首页 > 最新文献

Biology of Sex Differences最新文献

英文 中文
Human-specific protein-coding and lncRNA genes cast sex-biased genes in the brain and their relationships with brain diseases. 人类特异性蛋白编码基因和 lncRNA 基因在大脑中的性别偏向基因及其与脑部疾病的关系。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-29 DOI: 10.1186/s13293-024-00659-3
Sha He, Xuecong Zhang, Hao Zhu

Background: Gene expression shows sex bias in the brain as it does in other organs. Since female and male humans exhibit noticeable differences in emotions, logical thinking, movement, spatial orientation, and even the incidence of neurological disorders, sex biases in the brain are especially interesting, but how they are determined, whether they are conserved or lineage specific, and what the consequences of the biases are, remain poorly explored and understood.

Methods: Based on RNA-seq datasets from 16  and 14 brain regions in humans and macaques across developmental periods and from patients with brain diseases, we used linear mixed models (LMMs) to differentiate variations in gene expression caused by factors of interest and confounding factors and identify four types of sex-biased genes. Effect size and confidence in each effect were measured upon the local false sign rate (LFSR). We utilized the biomaRt R package to acquire orthologous genes in humans and macaques from the BioMart Ensembl website. Transcriptional regulation of sex-biased genes by sex hormones and lncRNAs were analyzed using the CellOracle, GENIE3, and Longtarget programs. Sex-biased genes' functions were revealed by gene set enrichment analysis using multiple methods.

Results: Lineage-specific sex-biased genes greatly determine the distinct sex biases in human and macaque brains. In humans, those encoding proteins contribute directly to immune-related functions, and those encoding lncRNAs intensively regulate the expression of other sex-biased genes, especially genes with immune-related functions. The identified sex-specific differentially expressed genes (ssDEGs) upon gene expression in disease and normal samples also indicate that protein-coding ssDEGs are conserved in humans and macaques but that lncRNA ssDEGs are not conserved. The results answer the above questions, reveal an intrinsic relationship between sex biases in the brain and sex-biased susceptibility to brain diseases, and will help researchers investigate human- and sex-specific ncRNA targets for brain diseases.

Conclusions: Human-specific genes greatly cast sex-biased genes in the brain and their relationships with brain diseases, with protein-coding genes contributing to immune response related functions and lncRNA genes critically regulating sex-biased genes. The high proportions of lineage-specific lncRNAs in mammalian genomes indicate that sex biases may have evolved rapidly in not only the brain but also other organs.

背景:与其他器官一样,大脑中的基因表达也显示出性别偏见。由于雌性和雄性人类在情绪、逻辑思维、运动、空间定向,甚至神经系统疾病的发病率等方面表现出明显的差异,因此大脑中的性别偏向尤其引人关注,但它们是如何决定的,是保守的还是特定的,以及偏向的后果是什么,这些问题仍然没有得到很好的探索和理解:方法:基于人类和猕猴16个和14个脑区发育期的RNA-seq数据集以及脑部疾病患者的RNA-seq数据集,我们使用线性混合模型(LMMs)区分了由相关因素和混杂因素引起的基因表达变化,并确定了四种性别偏倚基因。根据局部假符号率(LFSR)来衡量每种效应的效应大小和置信度。我们利用 biomaRt R 软件包从 BioMart Ensembl 网站获取了人类和猕猴的同源基因。我们使用CellOracle、GENIE3和Longtarget程序分析了性激素和lncRNA对性别偏倚基因的转录调控。使用多种方法进行基因组富集分析,揭示了性别偏倚基因的功能:结果:特异性系的性别偏向基因在很大程度上决定了人类和猕猴大脑中不同的性别偏向。在人类中,编码蛋白质的基因直接参与免疫相关功能,而编码lncRNA的基因则密切调控其他性别偏向基因的表达,尤其是具有免疫相关功能的基因。在疾病和正常样本基因表达中发现的性别差异表达基因(ssDEGs)也表明,编码蛋白质的ssDEGs在人类和猕猴中是保守的,但lncRNA ssDEGs并不保守。这些结果回答了上述问题,揭示了大脑性别偏差与脑部疾病性别易感性之间的内在关系,有助于研究人员研究人类和性别特异性ncRNA在脑部疾病中的靶点:人类特异性基因在很大程度上决定了大脑中的性别偏倚基因及其与脑部疾病的关系,其中蛋白编码基因对免疫反应相关功能做出了贡献,而lncRNA基因则对性别偏倚基因起着关键性的调控作用。哺乳动物基因组中特异性系的lncRNA比例很高,这表明性别偏见可能不仅在大脑中,而且在其他器官中也在迅速进化。
{"title":"Human-specific protein-coding and lncRNA genes cast sex-biased genes in the brain and their relationships with brain diseases.","authors":"Sha He, Xuecong Zhang, Hao Zhu","doi":"10.1186/s13293-024-00659-3","DOIUrl":"10.1186/s13293-024-00659-3","url":null,"abstract":"<p><strong>Background: </strong>Gene expression shows sex bias in the brain as it does in other organs. Since female and male humans exhibit noticeable differences in emotions, logical thinking, movement, spatial orientation, and even the incidence of neurological disorders, sex biases in the brain are especially interesting, but how they are determined, whether they are conserved or lineage specific, and what the consequences of the biases are, remain poorly explored and understood.</p><p><strong>Methods: </strong>Based on RNA-seq datasets from 16  and 14 brain regions in humans and macaques across developmental periods and from patients with brain diseases, we used linear mixed models (LMMs) to differentiate variations in gene expression caused by factors of interest and confounding factors and identify four types of sex-biased genes. Effect size and confidence in each effect were measured upon the local false sign rate (LFSR). We utilized the biomaRt R package to acquire orthologous genes in humans and macaques from the BioMart Ensembl website. Transcriptional regulation of sex-biased genes by sex hormones and lncRNAs were analyzed using the CellOracle, GENIE3, and Longtarget programs. Sex-biased genes' functions were revealed by gene set enrichment analysis using multiple methods.</p><p><strong>Results: </strong>Lineage-specific sex-biased genes greatly determine the distinct sex biases in human and macaque brains. In humans, those encoding proteins contribute directly to immune-related functions, and those encoding lncRNAs intensively regulate the expression of other sex-biased genes, especially genes with immune-related functions. The identified sex-specific differentially expressed genes (ssDEGs) upon gene expression in disease and normal samples also indicate that protein-coding ssDEGs are conserved in humans and macaques but that lncRNA ssDEGs are not conserved. The results answer the above questions, reveal an intrinsic relationship between sex biases in the brain and sex-biased susceptibility to brain diseases, and will help researchers investigate human- and sex-specific ncRNA targets for brain diseases.</p><p><strong>Conclusions: </strong>Human-specific genes greatly cast sex-biased genes in the brain and their relationships with brain diseases, with protein-coding genes contributing to immune response related functions and lncRNA genes critically regulating sex-biased genes. The high proportions of lineage-specific lncRNAs in mammalian genomes indicate that sex biases may have evolved rapidly in not only the brain but also other organs.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"86"},"PeriodicalIF":4.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in sleep deficits in mice with an autism-linked Shank3 mutation. 与自闭症相关的 Shank3 基因突变小鼠睡眠障碍的性别差异。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-28 DOI: 10.1186/s13293-024-00664-6
Elizabeth Medina, Michael J Rempe, Christine Muheim, Hannah Schoch, Kristan Singletary, Kaitlyn Ford, Lucia Peixoto

Background: Insomnia is more prevalent in individuals with Autism Spectrum Disorder (ASD), can worsen core-symptoms and reduces quality of life of both individuals and caregivers. Although ASD is four times more prevalent in males than females, less is known about sex specific sleep differences in autistic individuals. Recent ASD studies suggest that sleep problems may be more severe in females, which aligns with the sex bias seen in insomnia for the general population. We have previously shown that male mice with a mutation in the high confidence ASD gene Shank3, Shank3∆C, recapitulate most aspects of the ASD insomnia phenotype. The objective of the present study was to leverage the Shank3∆C model to investigate sex-specific effects in sleep using polysomnography.

Methods: Adult male and female Shank3∆C and wildtype (WT) littermates were first recorded for 24 h of baseline recordings. Subsequently, they were sleep deprived (SD) for five hours via gentle handling and allowed 19 h of recovery sleep to characterize the homeostatic response to SD. Vigilance states (rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep and wake) were assigned by manual inspection using SleepSign. Data processing, statistical analysis and visualization were conducted using MATLAB.

Results: Sex and genotype effects were found during baseline sleep and after SD. At baseline, male Shank3∆C mice sleep less during the dark period (active phase) while female Shank3∆C mice sleep less during the light period (rest phase) and sleep more during the dark period. Both male and female Shank3∆C mice show reduced spectral power in NREM sleep. We detect a significant effect of sex and genotype in sleep onset latency and homeostatic sleep pressure (sleepiness). In addition, while male Shank3∆C mice fail to increase sleep time following SD as seen in WT, female Shank3∆C mice decrease sleep time.

Conclusions: Overall, our study demonstrates sex differences in sleep architecture and homeostatic response to SD in adult Shank3∆C mice. Thus, our study demonstrates an interaction between sex and genotype in Shank3∆C mice and supports the use of the Shank3∆C model to better understand mechanisms contributing to the sex differences in insomnia in ASD in clinical populations.

背景:失眠在自闭症谱系障碍(ASD)患者中更为普遍,会加重核心症状,降低患者和照顾者的生活质量。虽然男性自闭症患者的发病率是女性的四倍,但人们对自闭症患者的性别睡眠差异却知之甚少。最近的 ASD 研究表明,女性的睡眠问题可能更为严重,这与一般人群失眠的性别偏向一致。我们之前已经证明,高置信度 ASD 基因 Shank3(Shank3∆C)发生突变的雄性小鼠能再现 ASD 失眠表型的大部分方面。本研究的目的是利用 Shank3∆C 模型,使用多导睡眠图研究睡眠中的性别特异性影响:方法:首先记录成年雌雄 Shank3∆C 和野生型(WT)同窝仔鼠 24 小时的基线记录。随后,通过轻柔操作剥夺其睡眠(SD)5小时,并允许其恢复睡眠19小时,以确定对SD的平衡反应。警觉状态(快速眼动(REM)睡眠、非快速眼动(NREM)睡眠和觉醒)是通过使用 SleepSign 进行人工检查来分配的。使用 MATLAB 进行数据处理、统计分析和可视化:结果:在基线睡眠期间和自毁后发现了性别和基因型效应。在基线期,雄性 Shank3∆C 小鼠在黑暗期(活动期)睡眠较少,而雌性 Shank3∆C 小鼠在光照期(休息期)睡眠较少,在黑暗期睡眠较多。雄性和雌性 Shank3∆C 小鼠在 NREM 睡眠中的频谱功率都有所降低。我们发现性别和基因型对睡眠开始潜伏期和睡眠平衡压力(嗜睡)有明显影响。此外,雄性 Shank3∆C 小鼠不能像 WT 小鼠那样在 SD 后增加睡眠时间,而雌性 Shank3∆C 小鼠则会减少睡眠时间:总之,我们的研究表明,成年 Shank3∆C 小鼠的睡眠结构和对 SD 的稳态反应存在性别差异。因此,我们的研究证明了 Shank3∆C 小鼠的性别和基因型之间存在相互作用,并支持使用 Shank3∆C 模型来更好地了解导致临床人群中 ASD 失眠性别差异的机制。
{"title":"Sex differences in sleep deficits in mice with an autism-linked Shank3 mutation.","authors":"Elizabeth Medina, Michael J Rempe, Christine Muheim, Hannah Schoch, Kristan Singletary, Kaitlyn Ford, Lucia Peixoto","doi":"10.1186/s13293-024-00664-6","DOIUrl":"10.1186/s13293-024-00664-6","url":null,"abstract":"<p><strong>Background: </strong>Insomnia is more prevalent in individuals with Autism Spectrum Disorder (ASD), can worsen core-symptoms and reduces quality of life of both individuals and caregivers. Although ASD is four times more prevalent in males than females, less is known about sex specific sleep differences in autistic individuals. Recent ASD studies suggest that sleep problems may be more severe in females, which aligns with the sex bias seen in insomnia for the general population. We have previously shown that male mice with a mutation in the high confidence ASD gene Shank3, Shank3<sup>∆C</sup>, recapitulate most aspects of the ASD insomnia phenotype. The objective of the present study was to leverage the Shank3<sup>∆C</sup> model to investigate sex-specific effects in sleep using polysomnography.</p><p><strong>Methods: </strong>Adult male and female Shank3<sup>∆C</sup> and wildtype (WT) littermates were first recorded for 24 h of baseline recordings. Subsequently, they were sleep deprived (SD) for five hours via gentle handling and allowed 19 h of recovery sleep to characterize the homeostatic response to SD. Vigilance states (rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep and wake) were assigned by manual inspection using SleepSign. Data processing, statistical analysis and visualization were conducted using MATLAB.</p><p><strong>Results: </strong>Sex and genotype effects were found during baseline sleep and after SD. At baseline, male Shank3<sup>∆C</sup> mice sleep less during the dark period (active phase) while female Shank3<sup>∆C</sup> mice sleep less during the light period (rest phase) and sleep more during the dark period. Both male and female Shank3<sup>∆C</sup> mice show reduced spectral power in NREM sleep. We detect a significant effect of sex and genotype in sleep onset latency and homeostatic sleep pressure (sleepiness). In addition, while male Shank3<sup>∆C</sup> mice fail to increase sleep time following SD as seen in WT, female Shank3<sup>∆C</sup> mice decrease sleep time.</p><p><strong>Conclusions: </strong>Overall, our study demonstrates sex differences in sleep architecture and homeostatic response to SD in adult Shank3<sup>∆C</sup> mice. Thus, our study demonstrates an interaction between sex and genotype in Shank3<sup>∆C</sup> mice and supports the use of the Shank3<sup>∆C</sup> model to better understand mechanisms contributing to the sex differences in insomnia in ASD in clinical populations.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"85"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice. 跨越小鼠青春期过渡期的年龄、性别和细胞类型分辨的下丘脑基因表达。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-24 DOI: 10.1186/s13293-024-00661-9
Dustin J Sokolowski, Huayun Hou, Kyoko E Yuki, Anna Roy, Cadia Chan, Wendy Choi, Mariela Faykoo-Martinez, Matt Hudson, Christina Corre, Liis Uusküla-Reimand, Anna Goldenberg, Mark R Palmert, Michael D Wilson

Background: The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition.

Methods: We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects.

Results: Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation.

Conclusion: Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.

背景:下丘脑在调控青春期方面发挥着核心作用。然而,我们对控制男性和女性青春期过渡的产后基因调控网络的了解并不全面。在此,我们研究了青春期过渡时期下丘脑中年龄、性别和细胞类型特异性的基因调控:方法:我们使用 RNA-seq 分析了雄性和雌性小鼠在青春期开始的五个时间点(出生后第 12、22、27、32 和 37 天)的下丘脑基因表达。通过将这些数据与来自青春期前后小鼠的下丘脑单个核RNA-seq数据相结合,我们将基因表达变化归因于其最可能的起源细胞类型。在我们的小鼠群中,雄性小鼠的青春期来临较早,这使我们能够集中研究在不同年龄段和不同性别间表达动态变化的基因,并探索性别效应的基础:结果:我们按性别划分的年龄表达模式富集了涉及激素分泌、神经元激活和神经胶质成熟的生物通路。此外,我们还推断出少突胶质细胞前体细胞向成熟少突胶质细胞的强劲扩张跨越了青春期前(PD12)到青春期前后(PD27)的时间点。利用发育后小鼠的空间转录组数据,我们观察到下丘脑外侧区和内侧区是少突胶质细胞最丰富的区域,而且这些细胞表达了已知参与青春期调控的基因:总之,通过结合多个生物学时间点和使用性别作为变量,我们确定了可能参与协调青春期过渡的基因和细胞类型变化,并为今后研究出生后下丘脑基因调控提供了资源。
{"title":"Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice.","authors":"Dustin J Sokolowski, Huayun Hou, Kyoko E Yuki, Anna Roy, Cadia Chan, Wendy Choi, Mariela Faykoo-Martinez, Matt Hudson, Christina Corre, Liis Uusküla-Reimand, Anna Goldenberg, Mark R Palmert, Michael D Wilson","doi":"10.1186/s13293-024-00661-9","DOIUrl":"10.1186/s13293-024-00661-9","url":null,"abstract":"<p><strong>Background: </strong>The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition.</p><p><strong>Methods: </strong>We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects.</p><p><strong>Results: </strong>Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation.</p><p><strong>Conclusion: </strong>Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"83"},"PeriodicalIF":4.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromatase, testosterone, TMPRSS2: determinants of COVID-19 severity. 芳香化酶、睾酮、TMPRSS2:COVID-19 严重程度的决定因素。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-24 DOI: 10.1186/s13293-024-00658-4
Eric C Mohan, Jude P J Savarraj, Gabriela D Colpo, Diego Morales, Carson E Finger, Alexis McAlister, Hilda Ahnstedt, HuiMahn Choi, Louise D McCullough, Bharti Manwani
<p><strong>Background: </strong>Male sex has been identified as a risk factor for worse COVID-19 outcomes. This sex difference has been mostly attributed to the complex role of sex hormones. Cell surface entry of SARS-CoV-2 is mediated by the transmembrane protease serine 2 (TMPRSS2) which is under transcriptional regulation by androgens. P450 aromatase enzyme converts androgens to estrogens. This study measured concentrations of aromatase enzyme, testosterone, estradiol, and TMPRSS-2 in plasma of hospitalized COVID-19 patients to elucidate the dynamics of sex-linked disparity in COVID-19 and correlate them with disease severity and mortality.</p><p><strong>Methods: </strong>In this prospective cohort study, a total of 265 patients (41% women), age 18 years and older, who had a positive COVID-19 PCR test and were hospitalized for COVID-19 at Memorial Hermann Hospital in Houston, (between May 2020 and May 2021) were enrolled in the study if met inclusion criteria. Plasma concentrations of Testosterone, aromatase, TMPRSS-2, and estradiol were measured by ELISA. COVID-19 patients were dichotomized based on disease severity into moderate-severe (n = 146) or critical (n = 119). Mann Whitney U and logistic regression were used to correlate the analytes with disease severity and mortality.</p><p><strong>Results: </strong>TMPRSS2 (2.5 ± 0.31 vs. 1.73 ± 0.21 ng/mL, p < 0.01) and testosterone (1.2 ± 0.1 vs. 0.44 ± 0.12 ng/mL, p < 0.01) were significantly higher in men as compared to women with COVID-19 after adjusting for age in a multivariate model. There was no sex difference seen in the level of estradiol and aromatase in COVID-19 patients. TMPRSS2 and aromatase were higher, while testosterone was lower in patients with increased COVID-19 severity. They were independently associated with COVID-19 severity, after adjusting for several baseline risk factors in a multivariate logistic regression model. In terms of mortality, TMPRRS2 and aromatase levels were significantly higher in non-survivors.</p><p><strong>Conclusions: </strong>Our study demonstrates that testosterone, aromatase, and TMPRSS2 are markers of COVID-19 severity. Estradiol levels do not change with disease severity in COVID-19. In terms of mortality prediction, higher aromatase and TMPRSS-2 levels can be used to predict mortality from COVID-19 in hospitalized patients. COVID-19 has caused over a million deaths in the U.S., with men often getting sicker than women. Testosterone, a male hormone, helps control a protein called TMPRSS-2, which allows the COVID-19 virus to spread more easily in the body. A protein called aromatase converts the male hormone testosterone into the female hormone estrogen. It is thought that female hormone estrogen helps protect women from getting seriously ill from COVID-19. To understand the role of these hormones in COVID-19 and sex differences, we measured levels of testosterone, estrogen, aromatase (which turns testosterone into estrogen), and TMPRSS-2 in hospi
背景:男性已被确定为 COVID-19 结果较差的风险因素。这种性别差异主要归因于性激素的复杂作用。SARS-CoV-2 进入细胞表面是由跨膜丝氨酸蛋白酶 2(TMPRSS2)介导的,该蛋白酶受雄激素的转录调节。P450 芳香化酶可将雄激素转化为雌激素。本研究测量了住院COVID-19患者血浆中芳香化酶、睾酮、雌二醇和TMPRSS-2的浓度,以阐明COVID-19中性别相关性差异的动态变化,并将其与疾病严重程度和死亡率联系起来:在这项前瞻性队列研究中,休斯顿赫尔曼纪念医院(2020年5月至2021年5月期间)共招募了265名COVID-19 PCR检测呈阳性并因COVID-19住院的18岁及以上患者(41%为女性),只要符合纳入标准即可参与研究。通过酶联免疫吸附法测定血浆中睾酮、芳香化酶、TMPRSS-2和雌二醇的浓度。COVID-19 患者根据疾病严重程度分为中度-重度(146 人)和危重(119 人)。曼-惠特尼U和逻辑回归用于将分析物与疾病严重程度和死亡率相关联:结果:TMPRSS2(2.5 ± 0.31 vs. 1.73 ± 0.21 ng/mL,p 结论:我们的研究表明,睾酮、芳香化酶和 TMPRSS2 是 COVID-19 严重程度的标志物。雌二醇水平并不随 COVID-19 疾病严重程度而变化。在预测死亡率方面,较高的芳香化酶和 TMPRSS-2 水平可用于预测住院患者的 COVID-19 死亡率。在美国,COVID-19 已造成一百多万人死亡,其中男性的发病率往往高于女性。睾酮是一种雄性激素,它有助于控制一种名为TMPRSS-2的蛋白质,使COVID-19病毒更容易在体内传播。一种名为芳香化酶的蛋白质会将雄性激素睾酮转化为雌性激素。人们认为,女性荷尔蒙雌激素有助于保护女性免受 COVID-19 病毒的严重侵袭。为了了解这些激素在 COVID-19 中的作用和性别差异,我们测量了 COVID-19 住院患者体内睾酮、雌激素、芳香化酶(将睾酮转化为雌激素)和 TMPRSS-2 的水平。我们还检查了这一水平如何反映疾病的严重程度。我们发现,COVID-19 重症患者(重症监护室患者)的 TMPRSS-2 和芳香化酶水平较高,而睾酮水平较低。当我们用这些激素水平来预测住院的COVID-19患者的死亡时,TMPRSS-2和芳香化酶水平较高的患者存活几率较低。
{"title":"Aromatase, testosterone, TMPRSS2: determinants of COVID-19 severity.","authors":"Eric C Mohan, Jude P J Savarraj, Gabriela D Colpo, Diego Morales, Carson E Finger, Alexis McAlister, Hilda Ahnstedt, HuiMahn Choi, Louise D McCullough, Bharti Manwani","doi":"10.1186/s13293-024-00658-4","DOIUrl":"10.1186/s13293-024-00658-4","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Male sex has been identified as a risk factor for worse COVID-19 outcomes. This sex difference has been mostly attributed to the complex role of sex hormones. Cell surface entry of SARS-CoV-2 is mediated by the transmembrane protease serine 2 (TMPRSS2) which is under transcriptional regulation by androgens. P450 aromatase enzyme converts androgens to estrogens. This study measured concentrations of aromatase enzyme, testosterone, estradiol, and TMPRSS-2 in plasma of hospitalized COVID-19 patients to elucidate the dynamics of sex-linked disparity in COVID-19 and correlate them with disease severity and mortality.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;In this prospective cohort study, a total of 265 patients (41% women), age 18 years and older, who had a positive COVID-19 PCR test and were hospitalized for COVID-19 at Memorial Hermann Hospital in Houston, (between May 2020 and May 2021) were enrolled in the study if met inclusion criteria. Plasma concentrations of Testosterone, aromatase, TMPRSS-2, and estradiol were measured by ELISA. COVID-19 patients were dichotomized based on disease severity into moderate-severe (n = 146) or critical (n = 119). Mann Whitney U and logistic regression were used to correlate the analytes with disease severity and mortality.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;TMPRSS2 (2.5 ± 0.31 vs. 1.73 ± 0.21 ng/mL, p &lt; 0.01) and testosterone (1.2 ± 0.1 vs. 0.44 ± 0.12 ng/mL, p &lt; 0.01) were significantly higher in men as compared to women with COVID-19 after adjusting for age in a multivariate model. There was no sex difference seen in the level of estradiol and aromatase in COVID-19 patients. TMPRSS2 and aromatase were higher, while testosterone was lower in patients with increased COVID-19 severity. They were independently associated with COVID-19 severity, after adjusting for several baseline risk factors in a multivariate logistic regression model. In terms of mortality, TMPRRS2 and aromatase levels were significantly higher in non-survivors.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;Our study demonstrates that testosterone, aromatase, and TMPRSS2 are markers of COVID-19 severity. Estradiol levels do not change with disease severity in COVID-19. In terms of mortality prediction, higher aromatase and TMPRSS-2 levels can be used to predict mortality from COVID-19 in hospitalized patients. COVID-19 has caused over a million deaths in the U.S., with men often getting sicker than women. Testosterone, a male hormone, helps control a protein called TMPRSS-2, which allows the COVID-19 virus to spread more easily in the body. A protein called aromatase converts the male hormone testosterone into the female hormone estrogen. It is thought that female hormone estrogen helps protect women from getting seriously ill from COVID-19. To understand the role of these hormones in COVID-19 and sex differences, we measured levels of testosterone, estrogen, aromatase (which turns testosterone into estrogen), and TMPRSS-2 in hospi","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"84"},"PeriodicalIF":4.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of sex on neuroimmune communication, pain, and physiology. 性别对神经免疫交流、疼痛和生理学的影响。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-22 DOI: 10.1186/s13293-024-00660-w
Shevon N Alexander, Audrey R Green, Emily K Debner, Lindsey E Ramos Freitas, Hanna M K Abdelhadi, Thomas A Szabo-Pardi, Michael D Burton

With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.

随着美国国立卫生研究院(National Institutes of Health)授权将性别视为一种生物变量(SABV),利用两性进行的研究大幅增加。从历史上看,我们已经知道生物性别和激素会影响免疫过程,而现在侧重于免疫、内分泌和神经系统之间相互作用的研究则揭示了影响疼痛行为及各种分子和生化过程的性别差异。神经内分泌-免疫相互作用是一门关键的综合性学科,它将揭示每个领域的关键过程,因为它涉及到性别差异的新机制和必要的治疗方法。在此,我们对临床前和临床文献进行评估,讨论这些相互作用以及驱动免疫、疼痛和生理学中细胞和性别特异性差异的关键途径。
{"title":"The influence of sex on neuroimmune communication, pain, and physiology.","authors":"Shevon N Alexander, Audrey R Green, Emily K Debner, Lindsey E Ramos Freitas, Hanna M K Abdelhadi, Thomas A Szabo-Pardi, Michael D Burton","doi":"10.1186/s13293-024-00660-w","DOIUrl":"https://doi.org/10.1186/s13293-024-00660-w","url":null,"abstract":"<p><p>With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"82"},"PeriodicalIF":4.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific phenotypical, functional and metabolic profiles of human term placenta macrophages. 人类足月胎盘巨噬细胞的性别表型、功能和代谢特征。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-17 DOI: 10.1186/s13293-024-00652-w
Daniel E Paparini, Esteban Grasso, Franco Aguilera, M Agustina Arslanian, Victoria Lella, Brenda Lara, Ana Schafir, Soledad Gori, Fátima Merech, Vanesa Hauk, Claudio Schuster, Marcelo Martí, Cesar Meller, Rosanna Ramhorst, Daiana Vota, Claudia Pérez Leirós

Background: Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC.

Methods: HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches.

Results: HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment.

Conclusions: These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.

背景:胎盘巨噬细胞和霍夫鲍尔细胞(HBC)是孕期健康胎盘基质中唯一的胎儿免疫细胞群。它们是维持孕期免疫耐受的核心角色。免疫代谢学是几年前兴起的一个新领域,它将细胞代谢与免疫反应结合在一起,然而,HBC的免疫代谢尚未被研究。方法:从人类足月胎盘中分离出 HBC(31 个,其中 16 个来自男性新生儿,15 个来自女性新生儿)。通过流式细胞术、共聚焦显微镜、基因表达和硅学方法进行体内外检测,以评估活跃的代谢和内质网应激途径:结果:雌性胎盘中的HBC显示出更强的M2表型,并伴随着主要依靠脂质代谢维持的高流出率。另一方面,雄性 HBC 的 M2 表型较弱,糖代谢较高。LPS 刺激加强了雄性 HBC 的糖代谢,而雌性 HBC 则没有。生理内质网应激对 IRE-1 的激活作用不同,因为只有在雌性 HBC 中药物抑制 IRE-1 才会增加脂质动员、积累和排泄。此外,伴随 HBC 表型和功能特征的不同性别相关途径似乎与胎盘绒毛环境有关:这些结果支持了性别对 HBC 免疫代谢的影响,并为错综复杂的母胎免疫相互作用增添了另一层复杂性。
{"title":"Sex-specific phenotypical, functional and metabolic profiles of human term placenta macrophages.","authors":"Daniel E Paparini, Esteban Grasso, Franco Aguilera, M Agustina Arslanian, Victoria Lella, Brenda Lara, Ana Schafir, Soledad Gori, Fátima Merech, Vanesa Hauk, Claudio Schuster, Marcelo Martí, Cesar Meller, Rosanna Ramhorst, Daiana Vota, Claudia Pérez Leirós","doi":"10.1186/s13293-024-00652-w","DOIUrl":"https://doi.org/10.1186/s13293-024-00652-w","url":null,"abstract":"<p><strong>Background: </strong>Placental macrophages, Hofbauer cells (HBC) are the only fetal immune cell population within the stroma of healthy placenta along pregnancy. They are central players in maintaining immune tolerance during pregnancy. Immunometabolism emerged a few years ago as a new field that integrates cellular metabolism with immune responses, however, the immunometabolism of HBC has not been explored yet. Here we studied the sex-specific differences in the phenotypic, functional and immunometabolic profile of HBC.</p><p><strong>Methods: </strong>HBC were isolated from human term placentas (N = 31, 16 from male and 15 female neonates). Ex vivo assays were carried out to assess active metabolic and endoplasmic reticulum stress pathways by flow cytometry, confocal microscopy, gene expression and in silico approaches.</p><p><strong>Results: </strong>HBC from female placentas displayed a stronger M2 phenotype accompanied by high rates of efferocytosis majorly sustained on lipid metabolism. On the other hand, male HBC expressed a weaker M2 phenotype with higher glycolytic metabolism. LPS stimulation reinforced the glycolytic metabolism in male but not in female HBC. Physiological endoplasmic reticulum stress activates IRE-1 differently, since its pharmacological inhibition increased lipid mobilization, accumulation and efferocytosis only in female HBC. Moreover, differential sex-associated pathways accompanying the phenotypic and functional profiles of HBC appeared related to the placental villi environment.</p><p><strong>Conclusions: </strong>These results support sex-associated effects on the immunometabolism of the HBC and adds another layer of complexity to the intricate maternal-fetal immune interaction.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"80"},"PeriodicalIF":4.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex Differences in Human Brain Structure at Birth. 人类出生时大脑结构的性别差异。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-17 DOI: 10.1186/s13293-024-00657-5
Yumnah T Khan, Alex Tsompanidis, Marcin A Radecki, Lena Dorfschmidt, Topun Austin, John Suckling, Carrie Allison, Meng-Chuan Lai, Richard A I Bethlehem, Simon Baron-Cohen

Background: Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain.

Methods: Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development.

Results: On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts).

Conclusions: Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.

背景:人类大脑解剖学中的性别差异已被充分证明,但对早期发育过程的研究仍显不足。新生儿期是大脑发育的关键阶段,可为了解产前和产后早期因素在形成大脑性别差异方面所起的作用提供重要信息。方法:在此,我们利用正在开展的人类连接组项目的数据,评估了 514 名 0-28 天大的新生儿(236 名出生时指定的女性和 278 名出生时指定的男性)在整体和区域脑容量方面的平均性别差异。我们还评估了性别与年龄的相互作用,以研究出生后早期大脑发育的性别差异:结果:平均而言,即使控制了出生体重,男性的颅内体积和大脑总体积也明显更大。在控制了大脑总体积后,女性的皮层灰质总体积明显更大,而男性的白质总体积更大。在控制了区域比较中的脑总量后,女性胼胝体的白质体积明显增加,双侧海马旁回(后部)、左扣带回前部、双侧顶叶和左尾状核的灰质体积增加。男性右侧颞内侧和颞下回(后部)以及右侧丘脑下核的灰质体积明显增加。效应大小从区域比较的小到整体比较的大不等。左侧扣带回前部和左侧颞上回(后部)存在显著的性别-年龄交互作用:我们的研究结果表明,大脑结构的性别差异在出生时就已经存在,并在出生后早期发育过程中保持相对稳定,这凸显了产前因素在大脑性别差异形成过程中的重要作用。
{"title":"Sex Differences in Human Brain Structure at Birth.","authors":"Yumnah T Khan, Alex Tsompanidis, Marcin A Radecki, Lena Dorfschmidt, Topun Austin, John Suckling, Carrie Allison, Meng-Chuan Lai, Richard A I Bethlehem, Simon Baron-Cohen","doi":"10.1186/s13293-024-00657-5","DOIUrl":"10.1186/s13293-024-00657-5","url":null,"abstract":"<p><strong>Background: </strong>Sex differences in human brain anatomy have been well-documented, though remain significantly underexplored during early development. The neonatal period is a critical stage for brain development and can provide key insights into the role that prenatal and early postnatal factors play in shaping sex differences in the brain.</p><p><strong>Methods: </strong>Here, we assessed on-average sex differences in global and regional brain volumes in 514 newborns aged 0-28 days (236 birth-assigned females and 278 birth-assigned males) using data from the developing Human Connectome Project. We also assessed sex-by-age interactions to investigate sex differences in early postnatal brain development.</p><p><strong>Results: </strong>On average, males had significantly larger intracranial and total brain volumes, even after controlling for birth weight. After controlling for total brain volume, females showed significantly greater total cortical gray matter volumes, whilst males showed greater total white matter volumes. After controlling for total brain volume in regional comparisons, females had significantly increased white matter volumes in the corpus callosum and increased gray matter volumes in the bilateral parahippocampal gyri (posterior parts), left anterior cingulate gyrus, bilateral parietal lobes, and left caudate nucleus. Males had significantly increased gray matter volumes in the right medial and inferior temporal gyrus (posterior part) and right subthalamic nucleus. Effect sizes ranged from small for regional comparisons to large for global comparisons. Significant sex-by-age interactions were noted in the left anterior cingulate gyrus and left superior temporal gyrus (posterior parts).</p><p><strong>Conclusions: </strong>Our findings demonstrate that sex differences in brain structure are already present at birth and remain comparatively stable during early postnatal development, highlighting an important role of prenatal factors in shaping sex differences in the brain.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"81"},"PeriodicalIF":4.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in prelimbic cortex calcium dynamics during stress and fear learning. 压力和恐惧学习过程中前缘皮层钙动态的性别差异
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-16 DOI: 10.1186/s13293-024-00653-9
Ignacio Marin-Blasco, Giorgia Vanzo, Joaquin Rusco-Portabella, Lucas Perez-Molina, Leire Romero, Antonio Florido, Raul Andero

In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.

近年来,研究逐渐增加了在压力和恐惧记忆研究中考虑性别差异的重要性。传统上,许多研究都以男性受试者为研究对象,可能忽略了与女性的关键差异。新的证据表明,男性和女性对压力和恐惧条件反射会表现出不同的行为和神经生理反应。这些差异可能归因于激素水平、大脑结构和神经回路的变化,尤其是前额叶皮层(PFC)等区域的变化。在本研究中,我们探讨了动物在接受固定应激(IMO)、恐惧条件反射(FC)和恐惧消退(FE)后边缘前皮层(PL)钙活动的性别差异。虽然在行为反应方面没有发现明显的性别差异,但我们确实观察到了几种前边缘皮层钙活动参数的差异。为了确定这些结果是否与应激和恐惧记忆以外的行为有关,我们对 IMO 期间动物的运动和 PL 活性以及 FC 和 FE 期间的冻结行为进行了相关性研究。我们的研究结果表明,PL钙活性与应激暴露时的运动和冻结行为之间存在明显的相关性,而且在这些相关性中没有观察到性别差异。这些结果表明,除了参与恐惧相关过程外,钙离子在运动和运动中也扮演着重要角色。要想充分了解前脑功能区和其他脑区在压力和恐惧反应中的作用,同时纳入女性和男性受试者对于此类研究至关重要。认识到性别差异会增强我们对大脑功能的理解,并能在研究和治疗压力和恐惧相关疾病时采用更加个性化和有效的方法。
{"title":"Sex differences in prelimbic cortex calcium dynamics during stress and fear learning.","authors":"Ignacio Marin-Blasco, Giorgia Vanzo, Joaquin Rusco-Portabella, Lucas Perez-Molina, Leire Romero, Antonio Florido, Raul Andero","doi":"10.1186/s13293-024-00653-9","DOIUrl":"https://doi.org/10.1186/s13293-024-00653-9","url":null,"abstract":"<p><p>In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"79"},"PeriodicalIF":4.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolated during adolescence: long-term impact on social behavior, pain sensitivity, and the oxytocin system in male and female rats. 青春期隔离:对雌雄大鼠社交行为、疼痛敏感性和催产素系统的长期影响。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-15 DOI: 10.1186/s13293-024-00655-7
Akseli P Graf, Anita C Hansson, Rainer Spanagel

Background: Adolescent social isolation (ASI) has profound long-term effects on behavioral and neural development. Despite this, the specific long-term impact of ASI during different adolescent stages and across sexes remain underexplored.

Methods: Our study addresses this gap by examining the effects of early- and late- adolescent social isolation on both male and female rats. Rats were either isolated (or group-housed) starting from PD 21 (early) or PD 42 (late) for three weeks and then rehoused into groups. In adulthood (PD 90), rats underwent a battery of tests: elevated plus-maze, open field, novel object recognition, social interaction and social recognition memory and hotplate tests. Finally, we analyzed oxytocin receptor binding in several regions in the brains of a second cohort of rats.

Results: Both, male and female rats from the late adolescent social isolation (LASI) groups spent significantly less time interacting in the social interaction test. Additionally, we observed a general decrease in social recognition memory regardless of sex. Both male ASI groups demonstrated heightened thermal pain sensitivity, while the opposite was observed in early adolescent social isolation (EASI) female rats. In the brain, we observed changes in oxytocin receptor (OTR) binding in the paraventricular nucleus of the hypothalamus (PVN) and paraventricular nucleus of the thalamus (PVT) and central amygdala (CeA) with the largest changes in EASI and LASI female rats.

Conclusion: Our model demonstrates long-lasting alterations on behavior and oxytocin receptor binding levels following ASI providing insights into the long-term effects of ASI in a time- and sex-specific manner.

背景:青少年社会隔离(ASI)会对行为和神经发育产生深远的长期影响。尽管如此,不同青春期阶段和不同性别的青少年社会隔离的具体长期影响仍未得到充分探索:我们的研究通过考察青春期早期和晚期社会隔离对雄性和雌性大鼠的影响来填补这一空白。大鼠从青春期21(早期)或42(晚期)开始被隔离(或群居)三周,然后重新群居。在成年期(PD 90),大鼠接受了一系列测试:高架迷宫、开阔地、新物体识别、社会互动和社会识别记忆以及热板测试。最后,我们分析了第二批大鼠大脑中多个区域的催产素受体结合情况:结果:青春期晚期社会隔离(LASI)组的雄性和雌性大鼠在社会互动测试中的互动时间都明显减少。此外,我们还观察到,无论性别如何,大鼠的社会识别记忆力普遍下降。两组雄性 ASI 大鼠的热痛敏感性都有所提高,而青春期早期社会隔离(EASI)雌性大鼠的情况则恰恰相反。在大脑中,我们观察到下丘脑室旁核(PVN)、丘脑室旁核(PVT)和杏仁核中央(CeA)的催产素受体(OTR)结合发生了变化,其中EASI和LASI雌性大鼠的变化最大:我们的模型显示了 ASI 对大鼠行为和催产素受体结合水平的持久改变,这有助于深入了解 ASI 在时间和性别上的特异性长期影响。
{"title":"Isolated during adolescence: long-term impact on social behavior, pain sensitivity, and the oxytocin system in male and female rats.","authors":"Akseli P Graf, Anita C Hansson, Rainer Spanagel","doi":"10.1186/s13293-024-00655-7","DOIUrl":"https://doi.org/10.1186/s13293-024-00655-7","url":null,"abstract":"<p><strong>Background: </strong>Adolescent social isolation (ASI) has profound long-term effects on behavioral and neural development. Despite this, the specific long-term impact of ASI during different adolescent stages and across sexes remain underexplored.</p><p><strong>Methods: </strong>Our study addresses this gap by examining the effects of early- and late- adolescent social isolation on both male and female rats. Rats were either isolated (or group-housed) starting from PD 21 (early) or PD 42 (late) for three weeks and then rehoused into groups. In adulthood (PD 90), rats underwent a battery of tests: elevated plus-maze, open field, novel object recognition, social interaction and social recognition memory and hotplate tests. Finally, we analyzed oxytocin receptor binding in several regions in the brains of a second cohort of rats.</p><p><strong>Results: </strong>Both, male and female rats from the late adolescent social isolation (LASI) groups spent significantly less time interacting in the social interaction test. Additionally, we observed a general decrease in social recognition memory regardless of sex. Both male ASI groups demonstrated heightened thermal pain sensitivity, while the opposite was observed in early adolescent social isolation (EASI) female rats. In the brain, we observed changes in oxytocin receptor (OTR) binding in the paraventricular nucleus of the hypothalamus (PVN) and paraventricular nucleus of the thalamus (PVT) and central amygdala (CeA) with the largest changes in EASI and LASI female rats.</p><p><strong>Conclusion: </strong>Our model demonstrates long-lasting alterations on behavior and oxytocin receptor binding levels following ASI providing insights into the long-term effects of ASI in a time- and sex-specific manner.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"78"},"PeriodicalIF":4.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of long-read sequencing, DNA methylation and gene expression reveals heterogeneity in Y chromosome segment lengths in phenotypic males with 46,XX testicular disorder/difference of sex development. 长线程测序、DNA甲基化和基因表达的整合揭示了46,XX睾丸疾病/性别发育差异表型男性Y染色体片段长度的异质性。
IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-08 DOI: 10.1186/s13293-024-00654-8
Agnethe Berglund, Emma B Johannsen, Anne Skakkebæk, Simon Chang, Julia Rohayem, Sandra Laurentino, Arne Hørlyck, Simon O Drue, Ebbe Norskov Bak, Jens Fedder, Frank Tüttelmann, Jörg Gromoll, Jesper Just, Claus H Gravholt

Background: 46,XX testicular disorder/difference of sex development (46,XX DSD) is a rare congenital condition, characterized by a combination of the typical female sex chromosome constitution, 46,XX, and a variable male phenotype. In the majority of individuals with 46,XX DSD, a Y chromosome segment containing the sex-determining region gene (SRY) has been translocated to the paternal X chromosome. However, the precise genomic content of the translocated segment and the genome-wide effects remain elusive.

Methods: We performed long-read DNA sequencing, RNA sequencing and DNA methylation analyses on blood samples from 46,XX DSD (n = 11), male controls (46,XY; variable cohort sizes) and female controls (46,XX; variable cohort sizes), in addition to RNA sequencing and DNA methylation analysis on blood samples from males with Klinefelter syndrome (47,XXY, n = 22). We also performed clinical measurements on all 46,XX DSD and a subset of 46,XY (n = 10).

Results: We identified variation in the translocated Y chromosome segments, enabling subcategorization into 46,XX DSD (1) lacking Y chromosome material (n = 1), (2) with short Yp arms (breakpoint at 2.7-2.8 Mb, n = 2), (3) with medium Yp arms (breakpoint at 7.3 Mb, n = 1), and (4) with long Yp arms (n = 7), including deletions of AMELY, TBLY1 and in some cases PRKY. We also identified variable expression of the X-Y homologues PRKY and PRKX. The Y-chromosomal transcriptome and methylome reflected the Y chromosome segment lengths, while changes to autosomal and X-chromosomal regions indicated global effects. Furthermore, transcriptional changes tentatively correlated with phenotypic traits of 46,XX DSD, including reduced height, lean mass and testicular size.

Conclusion: This study refines our understanding of the genetic composition in 46,XX DSD, describing the translocated Y chromosome segment in more detail than previously and linking variability herein to genome-wide changes in the transcriptome and methylome.

背景:46,XX睾丸发育障碍/性别发育差异(46,XX DSD)是一种罕见的先天性疾病,其特征是典型的女性性染色体结构(46,XX)和可变的男性表型的结合。在大多数 46,XX DSD 患者中,含有性别决定区基因(SRY)的 Y 染色体片段被易位到父方的 X 染色体上。然而,该易位片段的精确基因组内容及其对全基因组的影响仍然难以捉摸:我们对 46,XX DSD(n = 11)、男性对照组(46,XY;队列大小不一)和女性对照组(46,XX;队列大小不一)的血液样本进行了长线程 DNA 测序、RNA 测序和 DNA 甲基化分析,此外还对 Klinefelter 综合征(47,XXY,n = 22)男性患者的血液样本进行了 RNA 测序和 DNA 甲基化分析。我们还对所有 46,XX DSD 和 46,XY 子集(n = 10)进行了临床测量:结果:我们确定了易位 Y 染色体片段的变异,从而将 46,XX DSD 分成以下几类:(1)缺乏 Y 染色体材料(n = 1);(2)短 Yp 臂(断点在 2.7-2.8 Mb,n = 2);(3)中等 Yp 臂(断点在 7.3 Mb,n = 1);(4)长 Yp 臂(n = 7),包括 AMELY、TBLY1 和某些 PRKY 的缺失。我们还发现了 X-Y 同源物 PRKY 和 PRKX 的可变表达。Y 染色体转录组和甲基组反映了 Y 染色体片段的长度,而常染色体和 X 染色体区域的变化则显示了整体效应。此外,转录变化还与 46,XX DSD 的表型特征(包括身高、瘦体重和睾丸大小的减少)初步相关:这项研究完善了我们对 46,XX DSD 遗传组成的认识,比以前更详细地描述了易位的 Y 染色体片段,并将其中的变异与转录组和甲基组的全基因组变化联系起来。
{"title":"Integration of long-read sequencing, DNA methylation and gene expression reveals heterogeneity in Y chromosome segment lengths in phenotypic males with 46,XX testicular disorder/difference of sex development.","authors":"Agnethe Berglund, Emma B Johannsen, Anne Skakkebæk, Simon Chang, Julia Rohayem, Sandra Laurentino, Arne Hørlyck, Simon O Drue, Ebbe Norskov Bak, Jens Fedder, Frank Tüttelmann, Jörg Gromoll, Jesper Just, Claus H Gravholt","doi":"10.1186/s13293-024-00654-8","DOIUrl":"10.1186/s13293-024-00654-8","url":null,"abstract":"<p><strong>Background: </strong>46,XX testicular disorder/difference of sex development (46,XX DSD) is a rare congenital condition, characterized by a combination of the typical female sex chromosome constitution, 46,XX, and a variable male phenotype. In the majority of individuals with 46,XX DSD, a Y chromosome segment containing the sex-determining region gene (SRY) has been translocated to the paternal X chromosome. However, the precise genomic content of the translocated segment and the genome-wide effects remain elusive.</p><p><strong>Methods: </strong>We performed long-read DNA sequencing, RNA sequencing and DNA methylation analyses on blood samples from 46,XX DSD (n = 11), male controls (46,XY; variable cohort sizes) and female controls (46,XX; variable cohort sizes), in addition to RNA sequencing and DNA methylation analysis on blood samples from males with Klinefelter syndrome (47,XXY, n = 22). We also performed clinical measurements on all 46,XX DSD and a subset of 46,XY (n = 10).</p><p><strong>Results: </strong>We identified variation in the translocated Y chromosome segments, enabling subcategorization into 46,XX DSD (1) lacking Y chromosome material (n = 1), (2) with short Yp arms (breakpoint at 2.7-2.8 Mb, n = 2), (3) with medium Yp arms (breakpoint at 7.3 Mb, n = 1), and (4) with long Yp arms (n = 7), including deletions of AMELY, TBLY1 and in some cases PRKY. We also identified variable expression of the X-Y homologues PRKY and PRKX. The Y-chromosomal transcriptome and methylome reflected the Y chromosome segment lengths, while changes to autosomal and X-chromosomal regions indicated global effects. Furthermore, transcriptional changes tentatively correlated with phenotypic traits of 46,XX DSD, including reduced height, lean mass and testicular size.</p><p><strong>Conclusion: </strong>This study refines our understanding of the genetic composition in 46,XX DSD, describing the translocated Y chromosome segment in more detail than previously and linking variability herein to genome-wide changes in the transcriptome and methylome.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"77"},"PeriodicalIF":4.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology of Sex Differences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1