Pub Date : 2024-08-06DOI: 10.1186/s13293-024-00634-y
Enakshi Saha, Marouen Ben Guebila, Viola Fanfani, Jonas Fischer, Katherine H Shutta, Panagiotis Mandros, Dawn L DeMeo, John Quackenbush, Camila M Lopes-Ramos
Background: Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, prognosis, and response to therapy. However, the molecular mechanisms responsible for these disparities have not been investigated extensively.
Methods: Sample-specific gene regulatory network methods were used to analyze RNA sequencing data from non-cancerous human lung samples from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma primary tumor samples from The Cancer Genome Atlas (TCGA); results were validated on independent data.
Results: We found that genes associated with key biological pathways including cell proliferation, immune response and drug metabolism are differentially regulated between males and females in both healthy lung tissue and tumor, and that these regulatory differences are further perturbed by tobacco smoking. We also discovered significant sex bias in transcription factor targeting patterns of clinically actionable oncogenes and tumor suppressor genes, including AKT2 and KRAS. Using differentially regulated genes between healthy and tumor samples in conjunction with a drug repurposing tool, we identified several small-molecule drugs that might have sex-biased efficacy as cancer therapeutics and further validated this observation using an independent cell line database.
Conclusions: These findings underscore the importance of including sex as a biological variable and considering gene regulatory processes in developing strategies for disease prevention and management.
{"title":"Gene regulatory networks reveal sex difference in lung adenocarcinoma.","authors":"Enakshi Saha, Marouen Ben Guebila, Viola Fanfani, Jonas Fischer, Katherine H Shutta, Panagiotis Mandros, Dawn L DeMeo, John Quackenbush, Camila M Lopes-Ramos","doi":"10.1186/s13293-024-00634-y","DOIUrl":"10.1186/s13293-024-00634-y","url":null,"abstract":"<p><strong>Background: </strong>Lung adenocarcinoma (LUAD) has been observed to have significant sex differences in incidence, prognosis, and response to therapy. However, the molecular mechanisms responsible for these disparities have not been investigated extensively.</p><p><strong>Methods: </strong>Sample-specific gene regulatory network methods were used to analyze RNA sequencing data from non-cancerous human lung samples from The Genotype Tissue Expression Project (GTEx) and lung adenocarcinoma primary tumor samples from The Cancer Genome Atlas (TCGA); results were validated on independent data.</p><p><strong>Results: </strong>We found that genes associated with key biological pathways including cell proliferation, immune response and drug metabolism are differentially regulated between males and females in both healthy lung tissue and tumor, and that these regulatory differences are further perturbed by tobacco smoking. We also discovered significant sex bias in transcription factor targeting patterns of clinically actionable oncogenes and tumor suppressor genes, including AKT2 and KRAS. Using differentially regulated genes between healthy and tumor samples in conjunction with a drug repurposing tool, we identified several small-molecule drugs that might have sex-biased efficacy as cancer therapeutics and further validated this observation using an independent cell line database.</p><p><strong>Conclusions: </strong>These findings underscore the importance of including sex as a biological variable and considering gene regulatory processes in developing strategies for disease prevention and management.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"62"},"PeriodicalIF":4.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes are two major pathways that connect the neural and endocrine systems in vertebrates. Factors such as prenatal stress and maternal exposure to exogenous steroids have been shown to affect these pathways during fetal development. Another less studied factor is the transfer of hormones across fetuses in multifetal pregnancies. This form of transfer has been shown to influence the morphology, anatomy, physiology, and behavior of the offspring in litter-bearing mammals, an influence termed the intrauterine position (IUP) effect. In this study, we sought to delineate how the IUP effects HPA and HPG brain receptors, peptides, and enzymes (hereafter components) in utero and how these influences may differ between males and females.
Methods: We utilized the unconventional model of culled free-ranging nutria (Myocastor coypus), with its large natural variation. We collected brain tissues from nutria fetuses and quantified the expression of key HPA and HPG components in three brain regions: prefrontal cortex, hypothalamus, and striatum.
Results: We found an interaction between sex and IUP in the mineralocorticoid receptor (MR), gonadotropin-releasing hormone receptor (GNRHR), androgen receptor (AR), and estrogen receptor alpha (ESR1). IUP was significant in both gonadotropin-releasing hormone (GnRH) and its receptor GNRHR, but in different ways. In the hypothalamus, fetuses adjacent to same-sex neighbors had higher expression of GnRH than fetuses neighboring the opposite sex. Conversely, in the cortex, GNRHR exhibited the inverse pattern, and fetuses that were neighboring the opposite sex had higher expression levels than those neighboring the same sex. Regardless of IUP, in most components that showed significant sex differences, female fetuses had higher mRNA expression levels than male fetuses. We also found that HPA and HPG components were highly related in the early stages of gestation, and that there was an interaction between sex and developmental stage. In the early stages of pregnancy, female component expression levels were more correlated than males', but in the last trimester of pregnancy, male components were more related to each other than female's.
Conclusions: This study suggests that there are sexually different mechanisms to regulate the HPA and HPG axes during fetal development. Higher mRNA expression levels of endocrine axes components may be a mechanism to help females cope with prolonged androgen exposure over a long gestational period. Additionally, these findings suggest different coordination requirements of male and female endocrine axes during stages of fetal development.
{"title":"Fetal endocrine axes mRNA expression levels are related to sex and intrauterine position.","authors":"Ariel Yael, Ruth Fishman, Devorah Matas, Tirza Doniger, Yoni Vortman, Lee Koren","doi":"10.1186/s13293-024-00637-9","DOIUrl":"10.1186/s13293-024-00637-9","url":null,"abstract":"<p><strong>Background: </strong>The hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes are two major pathways that connect the neural and endocrine systems in vertebrates. Factors such as prenatal stress and maternal exposure to exogenous steroids have been shown to affect these pathways during fetal development. Another less studied factor is the transfer of hormones across fetuses in multifetal pregnancies. This form of transfer has been shown to influence the morphology, anatomy, physiology, and behavior of the offspring in litter-bearing mammals, an influence termed the intrauterine position (IUP) effect. In this study, we sought to delineate how the IUP effects HPA and HPG brain receptors, peptides, and enzymes (hereafter components) in utero and how these influences may differ between males and females.</p><p><strong>Methods: </strong>We utilized the unconventional model of culled free-ranging nutria (Myocastor coypus), with its large natural variation. We collected brain tissues from nutria fetuses and quantified the expression of key HPA and HPG components in three brain regions: prefrontal cortex, hypothalamus, and striatum.</p><p><strong>Results: </strong>We found an interaction between sex and IUP in the mineralocorticoid receptor (MR), gonadotropin-releasing hormone receptor (GNRHR), androgen receptor (AR), and estrogen receptor alpha (ESR1). IUP was significant in both gonadotropin-releasing hormone (GnRH) and its receptor GNRHR, but in different ways. In the hypothalamus, fetuses adjacent to same-sex neighbors had higher expression of GnRH than fetuses neighboring the opposite sex. Conversely, in the cortex, GNRHR exhibited the inverse pattern, and fetuses that were neighboring the opposite sex had higher expression levels than those neighboring the same sex. Regardless of IUP, in most components that showed significant sex differences, female fetuses had higher mRNA expression levels than male fetuses. We also found that HPA and HPG components were highly related in the early stages of gestation, and that there was an interaction between sex and developmental stage. In the early stages of pregnancy, female component expression levels were more correlated than males', but in the last trimester of pregnancy, male components were more related to each other than female's.</p><p><strong>Conclusions: </strong>This study suggests that there are sexually different mechanisms to regulate the HPA and HPG axes during fetal development. Higher mRNA expression levels of endocrine axes components may be a mechanism to help females cope with prolonged androgen exposure over a long gestational period. Additionally, these findings suggest different coordination requirements of male and female endocrine axes during stages of fetal development.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"61"},"PeriodicalIF":4.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s13293-024-00636-w
Qiqi Chen, Deying Yang, Mingqiang Chen, Jinxin Xiong, Junjie Huang, Wenxiang Ding, Kuo Gao, Bolin Lai, Li Zheng, Ziting Tang, Mingwang Zhang, Taiming Yan, Zhi He
Background: Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-β signaling. Smad4 and FoxH1 are downstream effectors of TGF-β signaling and may play important roles in ovarian development in M. albus.
Methods: We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays.
Results: We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity.
Conclusions: This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-β signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.
{"title":"Smad4 and FoxH1 potentially interact to regulate cyp19a1a promoter in the ovary of ricefield eel (Monopterus albus).","authors":"Qiqi Chen, Deying Yang, Mingqiang Chen, Jinxin Xiong, Junjie Huang, Wenxiang Ding, Kuo Gao, Bolin Lai, Li Zheng, Ziting Tang, Mingwang Zhang, Taiming Yan, Zhi He","doi":"10.1186/s13293-024-00636-w","DOIUrl":"10.1186/s13293-024-00636-w","url":null,"abstract":"<p><strong>Background: </strong>Cyp19a1a is a key enzyme in the pathway that converts androgens into estrogen and is regulated by TGF-β signaling. Smad4 and FoxH1 are downstream effectors of TGF-β signaling and may play important roles in ovarian development in M. albus.</p><p><strong>Methods: </strong>We investigated the expression pattern of the Smad4 and FoxH1 using qRT‒PCR and immunofluorescence, then tested the changes of smad4 and foxh1 by qRT‒PCR after ovary incubation with FSH in vitro, and analysed the regulation of cyp19a1a transcription by Smad4 and FoxH1 by dual-luciferase reporter assays.</p><p><strong>Results: </strong>We found that Smad4 encoded a putative protein of 449 amino acids and harbored the three conserved domains typical of this protein family. Smad4 and foxh1 exhibited similar expression patterns during ovarian development and after FSH incubation, with Pearson's coefficients of 0.873 and 0.63-0.81, respectively. Furthermore, Smad4, FoxH1 and Cyp19a1a colocalized in the granulosa cells and theca cells of ovaries during the mid-to-late vitellogenic stage. Smad4 repressed cyp19a1a activity via SBE1 (- 1372/-1364) and SBE2 (- 415/-407) in the cyp19a1a promoter, whereas mutating SBE1 or SBE2 restored cyp19a1a promoter activity. Co-overexpression of Smad4 and FoxH1 significantly reduced cyp19a1a promoter activity.</p><p><strong>Conclusions: </strong>This study provides new insights into the potential functions of transcription factors Smad4 and FoxH1 in ovarian development and the transcriptional regulation mechanism of cyp19a1a in M. albus, which will reveal Smad4/FoxH1-mediated TGF-β signaling in reproduction and the regulation of the cyp19a1a. Aromatase, encoded by cyp19a1a, is involved in ovarian development and plays an important role in the quality of eggs, as well the sex ratio, of the teleost fish, M. albus. The research on the transcriptional regulation of cyp19a1a has contributed to the understanding of its role in ovarian development. In previous study, it was shown that FoxH1 inhibits cyp19a1a transcription. In the present study, Smad4 was confirmed as a cyp19a1a transcriptional repressor and Smad4 may also coordinate with FoxH1 to repress cyp19a1a transcription. At present, we provide a new perspective for the transcriptional regulation of cyp19a1a by transcription factors Smad4 and FoxH1 in teleost fish ovary. In the future, the regulatory networks of Smad4 and FoxH1 will be further studied and the gene editing technology will be applied to screen specific regulatory factors of cyp191a1a gene, so as to alter the female cycle and modulate the sex ratio of the eggs production.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"60"},"PeriodicalIF":4.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1186/s13293-024-00635-x
Hector Carceller, Marta R. Hidalgo, María José Escartí, Juan Nacher, Maria de la Iglesia-Vayá, Francisco García-García
Schizophrenia is a severe neuropsychiatric disorder characterized by altered perception, mood, and behavior that profoundly impacts patients and society despite its relatively low prevalence. Sex-based differences have been described in schizophrenia epidemiology, symptomatology and outcomes. Different studies explored the impact of schizophrenia in the brain transcriptome, however we lack a consensus transcriptomic profile that considers sex and differentiates specific cerebral regions. We performed a systematic review on bulk RNA-sequencing studies of post-mortem brain samples. Then, we fulfilled differential expression analysis on each study and summarized their results with regions-specific meta-analyses (prefrontal cortex and hippocampus) and a global all-studies meta-analysis. Finally, we used the consensus transcriptomic profiles to functionally characterize the impact of schizophrenia in males and females by protein-protein interaction networks, enriched biological processes and dysregulated transcription factors. We discovered the sex-based dysregulation of 265 genes in the prefrontal cortex, 1.414 genes in the hippocampus and 66 genes in the all-studies meta-analyses. The functional characterization of these gene sets unveiled increased processes related to immune response functions in the prefrontal cortex in male and the hippocampus in female schizophrenia patients and the overexpression of genes related to neurotransmission and synapses in the prefrontal cortex of female schizophrenia patients. Considering a meta-analysis of all brain regions available, we encountered the relative overexpression of genes related to synaptic plasticity and transmission in females and the overexpression of genes involved in organizing genetic information and protein folding in male schizophrenia patients. The protein-protein interaction networks and transcription factors activity analyses supported these sex-based profiles. Our results report multiple sex-based transcriptomic alterations in specific brain regions of schizophrenia patients, which provides new insight into the role of sex in schizophrenia. Moreover, we unveil a partial overlapping of inflammatory processes in the prefrontal cortex of males and the hippocampus of females. Schizophrenia is a serious illness characterised by changes in perception, mood and behaviour that profoundly affect patients and society. The frequency, symptoms and progression of schizophrenia are different in women and men, but the biological reason for this is not understood. The identification of disease mechanisms specific in men and women, is relevant because it would allow a better understanding of this pathology, as well as improving the personalisation of diagnoses and treatments for patients. To achieve this goal, in this work we reviewed all available RNA sequencing studies of post-mortem brain samples from women and men affected by schizophrenia. Then, we compared gene expression in each study by sex, and i
{"title":"The impact of sex on gene expression in the brain of schizophrenic patients: a systematic review and meta-analysis of transcriptomic studies","authors":"Hector Carceller, Marta R. Hidalgo, María José Escartí, Juan Nacher, Maria de la Iglesia-Vayá, Francisco García-García","doi":"10.1186/s13293-024-00635-x","DOIUrl":"https://doi.org/10.1186/s13293-024-00635-x","url":null,"abstract":"Schizophrenia is a severe neuropsychiatric disorder characterized by altered perception, mood, and behavior that profoundly impacts patients and society despite its relatively low prevalence. Sex-based differences have been described in schizophrenia epidemiology, symptomatology and outcomes. Different studies explored the impact of schizophrenia in the brain transcriptome, however we lack a consensus transcriptomic profile that considers sex and differentiates specific cerebral regions. We performed a systematic review on bulk RNA-sequencing studies of post-mortem brain samples. Then, we fulfilled differential expression analysis on each study and summarized their results with regions-specific meta-analyses (prefrontal cortex and hippocampus) and a global all-studies meta-analysis. Finally, we used the consensus transcriptomic profiles to functionally characterize the impact of schizophrenia in males and females by protein-protein interaction networks, enriched biological processes and dysregulated transcription factors. We discovered the sex-based dysregulation of 265 genes in the prefrontal cortex, 1.414 genes in the hippocampus and 66 genes in the all-studies meta-analyses. The functional characterization of these gene sets unveiled increased processes related to immune response functions in the prefrontal cortex in male and the hippocampus in female schizophrenia patients and the overexpression of genes related to neurotransmission and synapses in the prefrontal cortex of female schizophrenia patients. Considering a meta-analysis of all brain regions available, we encountered the relative overexpression of genes related to synaptic plasticity and transmission in females and the overexpression of genes involved in organizing genetic information and protein folding in male schizophrenia patients. The protein-protein interaction networks and transcription factors activity analyses supported these sex-based profiles. Our results report multiple sex-based transcriptomic alterations in specific brain regions of schizophrenia patients, which provides new insight into the role of sex in schizophrenia. Moreover, we unveil a partial overlapping of inflammatory processes in the prefrontal cortex of males and the hippocampus of females. Schizophrenia is a serious illness characterised by changes in perception, mood and behaviour that profoundly affect patients and society. The frequency, symptoms and progression of schizophrenia are different in women and men, but the biological reason for this is not understood. The identification of disease mechanisms specific in men and women, is relevant because it would allow a better understanding of this pathology, as well as improving the personalisation of diagnoses and treatments for patients. To achieve this goal, in this work we reviewed all available RNA sequencing studies of post-mortem brain samples from women and men affected by schizophrenia. Then, we compared gene expression in each study by sex, and i","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"43 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141771828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1186/s13293-024-00632-0
Coltan G Parker, George W Gruenhagen, Brianna E Hegarty, Abigail R Histed, Jeffrey T Streelman, Justin S Rhodes, Zachary V Johnson
Background: Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation.
Methods: This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain.
Results: We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation.
Conclusions: This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.
{"title":"Adult sex change leads to extensive forebrain reorganization in clownfish.","authors":"Coltan G Parker, George W Gruenhagen, Brianna E Hegarty, Abigail R Histed, Jeffrey T Streelman, Justin S Rhodes, Zachary V Johnson","doi":"10.1186/s13293-024-00632-0","DOIUrl":"10.1186/s13293-024-00632-0","url":null,"abstract":"<p><strong>Background: </strong>Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation.</p><p><strong>Methods: </strong>This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain.</p><p><strong>Results: </strong>We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of sexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation.</p><p><strong>Conclusions: </strong>This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"58"},"PeriodicalIF":4.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s13293-024-00612-4
Joel S Raymond, Simone Rehn, Morgan H James, Nicholas A Everett, Michael T Bowen
<p><strong>Background: </strong>Social behaviour plays a key role in mental health and wellbeing, and developing greater understanding of mechanisms underlying social interaction-particularly social motivation-holds substantial transdiagnostic impact. Common rodent behavioural assays used to assess social behaviour are limited in their assessment of social motivation, whereas the social operant conditioning model can provide unique and valuable insights into social motivation. Further characterisation of common experimental parameters that may influence social motivation within the social operant model, as well as complementary methodological and analytical approaches, are warranted.</p><p><strong>Methods: </strong>This study investigated the effects of biological sex, housing condition, and time-of-day, on social motivation using the social operant model. This involved training rats to lever press (FR1) for 60-s access to a social reward (same-sex conspecific stimulus). Subjects were male and female Wistar rats, housed under individual or paired conditions, and sessions were conducted either in the mid-late light phase (ZT6-10) or early-mid dark phase (ZT13-17). A behavioural economics approach was implemented to measure social demand and the influence of stimulus partner sex (same- vs. opposite-sex stimulus) on social operant responding. Additionally, video tracking analyses were conducted to assess the degree of convergence between social appetitive and consummatory behaviours.</p><p><strong>Results: </strong>Biological sex, housing conditions, the interaction between sex and housing, and stimulus partner sex potently influenced social motivation, whereas time-of-day did not. Behavioural economics demonstrated that sex, housing, and their interaction influence both the hedonic set-point and elasticity of social demand. Video analysis of social interaction during social operant sessions revealed that social appetitive and consummatory behaviours are not necessarily convergent, and indicate potential social satiety. Lastly, oestrus phase of female experimental and stimulus rats did not impact social motivation within the model.</p><p><strong>Conclusions: </strong>Social isolation-dependent sex differences exist in social motivation for rats, as assessed by social operant conditioning. The social operant model represents an optimal preclinical assay that comprehensively evaluates social motivation and offers a platform for future investigations of neurobiological mechanisms underlying sex differences in social motivation. These findings highlight the importance of continued consideration and inclusion of sex as a biological variable in future social operant conditioning studies. Humans are social creatures-our everyday interactions with others and the support this provides play a key role in our wellbeing. For those experiencing mental health conditions, people's motivation to engage with others can wane, which can lead them to withdraw from thos
{"title":"Sex differences in the social motivation of rats: Insights from social operant conditioning, behavioural economics, and video tracking.","authors":"Joel S Raymond, Simone Rehn, Morgan H James, Nicholas A Everett, Michael T Bowen","doi":"10.1186/s13293-024-00612-4","DOIUrl":"10.1186/s13293-024-00612-4","url":null,"abstract":"<p><strong>Background: </strong>Social behaviour plays a key role in mental health and wellbeing, and developing greater understanding of mechanisms underlying social interaction-particularly social motivation-holds substantial transdiagnostic impact. Common rodent behavioural assays used to assess social behaviour are limited in their assessment of social motivation, whereas the social operant conditioning model can provide unique and valuable insights into social motivation. Further characterisation of common experimental parameters that may influence social motivation within the social operant model, as well as complementary methodological and analytical approaches, are warranted.</p><p><strong>Methods: </strong>This study investigated the effects of biological sex, housing condition, and time-of-day, on social motivation using the social operant model. This involved training rats to lever press (FR1) for 60-s access to a social reward (same-sex conspecific stimulus). Subjects were male and female Wistar rats, housed under individual or paired conditions, and sessions were conducted either in the mid-late light phase (ZT6-10) or early-mid dark phase (ZT13-17). A behavioural economics approach was implemented to measure social demand and the influence of stimulus partner sex (same- vs. opposite-sex stimulus) on social operant responding. Additionally, video tracking analyses were conducted to assess the degree of convergence between social appetitive and consummatory behaviours.</p><p><strong>Results: </strong>Biological sex, housing conditions, the interaction between sex and housing, and stimulus partner sex potently influenced social motivation, whereas time-of-day did not. Behavioural economics demonstrated that sex, housing, and their interaction influence both the hedonic set-point and elasticity of social demand. Video analysis of social interaction during social operant sessions revealed that social appetitive and consummatory behaviours are not necessarily convergent, and indicate potential social satiety. Lastly, oestrus phase of female experimental and stimulus rats did not impact social motivation within the model.</p><p><strong>Conclusions: </strong>Social isolation-dependent sex differences exist in social motivation for rats, as assessed by social operant conditioning. The social operant model represents an optimal preclinical assay that comprehensively evaluates social motivation and offers a platform for future investigations of neurobiological mechanisms underlying sex differences in social motivation. These findings highlight the importance of continued consideration and inclusion of sex as a biological variable in future social operant conditioning studies. Humans are social creatures-our everyday interactions with others and the support this provides play a key role in our wellbeing. For those experiencing mental health conditions, people's motivation to engage with others can wane, which can lead them to withdraw from thos","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"57"},"PeriodicalIF":4.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1186/s13293-024-00633-z
Brian J Harvey, Noel G McElvaney
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
{"title":"Sex differences in airway disease: estrogen and airway surface liquid dynamics.","authors":"Brian J Harvey, Noel G McElvaney","doi":"10.1186/s13293-024-00633-z","DOIUrl":"10.1186/s13293-024-00633-z","url":null,"abstract":"<p><p>Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"56"},"PeriodicalIF":4.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1186/s13293-024-00628-w
Sanutha Shetty, Samuel J Duesman, Sanil Patel, Pacific Huynh, Pamela Toh, Sanjana Shroff, Anika Das, Disha Chowhan, Benjamin Keller, Johana Alvarez, Rachel Fisher-Foye, Robert Sebra, Kristin Beaumont, Cameron S McAlpine, Prashant Rajbhandari, Abha K Rajbhandari
Background: Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice.
Methods: To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis.
Results: We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress.
Conclusions: Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.
{"title":"Sex-specific role of high-fat diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus.","authors":"Sanutha Shetty, Samuel J Duesman, Sanil Patel, Pacific Huynh, Pamela Toh, Sanjana Shroff, Anika Das, Disha Chowhan, Benjamin Keller, Johana Alvarez, Rachel Fisher-Foye, Robert Sebra, Kristin Beaumont, Cameron S McAlpine, Prashant Rajbhandari, Abha K Rajbhandari","doi":"10.1186/s13293-024-00628-w","DOIUrl":"10.1186/s13293-024-00628-w","url":null,"abstract":"<p><strong>Background: </strong>Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice.</p><p><strong>Methods: </strong>To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis.</p><p><strong>Results: </strong>We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress.</p><p><strong>Conclusions: </strong>Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"55"},"PeriodicalIF":4.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1186/s13293-024-00631-1
Heather C Aziz, Regina A Mangieri
Background: The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R + MSNs from mice during pre- and mid-adolescence.
Methods: Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 21-25 and 35-47, representing pre- and mid-adolescence, respectively. Whole-cell electrophysiology recordings were collected from NAcSh D1R + MSNs in the form of membrane-voltage responses to current injections, to assess membrane properties and action potential waveform characteristics, and spontaneous excitatory postsynaptic currents (sEPSCs) to assess glutamatergic synaptic activity.
Results: Relative to pre-adolescent males, pre-adolescent female NAcSh D1R + MSNs exhibited a less hyperpolarized resting membrane potential, increased input resistance, and smaller action potential afterhyperpolarization amplitudes. During mid-adolescence, decreased input resistance and a shorter action potential duration in females were the only sex differences observed.
Conclusions: Taken together, our results indicate that NAcSh D1R + MSNs in mice exhibit sex differences in membrane properties and AP waveform during pre-adolescence that are overall indicative of increased cellular excitability in females and are suggestive of possible sex differences in glycine receptors, inwardly-rectifying potassium channels, and large conductance voltage-gated potassium channels. These differences do not appear to persist into mid-adolescence, when sex was observed to affect input resistance oppositely to that of pre-adolescence and AP waveform in a manner suggestive of differences in voltage-gated potassium channels.
{"title":"Sex differences in membrane properties and cellular excitability of dopamine D1 receptor-expressing neurons within the shell of the nucleus accumbens of pre- and mid-adolescent mice.","authors":"Heather C Aziz, Regina A Mangieri","doi":"10.1186/s13293-024-00631-1","DOIUrl":"10.1186/s13293-024-00631-1","url":null,"abstract":"<p><strong>Background: </strong>The transition from childhood to adulthood, or adolescence, a developmental stage, is characterized by psychosocial and biological changes. The nucleus accumbens (NAc), a striatal brain region composed of the core (NAcC) and shell (NAcSh), has been linked to risk-taking behavior and implicated in reward seeking and evaluation. Most neurons in the NAc are medium spiny neurons (MSNs) that express dopamine D1 receptors (D1R +) and/or dopamine D2 receptors (D2R +). Changes in dopaminergic and glutamatergic systems occur during adolescence and converge in the NAc. While there are previous investigations into sex differences in membrane excitability and synaptic glutamate transmission in both subdivisions of the NAc, to our knowledge, none have specified NAcSh D1R + MSNs from mice during pre- and mid-adolescence.</p><p><strong>Methods: </strong>Sagittal brain slices containing the NAc were prepared from B6.Cg-Tg(Drd1a-tdTomato)6Calak/J mice of both sexes from postnatal days 21-25 and 35-47, representing pre- and mid-adolescence, respectively. Whole-cell electrophysiology recordings were collected from NAcSh D1R + MSNs in the form of membrane-voltage responses to current injections, to assess membrane properties and action potential waveform characteristics, and spontaneous excitatory postsynaptic currents (sEPSCs) to assess glutamatergic synaptic activity.</p><p><strong>Results: </strong>Relative to pre-adolescent males, pre-adolescent female NAcSh D1R + MSNs exhibited a less hyperpolarized resting membrane potential, increased input resistance, and smaller action potential afterhyperpolarization amplitudes. During mid-adolescence, decreased input resistance and a shorter action potential duration in females were the only sex differences observed.</p><p><strong>Conclusions: </strong>Taken together, our results indicate that NAcSh D1R + MSNs in mice exhibit sex differences in membrane properties and AP waveform during pre-adolescence that are overall indicative of increased cellular excitability in females and are suggestive of possible sex differences in glycine receptors, inwardly-rectifying potassium channels, and large conductance voltage-gated potassium channels. These differences do not appear to persist into mid-adolescence, when sex was observed to affect input resistance oppositely to that of pre-adolescence and AP waveform in a manner suggestive of differences in voltage-gated potassium channels.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"54"},"PeriodicalIF":5.4,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1186/s13293-024-00630-2
Samar Rezq, Alexandra M Huffman, Jelina Basnet, Amira E Alsemeh, Jussara M do Carmo, Licy L Yanes Cardozo, Damian G Romero
Background: Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure.
Methods: Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot.
Results: MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression.
Conclusions: Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
{"title":"MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome.","authors":"Samar Rezq, Alexandra M Huffman, Jelina Basnet, Amira E Alsemeh, Jussara M do Carmo, Licy L Yanes Cardozo, Damian G Romero","doi":"10.1186/s13293-024-00630-2","DOIUrl":"10.1186/s13293-024-00630-2","url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure.</p><p><strong>Methods: </strong>Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot.</p><p><strong>Results: </strong>MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression.</p><p><strong>Conclusions: </strong>Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"53"},"PeriodicalIF":4.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238487/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}