Background: Rapid detection of faces with emotional meaning is essential for understanding the emotions of others, possibly promoting successful interpersonal relationships. Although few studies have examined sex differences in the ability to detect emotional faces, it remains unclear whether faces with emotional meaning capture the attention of females and males differently, because emotional faces have visual saliency that modulates visual attention. To overcome this issue, we tested the rapid detection of the neutral faces associated with and without learned emotional value, which are all regarded as free from visual saliency. We examined sex differences in the rapid detection of the neutral female and male faces associated with emotional value.
Methods: First, young adult female and male participants completed an associative learning task in which neutral faces were associated with either monetary rewards, monetary punishments, or no monetary outcomes, such that the neutral faces acquired positive, negative, and no emotional value, respectively. Then, they engaged in a visual search task in which previously learned neutral faces were presented as discrepant faces among newly presented neutral distractor faces. During the visual search task, the participants were required to rapidly identify discrepant faces.
Results: Female and male participants exhibited comparable learning abilities. The visual search results demonstrated that female participants achieved rapid detection of neutral faces associated with emotional value irrespective of the sex of the faces presented, whereas male participants showed this ability only for male faces.
Conclusions: Our results demonstrated that sex differences in the ability to rapidly detect neutral faces with emotional value were modulated by the sex of those faces. The results suggest greater sensitivity to faces with emotional significance in females, which might enrich interpersonal communication, regardless of sex.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression.
Methods: A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry.
Results: Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male.
Conclusions: NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Background: Binge alcohol drinking is a risk factor linked to numerous disease states including alcohol use disorder (AUD). While men binge drink more alcohol than women, this demographic gap is quickly shrinking, and preclinical studies demonstrate that females consistently consume more alcohol than males. Further, women are at increased risk for the co-expression of AUD with neuropsychiatric diseases such as anxiety and mood disorders. However, little is understood about chronic voluntary alcohol drinking and its long-term effects on behavior. Here, we sought to characterize sex differences in chronic binge drinking and the effects of protracted alcohol abstinence on anxiety- and affective-related behaviors in males and females.
Methods: We assessed binge alcohol drinking patterns in male and female C57BL/6J mice using a modified Drinking in the Dark (DID) paradigm in which mice received home cage access to one bottle of 10% or 20% alcohol (EtOH) or water for 2 h per day on Days 1-3 and to two bottles (EtOH/H2O + H2O) for 24 h on Day 4 for 8 weekly cycles. Mice were then tested for the effects of protracted abstinence on avoidance, affective, and compulsive behaviors.
Results: Female mice consumed more alcohol than males consistently across cycles of DID and at 2, 4, and 24-h timepoints within the day, with a more robust sex difference for 20% than 10% EtOH. Females also consumed more water than males, an effect that emerged at the later time points; this water consumption bias diminished when alcohol was available. Further, while increased alcohol consumption was correlated with decreased water consumption in males, there was no relationship between these two measures in females. Alcohol preference was higher in 10% vs. 20% EtOH for both sexes. During protracted abstinence following chronic binge drinking, mice displayed decreased avoidance behavior (elevated plus maze, open field, novelty suppressed feeding) and increased compulsive behavior (marble burying) that was especially robust in females. There was no effect of alcohol history on stress coping and negative affective behaviors (sucrose preference, forced swim test, tail suspension) in either sex.
Conclusion: Female mice engaged in higher volume binge drinking than their male counterparts. Although females also consumed more water than males, their higher alcohol consumption was not driven by increased total fluid intake. Further, the effects of protracted abstinence following chronic binge drinking was driven by behavioral disinhibition that was more pronounced in females. Given the reciprocal relationship between risk-taking and alcohol use in neuropsychiatric disease states, these results have implications for sex-dependent alcohol drinking patterns and their long-term negative neuropsychiatric/physiological health outcomes in humans.
Background: Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring.
Methods: Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring.
Results: Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring.
Conclusions: Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.