DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO2−), and over-oxidized (C106-SO3−) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.
{"title":"The reversible low-temperature instability of human DJ-1 oxidative states","authors":"Tessa Andrews, Javier Seravallic, Robert Powers","doi":"10.1002/bip.23534","DOIUrl":"10.1002/bip.23534","url":null,"abstract":"<p>DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO<sub>2</sub><sup>−</sup>), and over-oxidized (C106-SO<sub>3</sub><sup>−</sup>) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9188273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG-NH2). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.
{"title":"Surface imprinted bio-nanocomposites for affinity separation of a cellular DNA repair protein","authors":"Huaisyuan Xie, Ying Sun, Ruilan Zhang, Yuxuan Zhang, Meiping Zhao","doi":"10.1002/bip.23537","DOIUrl":"10.1002/bip.23537","url":null,"abstract":"<p>Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG-NH<sub>2</sub>). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 4","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily E. Selig, Roohi Bhura, Matthew R. White, Shivani Akula, Renee D. Hoffman, Carmel N. Tovar, Xiaoping Xu, Rachell E. Booth, David S. Libich
EWS is a member of the FET family of RNA/DNA binding proteins that regulate crucial phases of nucleic acid metabolism. EWS comprises an N-terminal low-complexity domain (LCD) and a C-terminal RNA-binding domain (RBD). The RBD is further divided into three RG-rich regions, which flank an RNA-recognition motif (RRM) and a zinc finger (ZnF) domain. Recently, EWS was shown to regulate R-loops in Ewing sarcoma, a pediatric bone and soft-tissue cancer in which a chromosomal translocation fuses the N-terminal LCD of EWS to the C-terminal DNA binding domain of the transcription factor FLI1. Though EWS was shown to directly bind R-loops, the binding mechanism was not elucidated. In the current study, the RBD of EWS was divided into several constructs, which were subsequently assayed for binding to various nucleic acid structures expected to form at R-loops, including RNA stem-loops, DNA G-quadruplexes, and RNA:DNA hybrids. EWS interacted with all three nucleic acid structures with varying affinities and multiple domains contributed to binding each substrate. The RRM and RG2 region appear to bind nucleic acids promiscuously while the ZnF displayed more selectivity for single-stranded structures. With these results, the structural underpinnings of EWS recognition and binding of R-loops and other nucleic acid structures is better understood.
EWS是调节核酸代谢关键阶段的RNA/DNA结合蛋白FET家族的一员。EWS包括一个n端低复杂性结构域(LCD)和一个c端rna结合结构域(RBD)。RBD进一步分为三个富含rg的区域,位于rna识别基序(RRM)和锌指结构域(ZnF)的两侧。最近,EWS被证明可以调节Ewing肉瘤中的r -环。Ewing肉瘤是一种儿童骨和软组织癌,其中染色体易位将EWS的n端LCD融合到转录因子FLI1的c端DNA结合域。虽然EWS被证明直接结合r -环,但其结合机制尚未阐明。在本研究中,EWS的RBD被划分为几种结构,随后检测其与r环上形成的各种核酸结构的结合,包括RNA茎环、DNA g -四联体和RNA:DNA杂交体。EWS与三种不同亲和力的核酸结构相互作用,多个结构域有助于结合每种底物。RRM和RG2区似乎可以混杂结合核酸,而ZnF区对单链结构表现出更多的选择性。通过这些结果,我们可以更好地了解EWS识别和结合r环和其他核酸结构的结构基础。
{"title":"Biochemical and biophysical characterization of the nucleic acid binding properties of the RNA/DNA binding protein EWS","authors":"Emily E. Selig, Roohi Bhura, Matthew R. White, Shivani Akula, Renee D. Hoffman, Carmel N. Tovar, Xiaoping Xu, Rachell E. Booth, David S. Libich","doi":"10.1002/bip.23536","DOIUrl":"10.1002/bip.23536","url":null,"abstract":"<p>EWS is a member of the FET family of RNA/DNA binding proteins that regulate crucial phases of nucleic acid metabolism. EWS comprises an N-terminal low-complexity domain (LCD) and a C-terminal RNA-binding domain (RBD). The RBD is further divided into three RG-rich regions, which flank an RNA-recognition motif (RRM) and a zinc finger (ZnF) domain. Recently, EWS was shown to regulate R-loops in Ewing sarcoma, a pediatric bone and soft-tissue cancer in which a chromosomal translocation fuses the N-terminal LCD of EWS to the C-terminal DNA binding domain of the transcription factor FLI1. Though EWS was shown to directly bind R-loops, the binding mechanism was not elucidated. In the current study, the RBD of EWS was divided into several constructs, which were subsequently assayed for binding to various nucleic acid structures expected to form at R-loops, including RNA stem-loops, DNA G-quadruplexes, and RNA:DNA hybrids. EWS interacted with all three nucleic acid structures with varying affinities and multiple domains contributed to binding each substrate. The RRM and RG2 region appear to bind nucleic acids promiscuously while the ZnF displayed more selectivity for single-stranded structures. With these results, the structural underpinnings of EWS recognition and binding of R-loops and other nucleic acid structures is better understood.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliana C. Franco, Maria L. C. Nogueira, Gabriela M. Gandelini, Glaucia M. S. Pinheiro, Conrado C. Gonçalves, Leandro R. S. Barbosa, Jason C. Young, Carlos H. I. Ramos
Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.
{"title":"Sorghum bicolor SbHSP110 has an elongated shape and is able of protecting against aggregation and replacing human HSPH1/HSP110 in refolding and disaggregation assays","authors":"Juliana C. Franco, Maria L. C. Nogueira, Gabriela M. Gandelini, Glaucia M. S. Pinheiro, Conrado C. Gonçalves, Leandro R. S. Barbosa, Jason C. Young, Carlos H. I. Ramos","doi":"10.1002/bip.23532","DOIUrl":"10.1002/bip.23532","url":null,"abstract":"<p>Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal <i>Sorghum bicolor</i> was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10784015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurys Tatiana Hoyos Merlano, Lucas Guz, Virginia Borroni, Roberto Jorge Candal, María Lidia Herrera
Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO2 prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased E' (341 wt%) and E" (395 wt%) moduli, the Young modulus E (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm−1 FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.
{"title":"Effects of the geometry of reinforcement on physical properties of sodium caseinate/TiO2 nanocomposite films for applications in food packaging","authors":"Nurys Tatiana Hoyos Merlano, Lucas Guz, Virginia Borroni, Roberto Jorge Candal, María Lidia Herrera","doi":"10.1002/bip.23531","DOIUrl":"https://doi.org/10.1002/bip.23531","url":null,"abstract":"<p>Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO<sub>2</sub> prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased <i>E</i>' (341 wt%) and <i>E</i>\" (395 wt%) moduli, the Young modulus <i>E</i> (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm<sup>−1</sup> FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.
{"title":"Chasing long-range evolutionary couplings in the AlphaFold era","authors":"Theodoros K. Karamanos","doi":"10.1002/bip.23530","DOIUrl":"10.1002/bip.23530","url":null,"abstract":"<p>Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srijani Sarkar, Gabriela Colón-Roura, Alexander Pearse, Bruce A. Armitage
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
{"title":"Targeting a KRAS i-motif forming sequence by unmodified and gamma-modified peptide nucleic acid oligomers","authors":"Srijani Sarkar, Gabriela Colón-Roura, Alexander Pearse, Bruce A. Armitage","doi":"10.1002/bip.23529","DOIUrl":"10.1002/bip.23529","url":null,"abstract":"<p>Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the <i>KRAS</i> oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting <i>KRAS</i> transcription, thereby representing a potentially useful anti-cancer strategy.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/ad/BIP-114-0.PMC10078108.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>I remember it like it was yesterday, even though it was more than 30 years ago. I was a graduate student at the University of Arizona (U.S.A.), sitting at my desk, eating lunch and perusing the latest issue of <i>Science</i> magazine. I came across an article about an intriguing new molecule called “polyamide nucleic acid” or PNA.<sup>[</sup><span><sup>1</sup></span><sup>]</sup> (We now define PNA as “peptide nucleic acid,” which is a perfectly fine name, except that PNA technically is not a peptide, it is not found in the nucleus and it is not an acid!) My Ph.D. thesis research had nothing to do with nucleic acid chemistry, but I still found the article fascinating, as the authors—Peter Nielsen, Michael Egholm, Rolf Berg, and the late Ole Buchardt at the University of Copenhagen (Denmark)—reported the ability of PNA to bind complementary DNA targets via a novel strand-invasion mechanism. The exceptionally high affinity of PNA for its targets, its resistance to natural degradation pathways and its fidelity to the Watson–Crick rules for base pairing sparked an intense level of excitement in both the fundamental science and the applications of PNA that continues to this day. Reading that paper certainly triggered my interest in nucleic acids and motivated me to seek out a postdoctoral position in the field. Two years later, I joined the laboratory of Gary Schuster at the University of Illinois (U.S.A.) where, by way of a happy accident, I had the good fortune to begin working with PNA through collaboration with Peter Nielsen's laboratory. 29 years later, my lab continues to work with this amazing molecule and its descendants. That paper changed my life!</p><p>In this Special Collection of <i>Biopolymers</i>, we have gathered original research and review articles that highlight the ongoing evolution of PNA—both its structure and its applications. Backbone modifications that enhance affinity, nucleobase modifications that promote cell uptake, new applications in biosensing and self-assembly, and advances in targeting non-canonical structures, such as double-stranded RNA all demonstrate the versatility of PNA. While the original structure of PNA bedeviled researchers because of technical issues, for example aggregation, the next generation of PNAs have overcome these challenges. Moreover, the exploitation of PNA's peptide-like character via incorporation of amino acid side chains into the backbone, distinguishes PNA from other members of the nucleic acid alphabet soup, for example, LNA, that are more closely related to the natural biopolymers DNA and RNA.</p><p>We hope you enjoy reading these articles and that you will return from time to time as we plan to take advantage of the dynamic nature of a virtual Special Collection to add more contributions in the future. Who knows what is in store for PNA, but the seemingly endless varieties that chemists are producing and the innovative new applications that scientists and biotechnologists continue to d
{"title":"Peptide nucleic acid","authors":"Bruce A. Armitage","doi":"10.1002/bip.23523","DOIUrl":"10.1002/bip.23523","url":null,"abstract":"<p>I remember it like it was yesterday, even though it was more than 30 years ago. I was a graduate student at the University of Arizona (U.S.A.), sitting at my desk, eating lunch and perusing the latest issue of <i>Science</i> magazine. I came across an article about an intriguing new molecule called “polyamide nucleic acid” or PNA.<sup>[</sup><span><sup>1</sup></span><sup>]</sup> (We now define PNA as “peptide nucleic acid,” which is a perfectly fine name, except that PNA technically is not a peptide, it is not found in the nucleus and it is not an acid!) My Ph.D. thesis research had nothing to do with nucleic acid chemistry, but I still found the article fascinating, as the authors—Peter Nielsen, Michael Egholm, Rolf Berg, and the late Ole Buchardt at the University of Copenhagen (Denmark)—reported the ability of PNA to bind complementary DNA targets via a novel strand-invasion mechanism. The exceptionally high affinity of PNA for its targets, its resistance to natural degradation pathways and its fidelity to the Watson–Crick rules for base pairing sparked an intense level of excitement in both the fundamental science and the applications of PNA that continues to this day. Reading that paper certainly triggered my interest in nucleic acids and motivated me to seek out a postdoctoral position in the field. Two years later, I joined the laboratory of Gary Schuster at the University of Illinois (U.S.A.) where, by way of a happy accident, I had the good fortune to begin working with PNA through collaboration with Peter Nielsen's laboratory. 29 years later, my lab continues to work with this amazing molecule and its descendants. That paper changed my life!</p><p>In this Special Collection of <i>Biopolymers</i>, we have gathered original research and review articles that highlight the ongoing evolution of PNA—both its structure and its applications. Backbone modifications that enhance affinity, nucleobase modifications that promote cell uptake, new applications in biosensing and self-assembly, and advances in targeting non-canonical structures, such as double-stranded RNA all demonstrate the versatility of PNA. While the original structure of PNA bedeviled researchers because of technical issues, for example aggregation, the next generation of PNAs have overcome these challenges. Moreover, the exploitation of PNA's peptide-like character via incorporation of amino acid side chains into the backbone, distinguishes PNA from other members of the nucleic acid alphabet soup, for example, LNA, that are more closely related to the natural biopolymers DNA and RNA.</p><p>We hope you enjoy reading these articles and that you will return from time to time as we plan to take advantage of the dynamic nature of a virtual Special Collection to add more contributions in the future. Who knows what is in store for PNA, but the seemingly endless varieties that chemists are producing and the innovative new applications that scientists and biotechnologists continue to d","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"113 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10440018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Eugene Doyle, Kenny Dalgarno, Enrico Masoero, Ana Marina Ferreira
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
{"title":"Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering","authors":"Michael Eugene Doyle, Kenny Dalgarno, Enrico Masoero, Ana Marina Ferreira","doi":"10.1002/bip.23527","DOIUrl":"10.1002/bip.23527","url":null,"abstract":"<p>With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiao-Na Han, Mingmin Ge, Pengfei Chen, Shi Kuang, Zhou Nie
G-quadruplexes (G4s), the noncanonical nucleic acid secondary structure, form within guanine-rich DNA or RNA sequences. G4s formation can affect chromatin architecture and gene regulation and has been associated with various cellular functions, including DNA replication, transcription, and genome maintenance. Visualizing and detecting G4s precisely in such processes is essential to increasing our understanding of G4s biology. Considerable attention has focused on the G4s targeting molecular imaging studies. Besides, fluorescent light-up aptamers (FLAPs, also referred to as fluorogenic aptamers) have gained momentum, which commonly have a G4 scaffolding for imaging intracellular RNAs and metabolites. In this review, we first introduce several representative fluorescent imaging approaches for tracking G4s in cells and in vivo. We also discuss the potential of G4-containing FLAPs in bioimaging and summarize current developments in this field from the standpoint of fluorescent molecules. Finally, we discuss the present challenges and future potential of G4 imaging and G4-containing FLAPs development.
g -四联体(G4s)是一种非规范的核酸二级结构,在富含鸟嘌呤的DNA或RNA序列中形成。G4s的形成可以影响染色质结构和基因调控,并与多种细胞功能相关,包括DNA复制、转录和基因组维护。在这些过程中精确地可视化和检测G4s对于增加我们对G4s生物学的理解至关重要。G4s靶向分子成像研究受到了广泛关注。此外,荧光发光适体(FLAPs,也称为荧光适体)也获得了发展势头,它们通常具有G4支架,用于成像细胞内rna和代谢物。在这篇综述中,我们首先介绍了几种具有代表性的荧光成像方法,用于在细胞内和体内跟踪G4s。我们还讨论了含g4的FLAPs在生物成像中的潜力,并从荧光分子的角度总结了该领域的最新进展。最后,我们讨论了G4成像和含G4 FLAPs发展的当前挑战和未来潜力。
{"title":"Advances in G-quadruplexes-based fluorescent imaging","authors":"Jiao-Na Han, Mingmin Ge, Pengfei Chen, Shi Kuang, Zhou Nie","doi":"10.1002/bip.23528","DOIUrl":"10.1002/bip.23528","url":null,"abstract":"<p>G-quadruplexes (G4s), the noncanonical nucleic acid secondary structure, form within guanine-rich DNA or RNA sequences. G4s formation can affect chromatin architecture and gene regulation and has been associated with various cellular functions, including DNA replication, transcription, and genome maintenance. Visualizing and detecting G4s precisely in such processes is essential to increasing our understanding of G4s biology. Considerable attention has focused on the G4s targeting molecular imaging studies. Besides, fluorescent light-up aptamers (FLAPs, also referred to as fluorogenic aptamers) have gained momentum, which commonly have a G4 scaffolding for imaging intracellular RNAs and metabolites. In this review, we first introduce several representative fluorescent imaging approaches for tracking G4s in cells and <i>in vivo</i>. We also discuss the potential of G4-containing FLAPs in bioimaging and summarize current developments in this field from the standpoint of fluorescent molecules. Finally, we discuss the present challenges and future potential of G4 imaging and G4-containing FLAPs development.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"113 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10417981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}