, Fatma Azize Budak Yıldıran, Mustafa Türk
In this study, effective transport of small interfering RNAs (siRNAs) via hyaluronic acid (HA) receptor was carried out with biodegradable HA and low-molecular weight polyethyleneimine (PEI)-based transport systems. Gold nanoparticles (AuNPs) capable of giving photothermal response, and their conjugates with PEI and HA, were also added to the structure. Thus, a combination of gene silencing, photothermal therapy and chemotherapy, has been accomplished. The synthesized transport systems ranged in size, between 25 and 690 nm. When the particles were applied at a concentration of 100 μg mL−1 (except AuPEI NPs) in vitro, cell viability was above 50%. Applying radiation after the conjugate/siRNA complex (especially those containing AuNP) treatment, increased the cytotoxic effect (decrease in cell viability of 37%, 54%, 13%, and 15% for AuNP, AuPEI NP, AuPEI-HA, and AuPEI-HA-DOX, respectively) on the MDA-MB-231 cell line. CXCR4 gene silencing via the synthesized complexes, especially AuPEI-HA-DOX/siRNA was more efficient in MDA-MB-231 cells (25-fold decrease in gene expression) than in CAPAN-1 cells. All these results demonstrated that the synthesized PEI-HA and AuPEI-HA-DOX conjugates can be used as siRNA carriers that are particularly effective, especially in the treatment of breast cancer.
{"title":"Delivery of siRNA using hyaluronic acid-guided nanoparticles for downregulation of CXCR4","authors":"Beste Çağdaş Tunalı, Eda Çelik, Fatma Azize Budak Yıldıran, Mustafa Türk","doi":"10.1002/bip.23535","DOIUrl":"10.1002/bip.23535","url":null,"abstract":"<p>In this study, effective transport of small interfering RNAs (siRNAs) via hyaluronic acid (HA) receptor was carried out with biodegradable HA and low-molecular weight polyethyleneimine (PEI)-based transport systems. Gold nanoparticles (AuNPs) capable of giving photothermal response, and their conjugates with PEI and HA, were also added to the structure. Thus, a combination of gene silencing, photothermal therapy and chemotherapy, has been accomplished. The synthesized transport systems ranged in size, between 25 and 690 nm. When the particles were applied at a concentration of 100 μg mL<sup>−1</sup> (except AuPEI NPs) in vitro<i>,</i> cell viability was above 50%. Applying radiation after the conjugate/siRNA complex (especially those containing AuNP) treatment, increased the cytotoxic effect (decrease in cell viability of 37%, 54%, 13%, and 15% for AuNP, AuPEI NP, AuPEI-HA, and AuPEI-HA-DOX, respectively) on the MDA-MB-231 cell line. CXCR4 gene silencing via the synthesized complexes, especially AuPEI-HA-DOX/siRNA was more efficient in MDA-MB-231 cells (25-fold decrease in gene expression) than in CAPAN-1 cells. All these results demonstrated that the synthesized PEI-HA and AuPEI-HA-DOX conjugates can be used as siRNA carriers that are particularly effective, especially in the treatment of breast cancer.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}