首页 > 最新文献

Biology of Sex Differences最新文献

英文 中文
Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame? 系统性红斑狼疮的女性偏爱:X染色体的责任有多大?
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-07 DOI: 10.1186/s13293-024-00650-y
Adriana A Vieira, Inês Almada-Correia, Joana Inácio, Patrícia Costa-Reis, S T da Rocha

Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.

系统性红斑狼疮(SLE 或狼疮)是一种由免疫介导的疾病,给患者带来沉重的医疗负担。值得注意的是,狼疮有明显的女性偏向,女性的易感性明显高于男性,在某些种族中,女性的易感性可高达男性的14倍。X 染色体超常综合征,如 Klinefelter(XXY)和三X 综合征(XXX),其系统性红斑狼疮发病率也较高,而特纳综合征(XO)的发病率则较低。总之,不同 X 染色体剂量情况下系统性红斑狼疮的发病率表明,X 染色体的数量与患狼疮的风险之间存在一定的关系。许多在免疫系统中发挥作用的 X 连锁基因的剂量是通过女性细胞中两条 X 染色体中的一条失活来在男性和女性之间进行补偿的。X 染色体失活(XCI)始于发育早期,随机选择要失活的 X 染色体,然后在子细胞中通过表观遗传学保持这一选择。这一过程受 X 非活性特异性转录本(XIST)的调控,该转录本编码一种非编码长 RNA,仅由非活性 X 染色体(Xi)表达。XIST 与各种 RNA 结合蛋白和染色质修饰因子相互作用,形成一个核糖核蛋白(RNP)复合物,负责 Xi 的转录沉默和异染色质化。这确保了 X 染色体上大多数基因的稳定沉默,只有少数基因能够逃脱这一过程。最近的研究结果表明,参与 XCI 的分子成分或它们的失调有助于红斑狼疮的发病机制。事实上,非随机 XCI、基因从 XCI 中逃逸的程度升高以及 XIST RNP 复合物的自身免疫潜能都被认为是红斑狼疮等自身免疫性疾病的诱因。这篇综述探讨了目前关于剂量补偿机制如何影响红斑狼疮发病的假设,揭示了该病发病机制的潜在机制。
{"title":"Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame?","authors":"Adriana A Vieira, Inês Almada-Correia, Joana Inácio, Patrícia Costa-Reis, S T da Rocha","doi":"10.1186/s13293-024-00650-y","DOIUrl":"https://doi.org/10.1186/s13293-024-00650-y","url":null,"abstract":"<p><p>Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"76"},"PeriodicalIF":4.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in symptoms following the administration of BNT162b2 mRNA COVID-19 vaccine in children below 5 years of age in Germany (CoVacU5): a retrospective cohort study. 德国 5 岁以下儿童接种 BNT162b2 mRNA COVID-19 疫苗(CoVacU5)后症状的性别差异:一项回顾性队列研究。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-26 DOI: 10.1186/s13293-024-00651-x
Jeanne Moor, Nicole Toepfner, Wolfgang C G von Meißner, Reinhard Berner, Matthias B Moor, Karolina Kublickiene, Christoph Strumann, Cho-Ming Chao

Background: Sex differences exist not only in the efficacy but also in adverse event rates of many vaccines. Here we compared the safety of BNT162b2 vaccine administered off-label in female and male children younger than 5 years in Germany.

Methods: This is a retrospective cohort study, in which we performed a post-hoc analysis of a dataset collected through an authentication-based survey of individuals having registered children aged 0-<5 years for vaccination against SARS-CoV-2 in six private practices and/or two lay person-initiated vaccination campaigns. We analyzed the safety profiles of the first 3 doses of 3-10 µg BNT162b2. Primary outcome was comparison in frequencies of 4 common post-vaccination symptom categories such as local, general, musculoskeletal symptoms and fever. Data were analyzed according to sex in bivariate analyses and regression models adjusting for age, weight, and dosage. Interaction between sex and BNT162b2 dosage was assessed. An active-comparator analysis was applied to compare post-vaccination symptoms after BNT162b2 versus non-SARS-CoV-2 vaccines.

Results: The dataset for the present analysis consisted of 7801 participants including 3842 females (49%) and 3977 males (51%) with an age of 3 years (median, interquartile: 2 years). Among individuals receiving 3 µg BNT162b2, no sex differences were noted, but after a first dose of 5-10 µg BNT162b2, local injection-site symptoms were more prevalent in girls compared to boys. In logistic regression, female sex was associated with higher odds of local symptoms, odds ratio (OR) of 1.33 (95% confidence interval [CI]: 1.15-1.55, p < 0.05) and general symptoms with OR 1.21 (95% CI: 1.01-1.44, p < 0.05). Following non-BNT162b2 childhood vaccinations, female sex was associated with a lower odds of post-vaccination musculoskeletal symptoms (OR: 0.29, 95% CI: 0.11-0.82, p < 0.05). An active comparator analysis between BNT162b2 and non-SARS-CoV-2 vaccinations revealed that female sex positively influenced the association between BNT162b2 vaccine type and musculoskeletal symptoms.

Conclusions: Sex differences exist in post-vaccination symptoms after BNT162b2 administration even in young children. These are of importance for the conception of approval studies, for post-vaccination monitoring and for future vaccination strategies (German Clinical Trials Register ID: DRKS00028759).

背景:许多疫苗不仅在效力上存在性别差异,在不良反应率上也是如此。在此,我们比较了德国 5 岁以下男女儿童在标签外接种 BNT162b2 疫苗的安全性:这是一项回顾性队列研究,我们对通过认证调查收集的数据集进行了事后分析,调查对象是登记有 0 岁儿童的个人:本次分析的数据集包括 7801 名参与者,其中女性 3842 名(占 49%),男性 3977 名(占 51%),年龄为 3 岁(中位数,四分位数之间为 2 岁)。在接受 3 µg BNT162b2 治疗的患者中,没有发现性别差异,但在首次接受 5-10 µg BNT162b2 治疗后,女孩出现注射部位局部症状的比例高于男孩。在逻辑回归中,女性出现局部症状的几率更高,几率比(OR)为 1.33(95% 置信区间 [CI]:1.15-1.55,P<0.05):1.33(95% 置信区间 [CI]:1.15-1.55,P 结论:接种疫苗后存在性别差异:即使是幼儿,接种 BNT162b2 后的症状也存在性别差异。这对审批研究的构思、疫苗接种后的监测以及未来的疫苗接种策略都具有重要意义(德国临床试验注册编号:DRKS00028759)。
{"title":"Sex differences in symptoms following the administration of BNT162b2 mRNA COVID-19 vaccine in children below 5 years of age in Germany (CoVacU5): a retrospective cohort study.","authors":"Jeanne Moor, Nicole Toepfner, Wolfgang C G von Meißner, Reinhard Berner, Matthias B Moor, Karolina Kublickiene, Christoph Strumann, Cho-Ming Chao","doi":"10.1186/s13293-024-00651-x","DOIUrl":"https://doi.org/10.1186/s13293-024-00651-x","url":null,"abstract":"<p><strong>Background: </strong>Sex differences exist not only in the efficacy but also in adverse event rates of many vaccines. Here we compared the safety of BNT162b2 vaccine administered off-label in female and male children younger than 5 years in Germany.</p><p><strong>Methods: </strong>This is a retrospective cohort study, in which we performed a post-hoc analysis of a dataset collected through an authentication-based survey of individuals having registered children aged 0-<5 years for vaccination against SARS-CoV-2 in six private practices and/or two lay person-initiated vaccination campaigns. We analyzed the safety profiles of the first 3 doses of 3-10 µg BNT162b2. Primary outcome was comparison in frequencies of 4 common post-vaccination symptom categories such as local, general, musculoskeletal symptoms and fever. Data were analyzed according to sex in bivariate analyses and regression models adjusting for age, weight, and dosage. Interaction between sex and BNT162b2 dosage was assessed. An active-comparator analysis was applied to compare post-vaccination symptoms after BNT162b2 versus non-SARS-CoV-2 vaccines.</p><p><strong>Results: </strong>The dataset for the present analysis consisted of 7801 participants including 3842 females (49%) and 3977 males (51%) with an age of 3 years (median, interquartile: 2 years). Among individuals receiving 3 µg BNT162b2, no sex differences were noted, but after a first dose of 5-10 µg BNT162b2, local injection-site symptoms were more prevalent in girls compared to boys. In logistic regression, female sex was associated with higher odds of local symptoms, odds ratio (OR) of 1.33 (95% confidence interval [CI]: 1.15-1.55, p < 0.05) and general symptoms with OR 1.21 (95% CI: 1.01-1.44, p < 0.05). Following non-BNT162b2 childhood vaccinations, female sex was associated with a lower odds of post-vaccination musculoskeletal symptoms (OR: 0.29, 95% CI: 0.11-0.82, p < 0.05). An active comparator analysis between BNT162b2 and non-SARS-CoV-2 vaccinations revealed that female sex positively influenced the association between BNT162b2 vaccine type and musculoskeletal symptoms.</p><p><strong>Conclusions: </strong>Sex differences exist in post-vaccination symptoms after BNT162b2 administration even in young children. These are of importance for the conception of approval studies, for post-vaccination monitoring and for future vaccination strategies (German Clinical Trials Register ID: DRKS00028759).</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"74"},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-dependent effects of acute stress and alcohol exposure during adolescence on mRNA expression of brain signaling systems involved in reward and stress responses in young adult rats. 青春期急性应激和酒精暴露对年轻成年大鼠大脑奖赏和应激反应信号系统 mRNA 表达的性别依赖性影响
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-26 DOI: 10.1186/s13293-024-00649-5
Carlotta Gobbi, Laura Sánchez-Marín, María Flores-López, Dina Medina-Vera, Francisco Javier Pavón-Morón, Fernando Rodríguez de Fonseca, Antonia Serrano

Background: Adolescent stress and alcohol exposure increase the risk of maladaptive behaviors and mental disorders in adulthood, with distinct sex-specific differences. Understanding the mechanisms underlying these early events is crucial for developing targeted prevention and treatment strategies.

Methods: Male and female Wistar rats were exposed to acute restraint stress and intermittent alcohol during adolescence. We assessed lasting effects on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, and mRNA expression of genes related to corticotropin releasing hormone (CRH), neuropeptide Y (NPY), corticoid, opioid, and arginine vasopressin systems in the amygdala and hypothalamus.

Results: The main findings are as follows: (1) blood alcohol concentrations (BAC) increased after the final alcohol administration, but stressed males had lower BAC than non-stressed males; (2) Males gained significantly more weight than females; (3) Stressed females showed higher ACTH levels than non-stressed females, with no changes in males; (4) Stress increased CORT levels in males, while stressed, alcohol-treated females had lower CORT levels than non-stressed females; (5) CRH: Females had lower Crhr1 levels in the amygdala, while alcohol reduced Crhr2 levels in males but not females. Significant interactions among sex, stress, and alcohol were found in the hypothalamus, with distinct patterns between sexes; (6) NPY: In the amygdala, stress reduced Npy and Npy1r levels in males but increased them in females. Alcohol decreased Npy2r levels in males, with varied effects in females. Similar sex-specific patterns were observed in the hypothalamus; (7) Corticoid system: Stress and alcohol had complex, sex-dependent effects on Pomc, Nr3c1, and Nr3c2 in both brain regions; (8) Opioid receptors: Stress and alcohol blunted the elevated expression of Oprm1, Oprd1, and Oprk1 in the amygdala of males and the hypothalamus of females; (8) Vasopressin: Stress and alcohol interacted significantly to affect Avp and Avpr1a expression in the amygdala, with stronger effects in females. In the hypothalamus, alcohol increased Avp levels in females.

Conclusions: This study demonstrates that adolescent acute stress and alcohol exposure induce lasting, sex-specific alterations in systems involved in reward and stress responses. These findings emphasize the importance of considering sex differences in the prevention and management of HPA dysfunction and psychiatric disorders.

背景:青少年时期的压力和酗酒会增加成年后出现适应不良行为和精神障碍的风险,并具有明显的性别差异。了解这些早期事件的内在机制对于制定有针对性的预防和治疗策略至关重要:方法:雄性和雌性 Wistar 大鼠在青春期受到急性束缚应激和间歇性酒精的影响。我们评估了对血浆皮质酮(CORT)和促肾上腺皮质激素(ACTH)水平以及杏仁核和下丘脑中促肾上腺皮质激素释放激素(CRH)、神经肽 Y(NPY)、类皮质激素、阿片类和精氨酸加压素系统相关基因 mRNA 表达的持久影响:主要研究结果如下(结果:主要发现如下:(1) 血液中酒精浓度(BAC)在最后一次给药后升高,但应激男性的 BAC 水平低于非应激男性;(2) 男性体重增加明显多于女性;(3) 应激女性的促肾上腺皮质激素(ACTH)水平高于非应激女性,男性无变化;(4) 应激增加了男性的促肾上腺皮质激素(CORT)水平,而应激、酒精处理的女性的促肾上腺皮质激素(CORT)水平低于非应激女性;(5) CRH:杏仁核中女性的 Crhr1 水平较低,而酒精会降低男性的 Crhr2 水平,但不会降低女性的 Crhr2 水平。在下丘脑中发现了性别、压力和酒精之间的显著交互作用,不同性别之间有不同的模式;(6)NPY:在杏仁核中,压力降低了男性的 Npy 和 Npy1r 水平,但增加了女性的 Npy 和 Npy1r 水平。酒精会降低男性的 Npy2r 水平,但对女性的影响各不相同。在下丘脑中也观察到类似的性别特异性模式;(7)皮质类固醇系统:压力和酒精对两个脑区的 Pomc、Nr3c1 和 Nr3c2 都有复杂的性别依赖性影响;(8)阿片受体:压力和酒精削弱了男性杏仁核和女性下丘脑中 Oprm1、Oprd1 和 Oprk1 的表达;(8)血管加压素:压力和酒精对杏仁核中 Avp 和 Avpr1a 的表达有明显的交互作用,对女性的影响更大。在下丘脑中,酒精会增加女性的 Avp 水平:本研究表明,青少年急性应激反应和酒精暴露会诱导奖赏和应激反应系统发生持久的、有性别特异性的改变。这些发现强调了在预防和处理 HPA 功能障碍和精神疾病时考虑性别差异的重要性。
{"title":"Sex-dependent effects of acute stress and alcohol exposure during adolescence on mRNA expression of brain signaling systems involved in reward and stress responses in young adult rats.","authors":"Carlotta Gobbi, Laura Sánchez-Marín, María Flores-López, Dina Medina-Vera, Francisco Javier Pavón-Morón, Fernando Rodríguez de Fonseca, Antonia Serrano","doi":"10.1186/s13293-024-00649-5","DOIUrl":"https://doi.org/10.1186/s13293-024-00649-5","url":null,"abstract":"<p><strong>Background: </strong>Adolescent stress and alcohol exposure increase the risk of maladaptive behaviors and mental disorders in adulthood, with distinct sex-specific differences. Understanding the mechanisms underlying these early events is crucial for developing targeted prevention and treatment strategies.</p><p><strong>Methods: </strong>Male and female Wistar rats were exposed to acute restraint stress and intermittent alcohol during adolescence. We assessed lasting effects on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, and mRNA expression of genes related to corticotropin releasing hormone (CRH), neuropeptide Y (NPY), corticoid, opioid, and arginine vasopressin systems in the amygdala and hypothalamus.</p><p><strong>Results: </strong>The main findings are as follows: (1) blood alcohol concentrations (BAC) increased after the final alcohol administration, but stressed males had lower BAC than non-stressed males; (2) Males gained significantly more weight than females; (3) Stressed females showed higher ACTH levels than non-stressed females, with no changes in males; (4) Stress increased CORT levels in males, while stressed, alcohol-treated females had lower CORT levels than non-stressed females; (5) CRH: Females had lower Crhr1 levels in the amygdala, while alcohol reduced Crhr2 levels in males but not females. Significant interactions among sex, stress, and alcohol were found in the hypothalamus, with distinct patterns between sexes; (6) NPY: In the amygdala, stress reduced Npy and Npy1r levels in males but increased them in females. Alcohol decreased Npy2r levels in males, with varied effects in females. Similar sex-specific patterns were observed in the hypothalamus; (7) Corticoid system: Stress and alcohol had complex, sex-dependent effects on Pomc, Nr3c1, and Nr3c2 in both brain regions; (8) Opioid receptors: Stress and alcohol blunted the elevated expression of Oprm1, Oprd1, and Oprk1 in the amygdala of males and the hypothalamus of females; (8) Vasopressin: Stress and alcohol interacted significantly to affect Avp and Avpr1a expression in the amygdala, with stronger effects in females. In the hypothalamus, alcohol increased Avp levels in females.</p><p><strong>Conclusions: </strong>This study demonstrates that adolescent acute stress and alcohol exposure induce lasting, sex-specific alterations in systems involved in reward and stress responses. These findings emphasize the importance of considering sex differences in the prevention and management of HPA dysfunction and psychiatric disorders.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"75"},"PeriodicalIF":4.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application and insights of targeted next-generation sequencing in a large cohort of 46,XY disorders of sex development in Chinese 定向新一代测序在中国 46,XY 性别发育障碍大样本中的应用和启示
IF 7.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-16 DOI: 10.1186/s13293-024-00648-6
Hongyu Chen, Guangjie Chen, Fengxia Li, Yong Huang, Linfeng Zhu, Yijun Zhao, Ziyi Jiang, Xiang Yan, Lan Yu
46,XY disorders of sex development (46,XY DSD) are characterized by incomplete masculinization of genitalia with reduced androgenization. Accurate clinical management remains challenging, especially based solely on physical examination. Targeted next-generation sequencing (NGS) with known pathogenic genes provides a powerful tool for diagnosis efficiency. This study aims to identify the prevalent genetic variants by targeted NGS technology and investigate the diagnostic rate in a large cohort of 46,XY DSD patients, with most of them presenting atypical phenotypes. Two different DSD panels were developed for sequencing purposes, targeting a cohort of 402 patients diagnosed with 46,XY DSD, who were recruited from the Department of Urology at Children’s Hospital, Zhejiang University School of Medicine (Hangzhou, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for targeted panels to find the patients’ variants. The clinical significance of these variants was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. A total of 108 variants across 42 genes were found in 107 patients, including 46 pathogenic or likely pathogenic variants, with 45.7%(21/46) being novel. Among these genes, SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7 were the most frequently observed. Besides, we also detected some uncommon causative genes like SOS1, and GNAS. Oligogenic variants were also identified in 9 patients, including several combinations PROKR2/FGFR1/CYP11B1, PROKR2/ATRX, PROKR2/AR, FGFR1/LHCGR/POR, FGFR1/NR5A1, GATA4/NR5A1, WNT4/AR, MAP3K1/FOXL2, WNT4/AR, and SOS1/FOXL2. The overall genetic diagnostic rate was 11.2%(45/402), with an additional 15.4% (62/402) having variants of uncertain significance. Additionally, trio/duo patients had a higher genetic diagnostic rate (13.4%) compared to singletons (8.6%), with a higher proportion of singletons (15.1%) presenting variants of uncertain significance. In conclusion, targeted gene panels identified pathogenic variants in a Chinese 46,XY DSD cohort, expanding the genetic understanding and providing evidence for known pathogenic genes’ involvement. 46,XY disorders of sex development (46,XY DSD) are conditions where individuals don’t fully develop male genitalia due to reduced androgen hormones. Diagnosing these conditions based only on physical exams is difficult. This study used advanced genetic testing called targeted next-generation sequencing (NGS) to identify common genetic variations in a large group of 46,XY DSD patients, many of whom had unusual symptoms. We examined 402 patients with DSD and a 46,XY karyotype, focusing on 142 candidate genes related to sex development. We found genetic variations in 107 patients, including 45 that were likely responsible for their condition. Some of these variations were new discoveries. The most commonly affected genes were SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7. We also found that some patients had va
46,XY性发育障碍(46,XY DSD)的特点是生殖器不完全男性化,雄激素分泌减少。准确的临床管理仍然具有挑战性,尤其是仅凭体格检查。已知致病基因的靶向新一代测序(NGS)为提高诊断效率提供了有力工具。本研究旨在通过靶向 NGS 技术鉴定普遍存在的基因变异,并调查一大批 46,XY DSD 患者的诊断率。为了测序目的,我们开发了两种不同的 DSD 面板,目标人群是浙江大学医学院附属儿童医院(中国杭州)泌尿外科的 402 名确诊为 46,XY DSD 的患者。研究人员对这些患者的详细临床特征进行了评估,并采集了他们的外周血进行靶向分析,以发现他们的变异基因。根据美国医学遗传学和基因组学学院(ACMG)指南,对这些变异的临床意义进行了注释。在107名患者的42个基因中共发现108个变异,包括46个致病或可能致病的变异,其中45.7%(21/46)为新变异。在这些基因中,SRD5A2、AR、FGFR1、LHCGR、NR5A1、CHD7是最常见的变异。此外,我们还发现了一些不常见的致病基因,如 SOS1 和 GNAS。我们还在 9 例患者中发现了寡基因变异,包括 PROKR2/FGFR1/CYP11B1、PROKR2/ATRX、PROKR2/AR、FGFR1/LHCGR/POR、FGFR1/NR5A1、GATA4/NR5A1、WNT4/AR、MAP3K1/FOXL2、WNT4/AR 和 SOS1/FOXL2。总体基因诊断率为 11.2%(45/402),另有 15.4%(62/402)的变异意义不确定。此外,三人/二人患者的基因诊断率(13.4%)高于单人患者(8.6%),单人患者中出现意义不确定变异的比例更高(15.1%)。总之,在中国 46,XY DSD 群体中,有针对性的基因面板鉴定出了致病变异,拓展了对遗传学的理解,并为已知致病基因的参与提供了证据。46,XY性发育障碍(46,XY DSD)是指由于雄性激素减少导致男性生殖器发育不完全。仅靠体格检查很难诊断出这些疾病。这项研究采用了先进的基因检测方法,即定向下一代测序(NGS),在一大群46,XY DSD患者中确定常见的基因变异,其中很多人都有不寻常的症状。我们研究了 402 名患有 DSD 且核型为 46,XY 的患者,重点研究了 142 个与性发育相关的候选基因。我们在 107 名患者中发现了基因变异,其中 45 个基因变异很可能是导致他们患病的原因。其中一些变异是新发现的。最常受影响的基因是 SRD5A2、AR、FGFR1、LHCGR、NR5A1 和 CHD7。我们还发现,一些患者的多个基因都存在变异,这表明遗传原因很复杂。总体而言,我们通过基因检测确诊了 11.2% 的患者,另有 15.4% 的患者结果不确定。与单独检测的患者相比,三人或两人(与父母一起)检测的患者诊断率更高。这项研究有助于我们进一步了解中国人群中 46,XY DSD 的遗传因素。该研究设计了两个基因片段,分别由142个和271个与性发育相关的候选基因组成,对402名46,XY DSD患者进行测序。在107名患者中发现了42个基因中的108个变异,其中46个被归类为致病或可能致病,包括几个新变异。SRD5A2、AR、FGFR1、LHCGR、NR5A1、CHD7 是最常见的变异基因。总体基因诊断率为11.2%,另有15.4%的患者存在意义不确定的变异,9名患者检测到寡源性变异,这表明46,XY DSD存在复杂的基因相互作用。与单基因患者(8.6%)相比,三基因/双基因患者的基因诊断率更高(13.4%),这凸显了父母基因数据的重要性。表型变异和潜在的遗传异质性凸显了46,XY DSD的复杂性,强调了进一步研究和多中心合作的必要性。
{"title":"Application and insights of targeted next-generation sequencing in a large cohort of 46,XY disorders of sex development in Chinese","authors":"Hongyu Chen, Guangjie Chen, Fengxia Li, Yong Huang, Linfeng Zhu, Yijun Zhao, Ziyi Jiang, Xiang Yan, Lan Yu","doi":"10.1186/s13293-024-00648-6","DOIUrl":"https://doi.org/10.1186/s13293-024-00648-6","url":null,"abstract":"46,XY disorders of sex development (46,XY DSD) are characterized by incomplete masculinization of genitalia with reduced androgenization. Accurate clinical management remains challenging, especially based solely on physical examination. Targeted next-generation sequencing (NGS) with known pathogenic genes provides a powerful tool for diagnosis efficiency. This study aims to identify the prevalent genetic variants by targeted NGS technology and investigate the diagnostic rate in a large cohort of 46,XY DSD patients, with most of them presenting atypical phenotypes. Two different DSD panels were developed for sequencing purposes, targeting a cohort of 402 patients diagnosed with 46,XY DSD, who were recruited from the Department of Urology at Children’s Hospital, Zhejiang University School of Medicine (Hangzhou, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for targeted panels to find the patients’ variants. The clinical significance of these variants was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. A total of 108 variants across 42 genes were found in 107 patients, including 46 pathogenic or likely pathogenic variants, with 45.7%(21/46) being novel. Among these genes, SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7 were the most frequently observed. Besides, we also detected some uncommon causative genes like SOS1, and GNAS. Oligogenic variants were also identified in 9 patients, including several combinations PROKR2/FGFR1/CYP11B1, PROKR2/ATRX, PROKR2/AR, FGFR1/LHCGR/POR, FGFR1/NR5A1, GATA4/NR5A1, WNT4/AR, MAP3K1/FOXL2, WNT4/AR, and SOS1/FOXL2. The overall genetic diagnostic rate was 11.2%(45/402), with an additional 15.4% (62/402) having variants of uncertain significance. Additionally, trio/duo patients had a higher genetic diagnostic rate (13.4%) compared to singletons (8.6%), with a higher proportion of singletons (15.1%) presenting variants of uncertain significance. In conclusion, targeted gene panels identified pathogenic variants in a Chinese 46,XY DSD cohort, expanding the genetic understanding and providing evidence for known pathogenic genes’ involvement. 46,XY disorders of sex development (46,XY DSD) are conditions where individuals don’t fully develop male genitalia due to reduced androgen hormones. Diagnosing these conditions based only on physical exams is difficult. This study used advanced genetic testing called targeted next-generation sequencing (NGS) to identify common genetic variations in a large group of 46,XY DSD patients, many of whom had unusual symptoms. We examined 402 patients with DSD and a 46,XY karyotype, focusing on 142 candidate genes related to sex development. We found genetic variations in 107 patients, including 45 that were likely responsible for their condition. Some of these variations were new discoveries. The most commonly affected genes were SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7. We also found that some patients had va","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"92 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin 小鼠荚膜细胞在体内平衡和雷帕霉素药理作用下的性别特异性分子特征
IF 7.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-15 DOI: 10.1186/s13293-024-00647-7
Ola Al-Diab, Christin Sünkel, Eric Blanc, Rusan Ali Catar, Muhammad Imtiaz Ashraf, Hongfan Zhao, Pinchao Wang, Markus M. Rinschen, Raphaela Fritsche-Guenther, Florian Grahammer, Sebastian Bachmann, Dieter Beule, Jennifer A. Kirwan, Nikolaus Rajewsky, Tobias B. Huber, Dennis Gürgen, Angelika Kusch
Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies. The global burden of chronic kidney diseases is rapidly increasing and is projected to become the fifth most common cause of years of life lost worldwide by 2040. Sexual dimorphism in kidney diseases and transplantation is well known, yet sex-specific therapeutic strategies are still missing. One reason is the lack of knowledge due to the lack of inclusion of sex as a biological variable in study d
主要肾小球疾病的发病率和进展存在性别差异。荚膜细胞是肾脏中维持生理血尿屏障的重要细胞类型,荚膜细胞稳态的病理变化是肾功能受损的关键加速因素。然而,荚膜细胞在生理和应激条件下的性别特异性分子特征仍然未知。mTOR是参与肾脏各种生理和病理应激反应的关键调节因子,因此抑制该通路可作为一种通用的应激挑战因子,从根本上揭示荚膜细胞的性别差异。采用基因组ROSAmT/mG-NPHS2 Cre小鼠模型可获得高纯度的荚膜细胞碎片,用于细胞特异性分子分析。随后,对分离的荚膜细胞进行了深度 RNA 测序和蛋白质组学分析,以确定内在的性别差异。研究还辅以肾皮质组织的代谢组学。虽然所有实验组的肾功能和形态都保持正常,但 RNA 测序、蛋白质组学和代谢组学发现,线粒体、翻译和结构转录本的表达水平、蛋白质丰度和代谢途径的调控都存在强烈的内在性别差异。有趣的是,雷帕霉素消除了荚膜细胞基因表达的突出性别特异性集群,只诱导男性转录组发生重大变化。几种有性别偏见的转录因子可能是这些性别二态反应的上游调节因子。与转录组学一致,代谢组学的变化在雄性中更为显著。值得注意的是,大量以前报道过的肾脏疾病基因显示了内在的性别二态性和/或对mTOR抑制的不同反应模式。我们的研究结果突显了显著的内在性别差异和对药物挑战荚膜细胞稳态的特异性反应模式,这可能从根本上导致肾脏疾病易感性和进展的性别差异。这项工作为在特定肾病模型中测试新靶点提供了理论依据和深入的数据库,以推进性别特异性治疗策略。慢性肾脏疾病给全球造成的负担正在迅速增加,预计到 2040 年将成为导致全球寿命损失的第五大常见病因。肾脏疾病和移植中的性别二形性已广为人知,但仍缺乏针对不同性别的治疗策略。原因之一是在研究设计中没有将性别作为一个生物变量纳入其中,从而导致知识的匮乏。这项研究旨在鉴定肾小球滤过屏障的守门人--男性和女性荚膜细胞的分子特征。与心肌细胞一样,荚膜细胞也是终末分化的细胞,极易受到病理挑战的影响。荚膜细胞是肾脏维持生理血尿屏障的决定性细胞类型,其平衡紊乱会严重加速肾功能损伤。在基因组小鼠模型的帮助下,研究人员从接受或未接受雷帕霉素机制靶标(mTOR)信号通路药物挑战的雌雄小鼠体内获得了高度纯化的荚膜细胞。深度 RNA 测序、蛋白质组学和代谢组学发现,线粒体、翻译和结构转录本的表达水平、蛋白质丰度和代谢通路的调控存在强烈的内在性别差异,这可能从根本上导致肾脏疾病易感性和进展的性别差异。值得注意的是,之前报道的大量肾病基因显示出迄今未知的内在性双态性和/或对 mTOR 抑制的不同反应模式。我们的工作提供了一个深入的数据库,用于在肾脏疾病模型中测试新的靶点,以推进性别特异性治疗策略。
{"title":"Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin","authors":"Ola Al-Diab, Christin Sünkel, Eric Blanc, Rusan Ali Catar, Muhammad Imtiaz Ashraf, Hongfan Zhao, Pinchao Wang, Markus M. Rinschen, Raphaela Fritsche-Guenther, Florian Grahammer, Sebastian Bachmann, Dieter Beule, Jennifer A. Kirwan, Nikolaus Rajewsky, Tobias B. Huber, Dennis Gürgen, Angelika Kusch","doi":"10.1186/s13293-024-00647-7","DOIUrl":"https://doi.org/10.1186/s13293-024-00647-7","url":null,"abstract":"Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies. The global burden of chronic kidney diseases is rapidly increasing and is projected to become the fifth most common cause of years of life lost worldwide by 2040. Sexual dimorphism in kidney diseases and transplantation is well known, yet sex-specific therapeutic strategies are still missing. One reason is the lack of knowledge due to the lack of inclusion of sex as a biological variable in study d","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"189 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: MetaFun: unveiling sex-based differences in multiple transcriptomic studies through comprehensive functional meta-analysis 更正:MetaFun:通过综合功能荟萃分析揭示多项转录组研究中的性别差异
IF 7.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-12 DOI: 10.1186/s13293-024-00646-8
Pablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, María de la Iglesia-Vayá, Marta R. Hidalgo, Francisco Garcia-Garcia
<p><b>Correction: Biol Sex Differ 15</b>,<b> 66 (2024)</b></p><p><b>https://doi.org/10.1186/s13293-024-00640-0</b></p><p>Following publication of the original article [1], the authors reported an error in the funding statement.</p><p>The original article [1] has been corrected.</p><ol data-track-component="outbound reference" data-track-context="references section"><li data-counter="1."><p>Malmierca-Merlo P, Sánchez-Garcia R, Grillo-Risco R et al. MetaFun: unveiling sex-based differences in multiple transcriptomic studies through comprehensive functional meta-analysis. Biol Sex Differ. 2024;15:66. https://doi.org/10.1186/s13293-024-00640-0</p></li></ol><p>Download references<svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-download-medium" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Eduardo Primo Yúfera Street, 3, Valencia, 46012, Spain</p><p>Pablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, Marta R. Hidalgo & Francisco Garcia-Garcia</p></li><li><p>Biomedical Imaging Unit FISABIOCIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, 46012, Spain</p><p>Irene Pérez-Díez & María de la Iglesia-Vayá</p></li><li><p>Department of Mathematics, Faculty of Mathematics, University of Valencia (UV), BurjassotValencia, 46100, Spain</p><p>Marta R. Hidalgo</p></li></ol><span>Authors</span><ol><li><span>Pablo Malmierca-Merlo</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Rubén Sánchez-Garcia</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Rubén Grillo-Risco</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Irene Pérez-Díez</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>José F. Català-Senent</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>María de la Iglesia-Vayá</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Marta R. Hidalgo</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Francisco Garcia-Garcia</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding authors</h3><p>Correspondence to Marta R. Hidalgo or Francisco Garcia-Garcia.</p><h3>Publisher
更正:Biol Sex Differ 15, 66 (2024)https://doi.org/10.1186/s13293-024-00640-0Following 原文[1]发表时,作者报告了资助声明中的一处错误。原文[1]已更正。Malmierca-Merlo P, Sánchez-Garcia R, Grillo-Risco R et al. MetaFun: 通过综合功能荟萃分析揭示多项转录组研究中的性别差异。Biol Sex Differ.2024;15:66。https://doi.org/10.1186/s13293-024-00640-0Download 参考文献作者及单位Principe Felipe 研究中心(CIPF)计算生物医学实验室,Eduardo Primo Yúfera Street, 3, Valencia, 46012, SpainPablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, Marta R. Hidalgo & Francisco Garillo-Risco.Hidalgo & Francisco Garcia-GarciaBiomedical Imaging Unit FISABIOCIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, 46012, SpainIrene Pérez-Díez & María de la Iglesia-VayáDepartment of Mathematics, Faculty of Mathematics, University of Valencia (UV), BurjassotValencia, 46100, SpainMarta R.Hidalgo作者Pablo Malmierca-Merlo查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Rubén Sánchez-Garcia 查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Rubén Grillo-Risco查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者Irene Pérez-Díez 查看作者发表的论文您也可以在PubMed Google Scholar中搜索该作者José F.Català-Senent查看作者发表的作品您也可以在PubMed Google Scholar中搜索该作者María de la Iglesia-Vayá查看作者发表的作品您也可以在PubMed Google Scholar中搜索该作者Marta R. Hidalgo查看作者发表的作品您也可以在PubMed Google Scholar中搜索该作者Francisco Garcia-Garcia查看作者发表的作品您也可以在PubMed Google Scholar中搜索该作者通信作者Marta R. Hidalgo或Francisco Garcia-Garcia。出版者注释Springer Nature对出版地图中的管辖权主张和机构隶属关系保持中立。原文的在线版本可在以下网址找到:https://doi.org/10.1186/s13293-024-00640-0.Open Access 本文采用知识共享署名 4.0 国际许可协议进行许可,该协议允许以任何媒介或格式使用、共享、改编、分发和复制,只要您适当注明原作者和来源,提供知识共享许可协议的链接,并说明是否进行了修改。本文中的图片或其他第三方材料均包含在文章的知识共享许可协议中,除非在材料的署名栏中另有说明。如果材料未包含在文章的知识共享许可协议中,且您打算使用的材料不符合法律规定或超出许可使用范围,您需要直接从版权所有者处获得许可。要查看该许可的副本,请访问 http://creativecommons.org/licenses/by/4.0/。除非在数据的信用行中另有说明,否则知识共享公共领域专用免责声明(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文提供的数据。转载与许可引用本文Malmierca-Merlo, P., Sánchez-Garcia, R., Grillo-Risco, R. et al. Correction:MetaFun:通过综合功能荟萃分析揭示多项转录组研究中的性别差异。Biol Sex Differ 15, 71 (2024). https://doi.org/10.1186/s13293-024-00646-8Download citationPublished: 12 September 2024DOI: https://doi.org/10.1186/s13293-024-00646-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative
{"title":"Correction: MetaFun: unveiling sex-based differences in multiple transcriptomic studies through comprehensive functional meta-analysis","authors":"Pablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, María de la Iglesia-Vayá, Marta R. Hidalgo, Francisco Garcia-Garcia","doi":"10.1186/s13293-024-00646-8","DOIUrl":"https://doi.org/10.1186/s13293-024-00646-8","url":null,"abstract":"&lt;p&gt;&lt;b&gt;Correction: Biol Sex Differ 15&lt;/b&gt;,&lt;b&gt; 66 (2024)&lt;/b&gt;&lt;/p&gt;&lt;p&gt;&lt;b&gt;https://doi.org/10.1186/s13293-024-00640-0&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Following publication of the original article [1], the authors reported an error in the funding statement.&lt;/p&gt;&lt;p&gt;The original article [1] has been corrected.&lt;/p&gt;&lt;ol data-track-component=\"outbound reference\" data-track-context=\"references section\"&gt;&lt;li data-counter=\"1.\"&gt;&lt;p&gt;Malmierca-Merlo P, Sánchez-Garcia R, Grillo-Risco R et al. MetaFun: unveiling sex-based differences in multiple transcriptomic studies through comprehensive functional meta-analysis. Biol Sex Differ. 2024;15:66. https://doi.org/10.1186/s13293-024-00640-0&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;p&gt;Download references&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/p&gt;&lt;h3&gt;Authors and Affiliations&lt;/h3&gt;&lt;ol&gt;&lt;li&gt;&lt;p&gt;Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), Eduardo Primo Yúfera Street, 3, Valencia, 46012, Spain&lt;/p&gt;&lt;p&gt;Pablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, Marta R. Hidalgo &amp; Francisco Garcia-Garcia&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Biomedical Imaging Unit FISABIOCIPF, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, 46012, Spain&lt;/p&gt;&lt;p&gt;Irene Pérez-Díez &amp; María de la Iglesia-Vayá&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;p&gt;Department of Mathematics, Faculty of Mathematics, University of Valencia (UV), BurjassotValencia, 46100, Spain&lt;/p&gt;&lt;p&gt;Marta R. Hidalgo&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;span&gt;Authors&lt;/span&gt;&lt;ol&gt;&lt;li&gt;&lt;span&gt;Pablo Malmierca-Merlo&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Rubén Sánchez-Garcia&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Rubén Grillo-Risco&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Irene Pérez-Díez&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;José F. Català-Senent&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;María de la Iglesia-Vayá&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Marta R. Hidalgo&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;Francisco Garcia-Garcia&lt;/span&gt;View author publications&lt;p&gt;You can also search for this author in &lt;span&gt;PubMed&lt;span&gt; &lt;/span&gt;Google Scholar&lt;/span&gt;&lt;/p&gt;&lt;/li&gt;&lt;/ol&gt;&lt;h3&gt;Corresponding authors&lt;/h3&gt;&lt;p&gt;Correspondence to Marta R. Hidalgo or Francisco Garcia-Garcia.&lt;/p&gt;&lt;h3&gt;Publisher","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"49 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. 组织学观察和转录组分析揭示了斑点乌鳢性腺在性别分化和配子发生过程中的动态变化。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-07 DOI: 10.1186/s13293-024-00643-x
Xiaotian Zhang, Yuxia Wu, Yang Zhang, Jin Zhang, Pengfei Chu, Kunci Chen, Haiyang Liu, Qing Luo, Shuzhan Fei, Jian Zhao, Mi Ou

Background: Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices.

Methods: The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis.

Results: Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development.

Conclusions: This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.

背景:斑点乌鳢(Channa maculata)表现出明显的性二型,雄性比雌性生长速度更快、体型更大。培育全雄性乌鳢种群具有重要的经济和生态价值。然而,有关乌鳢双性腺发育成睾丸或卵巢的复杂过程仍未得到充分阐明。因此,有必要确定巨蜥性别分化的关键时间窗口,为生产实践中的性别控制提供理论依据:方法:在不同的发育阶段测量雌雄大菱鲆的体长和体重,以揭示生长中的性别二形性最初出现的时间。对不同发育阶段的卵巢和睾丸进行组织学观察和时空比较转录组分析,以确定每种性别性别分化的关键时间窗口和性别相关基因。此外,还利用 qPCR 和 MG2C 验证和定位性别相关基因,并量化 E2 和 T 的水平,以了解性类固醇的合成:结果:从90 dpf开始,生长的性别二态性开始明显。组织学观察显示,雌性和雄性的形态性别分化分别发生在20-25 dpf或更早和30-35 dpf或更早,与卵巢腔或传出导管肛门的出现相对应。转录组分析显示,睾丸和卵巢的基因表达模式在30 dpf之后出现了差异。40-60 dpf和60-90 dpf时期分别标志着雌性和雄性分子性别分化的开始。偏雄性的基因(Sox11a、Dmrt1、Amh、Amhr2、Gsdf、Ar、Cyp17a2)可能在雄性性别分化和精子发生中起着关键作用,而偏雌性的基因(Foxl2、Cyp19a1a、Bmp15、Figla、Er)可能在卵巢分化和发育中起着关键作用。还发现了许多与性别分化和配子发生相关的生物通路。此外,E2和T在性分化和性腺发育过程中表现出性二态性。基于这些结果,我们推测,在C.maculata中,潜在的雄性性分化途径Sox11a-Dmrt1-Sox9b会激活睾丸发育的下游性相关基因(Amh、Amhr2、Gsdf、Ar、Cyp17a2),而拮抗途径Foxl2/Cyp19a1a则会激活卵巢发育的下游性相关基因(Bmp15、Figla、Er):本研究全面概述了巨蜥性分化和配子发生过程中性腺的动态变化,为该物种的性别控制奠定了科学基础。
{"title":"Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis.","authors":"Xiaotian Zhang, Yuxia Wu, Yang Zhang, Jin Zhang, Pengfei Chu, Kunci Chen, Haiyang Liu, Qing Luo, Shuzhan Fei, Jian Zhao, Mi Ou","doi":"10.1186/s13293-024-00643-x","DOIUrl":"10.1186/s13293-024-00643-x","url":null,"abstract":"<p><strong>Background: </strong>Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices.</p><p><strong>Methods: </strong>The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E<sub>2</sub> and T were quantified to understand sex steroid synthesis.</p><p><strong>Results: </strong>Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E<sub>2</sub> and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development.</p><p><strong>Conclusions: </strong>This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"70"},"PeriodicalIF":4.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific associations of Notch signaling with chronic HBV infection: a study from Taiwan Biobank. Notch 信号传导与慢性 HBV 感染的性别特异性关联:来自台湾生物数据库的一项研究。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-05 DOI: 10.1186/s13293-024-00641-z
I-An Jen, Terry B J Kuo, Yung-Po Liaw

Background: Hepatitis B, a liver infection caused by the hepatitis B virus (HBV), can develop into a chronic infection that puts patients at high risk of death from cirrhosis and liver cancer. In this study, we aimed to investigate the difference of reactome pre-Notch expression and processing between males and females by using gene to function analysis in FUMA.

Methods: We analyzed Taiwan Biobank (TWB) data pertaining to 48,874 women and 23,178 men individuals which were collected from 2008 to 2019. According to hepatitis B surface antigen (HBsAg) status in hematology, positive and negative were classified into case and control in the genome-wide association study (GWAS) analysis.

Results: We found 4715 women and 2656 men HBV cases. The genomic risk loci were different between males and females. In male, three risk loci (rs3732421, rs1884575 and Affx-28516147) were detected while eight risk loci (Affx-4564106, rs932745, rs7574865, rs34050244, rs77041685, rs107822, rs2296651 and rs12599402) were found in female. In addition, sex also presented different results. In females, the most significant SNPs are gathered in chromosome 6. However, except for chromosome 6, significant HBV infection SNPs also could be found in chromosome 3 among males. We further investigated gene function in FUMA to identify the difference in reactome pre-Notch expression and processing between males and females. We found that POGLUT1 and HIST1H2BC only appeared in men but not in women.

Conclusion: According to our study, the reactome pre-Notch expression including POGLUT1 and HIST1H2BC was associated with a risk of Hepatitis B in Taiwanese men when compared to women.

背景:乙型肝炎是由乙型肝炎病毒(HBV)引起的肝脏感染,可发展为慢性感染,使患者面临死于肝硬化和肝癌的高风险。本研究旨在通过 FUMA 中的基因功能分析,研究男性和女性反应组前 Notch 表达和处理的差异:我们分析了台湾生物库(TWB)从 2008 年到 2019 年收集的 48 874 名女性和 23 178 名男性的数据。根据血液学中乙型肝炎表面抗原(HBsAg)的状态,将阳性和阴性分为病例和对照,进行全基因组关联研究(GWAS)分析:结果:我们发现了 4715 例女性和 2656 例男性 HBV 病例。男性和女性的基因组风险位点不同。男性发现了 3 个风险位点(rs3732421、rs1884575 和 Affx-28516147),而女性发现了 8 个风险位点(Affx-4564106、rs932745、rs7574865、rs34050244、rs77041685、rs107822、rs2296651 和 rs12599402)。此外,性别也呈现出不同的结果。在女性中,最显著的 SNPs 集中在 6 号染色体上。然而,除了第 6 号染色体外,在男性中还能在第 3 号染色体上发现显著的 HBV 感染 SNPs。我们进一步研究了 FUMA 中的基因功能,以确定男性和女性在反应组 pre-Notch 表达和处理方面的差异。我们发现,POGLUT1 和 HIST1H2BC 只出现在男性中,而不出现在女性中:根据我们的研究,与女性相比,包括 POGLUT1 和 HIST1H2BC 在内的反应组前缺口表达与台湾男性罹患乙型肝炎的风险有关。
{"title":"Sex-specific associations of Notch signaling with chronic HBV infection: a study from Taiwan Biobank.","authors":"I-An Jen, Terry B J Kuo, Yung-Po Liaw","doi":"10.1186/s13293-024-00641-z","DOIUrl":"10.1186/s13293-024-00641-z","url":null,"abstract":"<p><strong>Background: </strong>Hepatitis B, a liver infection caused by the hepatitis B virus (HBV), can develop into a chronic infection that puts patients at high risk of death from cirrhosis and liver cancer. In this study, we aimed to investigate the difference of reactome pre-Notch expression and processing between males and females by using gene to function analysis in FUMA.</p><p><strong>Methods: </strong>We analyzed Taiwan Biobank (TWB) data pertaining to 48,874 women and 23,178 men individuals which were collected from 2008 to 2019. According to hepatitis B surface antigen (HBsAg) status in hematology, positive and negative were classified into case and control in the genome-wide association study (GWAS) analysis.</p><p><strong>Results: </strong>We found 4715 women and 2656 men HBV cases. The genomic risk loci were different between males and females. In male, three risk loci (rs3732421, rs1884575 and Affx-28516147) were detected while eight risk loci (Affx-4564106, rs932745, rs7574865, rs34050244, rs77041685, rs107822, rs2296651 and rs12599402) were found in female. In addition, sex also presented different results. In females, the most significant SNPs are gathered in chromosome 6. However, except for chromosome 6, significant HBV infection SNPs also could be found in chromosome 3 among males. We further investigated gene function in FUMA to identify the difference in reactome pre-Notch expression and processing between males and females. We found that POGLUT1 and HIST1H2BC only appeared in men but not in women.</p><p><strong>Conclusion: </strong>According to our study, the reactome pre-Notch expression including POGLUT1 and HIST1H2BC was associated with a risk of Hepatitis B in Taiwanese men when compared to women.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"69"},"PeriodicalIF":4.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex specific analysis of patients with and without reported statin intolerance referred to a specialized outpatient lipid clinic. 对转诊到血脂专科门诊的他汀类药物不耐受和未报告他汀类药物不耐受的患者进行性别特异性分析。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-02 DOI: 10.1186/s13293-024-00642-y
Maximilian A Muck, Marcus Fischer, Michael Hamerle, Christina Strack, Maxime Holzhaeuer, Dennis Pfeffer, Ute Hubauer, Lars S Maier, Andrea Baessler

Background: Lowering LDL-cholesterol is a fundamental goal for both primary and secondary prevention of atherosclerotic cardiovascular diseases. Our study aims to analyse potential sex disparities regarding the tolerability and effectiveness of lipid-lowering therapy in patients with and without reported statin intolerance who are being treated at a lipid-outpatient clinic.

Methods: From 2017 to 2022, n = 1062 patients (n = 612 men, n = 450 women) at high-risk were referred to our lipid-outpatient clinic because of difficulties in lipid control by primary healthcare providers. The main therapeutic objective was to optimize lipid-lowering therapy according to current treatment guidelines.

Results: Patients presented with high LDL-C baseline levels (4.97 ± 1.81 mmol/l (192 ± 70 mg/dL) in men and 5.46 ± 2.04 mmol/l (211 ± 79 mg/dL) in women). Intolerance towards statins was reported more frequently by women (48.2%) than by men (38.9%, p = 0.004). LDL-C continuously decreased with individual treatment adjustments across follow-up visits. In total, treatment goals (LDL < 1.4 mmol/l (< 55 mg/dl) or < 1.8 mmol/l (< 70 mg/dl)) were accomplished in 75.8% of men and 55.5% of women after the last follow-up visit (p < 0.0001). In men, these data are almost identical in subjects with statin intolerance. In contrast, treatment goals were reached less frequently in women with statin intolerance compared to women tolerant to statin therapy.

Conclusion: Even if treated in a specialized lipid clinic, women are less likely to reach their target LDL-C than men, particularly when statin intolerant. Nevertheless, many patients with statin intolerance can be successfully treated using oral combination and PCSK9 inhibitor therapy. However, ongoing follow-up care to monitor progress and to adjust treatment plans is necessary to reach this goal.

背景:降低低密度脂蛋白胆固醇是动脉粥样硬化性心血管疾病一级和二级预防的基本目标。我们的研究旨在分析在血脂门诊接受治疗的他汀类药物不耐受患者和未报告他汀类药物不耐受患者在降脂治疗的耐受性和有效性方面可能存在的性别差异:从 2017 年到 2022 年,n = 1062 名高风险患者(n = 612 名男性,n = 450 名女性)因初级医疗保健提供者难以控制血脂而被转诊到我们的血脂门诊。主要治疗目标是根据现行治疗指南优化降脂治疗:患者的 LDL-C 基线水平较高(男性为 4.97 ± 1.81 mmol/l(192 ± 70 mg/dL),女性为 5.46 ± 2.04 mmol/l(211 ± 79 mg/dL))。报告对他汀类药物不耐受的女性(48.2%)多于男性(38.9%,P = 0.004)。随访期间,随着个体治疗的调整,低密度脂蛋白胆固醇(LDL-C)持续下降。总的来说,治疗目标(低密度脂蛋白胆固醇(LDL Conclusion:即使在血脂专科门诊接受治疗,女性达到目标 LDL-C 的可能性也低于男性,尤其是在不耐受他汀类药物的情况下。不过,许多他汀类药物不耐受的患者可以通过口服联合和 PCSK9 抑制剂治疗获得成功。不过,要实现这一目标,还需要持续的随访护理,以监测进展情况并调整治疗方案。
{"title":"Sex specific analysis of patients with and without reported statin intolerance referred to a specialized outpatient lipid clinic.","authors":"Maximilian A Muck, Marcus Fischer, Michael Hamerle, Christina Strack, Maxime Holzhaeuer, Dennis Pfeffer, Ute Hubauer, Lars S Maier, Andrea Baessler","doi":"10.1186/s13293-024-00642-y","DOIUrl":"10.1186/s13293-024-00642-y","url":null,"abstract":"<p><strong>Background: </strong>Lowering LDL-cholesterol is a fundamental goal for both primary and secondary prevention of atherosclerotic cardiovascular diseases. Our study aims to analyse potential sex disparities regarding the tolerability and effectiveness of lipid-lowering therapy in patients with and without reported statin intolerance who are being treated at a lipid-outpatient clinic.</p><p><strong>Methods: </strong>From 2017 to 2022, n = 1062 patients (n = 612 men, n = 450 women) at high-risk were referred to our lipid-outpatient clinic because of difficulties in lipid control by primary healthcare providers. The main therapeutic objective was to optimize lipid-lowering therapy according to current treatment guidelines.</p><p><strong>Results: </strong>Patients presented with high LDL-C baseline levels (4.97 ± 1.81 mmol/l (192 ± 70 mg/dL) in men and 5.46 ± 2.04 mmol/l (211 ± 79 mg/dL) in women). Intolerance towards statins was reported more frequently by women (48.2%) than by men (38.9%, p = 0.004). LDL-C continuously decreased with individual treatment adjustments across follow-up visits. In total, treatment goals (LDL < 1.4 mmol/l (< 55 mg/dl) or < 1.8 mmol/l (< 70 mg/dl)) were accomplished in 75.8% of men and 55.5% of women after the last follow-up visit (p < 0.0001). In men, these data are almost identical in subjects with statin intolerance. In contrast, treatment goals were reached less frequently in women with statin intolerance compared to women tolerant to statin therapy.</p><p><strong>Conclusion: </strong>Even if treated in a specialized lipid clinic, women are less likely to reach their target LDL-C than men, particularly when statin intolerant. Nevertheless, many patients with statin intolerance can be successfully treated using oral combination and PCSK9 inhibitor therapy. However, ongoing follow-up care to monitor progress and to adjust treatment plans is necessary to reach this goal.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"67"},"PeriodicalIF":4.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. 全基因组从头测序揭示了与 SRY 阴性猪性别发育差异相关的基因组变异。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-02 DOI: 10.1186/s13293-024-00644-w
Jinhua Wu, Shuwen Tan, Zheng Feng, Haiquan Zhao, Congying Yu, Yin Yang, Bingzhou Zhong, Wenxiao Zheng, Hui Yu, Hua Li
<p><strong>Background: </strong>Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited.</p><p><strong>Methods: </strong>Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined.</p><p><strong>Results: </strong>XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs.</p><p><strong>Conclusion: </strong>The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome
背景:性别发育差异(DSD)是指染色体、性腺或表型性别不典型的先天性疾病。超过 50% 的人类 DSD 病例无法进行分子诊断。在集约化养殖的猪群中,XX DSD 猪的发病率相对较高,给养猪户造成了经济损失。有趣的是,在大多数 38 XX DSD 猪中,尽管没有睾丸决定基因(SRY),但性腺仍然发育成睾丸样结构或卵巢。然而,目前对XX DSD猪分子背景的了解仍然有限:方法:通过尸体解剖和 HE 染色分析了 XX DSD 猪的解剖学和组织学特征。我们利用 10× 基因组学技术进行了全基因组测序(WGS),并使用从头组装方法研究了正常雌性猪和 XX DSD 猪。最后,在 32 头 XX DSD 猪身上验证了所发现的变异,并进一步研究了候选变异在 XX DSD 猪性腺中的表达水平:结果:XX DSD猪的特点是生殖器官无性,性腺的曲细精管中没有生殖细胞。我们从XX DSD猪的非同义突变中鉴定出4950个单核苷酸多态性(SNPs)。队列验证结果表明,"干扰素诱导跨膜蛋白 1 基因(IFITM1)"中的 "c.218T > C "和 "新生卵巢同源染色体基因(NOBOX)"中的 "c.1043C > G "这两个特定的 SNP 只存在于 XX DSD 猪体内。此外,我们还从 1,474 个 SV 中验证了 14 个候选结构变异(SV),在 62.5% 的 XX DSD 猪中发现了含 WW domain 的氧化还原酶基因(WWOX)内含子 5 中的 70 bp 缺失片段。这三个候选基因在XX DSD猪性腺中的表达水平与正常雌性猪有显著差异:结论:IFITM1(c.218T > C)、NOBOX(c.1043 C > G)和WWOX的一个70 bp缺失片段的核苷酸变化是XX DSD猪中最主要的变异。这项研究为更好地了解 XX DSD 猪的分子背景提供了理论依据。DSD是影响性腺或生殖器发育的疾病。这些疾病可发生在许多不同类型的动物身上,包括猪、山羊、狗和人。人的 DSD 发生率约为 0.02%-0.13%,而猪的发生率为 0.08%-0.75%。猪有一种常见的 DSD,即动物有雌性染色体(38,XX),但没有 SRY 基因,而 SRY 基因通常存在于雄性猪的 Y 染色体上。XX DSD 猪外表看起来既像雄性也像雌性,但体内却有类似睾丸或卵睾(卵巢和睾丸的混合体)的性腺。XX DSD 猪通常会导致无法产仔、生长缓慢、存活率低和肉质较差。在这里,我们使用了一种名为全基因组从头测序的方法来寻找XX DSD猪DNA中的变异。然后,我们在更大的猪群中检验了这些差异。我们的结果显示,IFITM1(c.218T > C)、NOBOX(c.1043 C > G)和 WWOX 内含子 5 中一个 70 bp 缺失片段的核苷酸变化都与 XX DSD 猪有关。与正常母猪相比,这三个基因在 XX DSD 猪性腺中的表达水平也有所不同。这些变异有望成为 XX DSD 猪的重要分子标记。由于猪在基因、生理和身体结构方面与人类非常相似,这项研究可以帮助我们更多地了解导致人类 DSD 的原因。
{"title":"Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs.","authors":"Jinhua Wu, Shuwen Tan, Zheng Feng, Haiquan Zhao, Congying Yu, Yin Yang, Bingzhou Zhong, Wenxiao Zheng, Hui Yu, Hua Li","doi":"10.1186/s13293-024-00644-w","DOIUrl":"10.1186/s13293-024-00644-w","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, \"c.218T &gt; C\" in the \"Interferon-induced transmembrane protein 1 gene (IFITM1)\" and \"c.1043C &gt; G\" in the \"Newborn ovary homeobox gene (NOBOX)\", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;The nucleotide changes of IFITM1 (c.218T &gt; C), NOBOX (c.1043 C &gt; G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"68"},"PeriodicalIF":4.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology of Sex Differences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1